首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Increasing evidence supports the notion that there are significant differences in the health effects of diets enriched in saturated, as opposed to monounsaturated or polyunsaturated fat. However, the current understanding of how these types of fat differ in their handling by relevant tissues is incomplete. To examine the effects of fat type and nutritional status on the metabolic fate of dietary fat, we administered (14)C-labeled oleic, linolenic, or stearic acid with a small liquid meal to male Sprague-Dawley rats previously fasted for 15 h (fasted) or previously fed ad libitum (fed). (14)CO(2) production was measured for 8 h after tracer administration. The (14)C content of gastrointestinal tract, serum, liver, skeletal muscle (soleus, lateral, and medial gastrocnemius), and adipose tissue (omental, retroperitoneal, and epididymal) was measured at six time points (2, 4, 8, 24, and 48 h and 10 days) after tracer administration. Plasma levels of glucose, insulin, and triglyceride were also measured. Oxidation of stearic acid was significantly less than that of either linolenic or oleic acid in both the fed and fasted states. This reduction was in part explained by a greater retention of stearic acid within skeletal muscle and liver. Oxidation of oleate and stearate were significantly lower in the fed state than in the fasted state. In the fasted state, liver and skeletal muscle were quantitatively more important than adipose tissue in the uptake of dietary fat tracers during the immediate postprandial period. In contrast, adipose tissue was quantitatively more important than skeletal muscle or liver in the fed state. The movement of carbons derived from dietary fat between tissues is a complex time-dependent process, which varies in response to the type of fat ingested and the metabolic state of the organism.  相似文献   

2.
Rats with carnitine deficiency due to trimethylhydrazinium propionate (mildronate) administered at 80 mg/100 g body weight per day for 10 days developed liver steatosis only upon fasting. This study aimed to determine whether the transient steatosis resulted from triglyceride accumulation due to the amount of fatty acids preserved through impaired fatty acid oxidation and/or from up-regulation of lipid exchange between liver and adipose tissue. In liver, mildronate decreased the carnitine content by approximately 13-fold and, in fasted rats, lowered the palmitate oxidation rate by 50% in the perfused organ, increased 9-fold the triglyceride content, and doubled the hepatic very low density lipoprotein secretion rate. Concomitantly, triglyceridemia was 13-fold greater than in controls. Hepatic carnitine palmitoyltransferase I activity and palmitate oxidation capacities measured in vitro were increased after treatment. Gene expression of hepatic proteins involved in fatty acid oxidation, triglyceride formation, and lipid uptake were all increased and were associated with increased hepatic free fatty acid content in treated rats. In periepididymal adipose tissue, mildronate markedly increased lipoprotein lipase and hormone-sensitive lipase activities in fed and fasted rats, respectively. On refeeding, carnitine-depleted rats exhibited a rapid decrease in blood triglycerides and free fatty acids, then after approximately 2 h, a marked drop of liver triglycerides and a progressive decrease in liver free fatty acids. Data show that up-regulation of liver activities, peripheral lipolysis, and lipoprotein lipase activity were likely essential factors for excess fat deposit and release alternately occurring in liver and adipose tissue of carnitine-depleted rats during the fed/fasted transition.  相似文献   

3.
Lactate, an important metabolic substrate for peripheral tissues and the liver, is released in significant amounts from adipose tissue. Using a perifusion system, we measured lactate production from glucose and response to insulin in isolated mesenteric and epididymal adipocytes removed from fed or fasted male Wistar rats at two stages of growth and development: (a) lean rats (7 weeks to 9 weeks old, weighing ~250 g), and (b) fatter rats (6 months to 8 months old, weighing ~550 g). The results show that lactate production in perifused adipocytes is regulated by the prior nutritional state of the animals, by the adipose tissue region, and by the presence of insulin in the perifusate. In fat cells from lean rats, basal lactate production was significantly higher (p<0.05) in mesenteric cells when compared with epididymal cells, both in the fed state (7.8 nmol/107 fat cells per minute vs. 2.9 nmol/107 fat cells per minute) and after 2 days of fasting (13.6 nmol vs. 3.5 nmol). When the response to 1 mU/mL insulin was studied, however, the relative increase in lactate production produced by insulin was greater in the epididymal cells than in the mesenteric cells, in both the fed (194% vs. 91% over basal, respectively) and fasted (360% vs. 55% over basal, p<0.05) state. When larger epididymal adipocytes from fatter rats were compared with an equal number of smaller epididymal cells from leaner rats, the larger cells produced 4.99 nmol of lactate/107 fat cells per minute, whereas the smaller cells produced 2.93 nmol (p=0.08). Large fat cells showed a small and nonsignificant response to insulin in either type of cell (epididymal vs. mesenteric) or nutritional state (fed vs. fasted). This study indicates that distinct regional differences exist in lactate production and response to insulin. Mesenteric adipose tissue, which drains directly into the portal vein and provides substrates to the liver, may be an important source of lactate for the hepatic processes of gluconeogenesis and glycogenesis.  相似文献   

4.
A combination of microdialysis (MD) and 2-[18F ]fluoro-2-deoxy-D-glucose (FDG) was used to assess FDG uptake, phosphorylation and the glucose metabolic index (Rg') in certain tissues of fed and fasting anesthetized Sprague-Dawley rats which received an i.v. bolus injection of insulin or saline during the course of the study. The relative recovery for FDG for the MD probes was also measured as a function of flow rate and temperature. The elimination half-life (T(1/2 FDG)) of FDG from the plasma and the extracellular fluid of muscle and liver was studied with MD. The phosphorylation of FDG in muscle, liver, subcutaneous fat and mesenteric fat from homogenates of these tissues was analyzed by a radioHPLC-method and the Rg' was calculated. The results show that the nutritional status does not affect the T(1/2 FDG), the total uptake of FDG 6-phosphate or the Rg' values in the studied tissues at ambient glucose. Insulin stimulation decreased T(1/2 FDG), and increased the total FDG 6-P accumulation and Rg' in the muscle of fed and fasted rats. In adipose tissues the insulin stimulation enhanced the phosphorylation but in muscle the proportion of FDG 6-P remained unchanged. Rg' in adipose tissue was higher after insulin administration in fed rats than without insulin but with fasted rats there were no differences in Rg' values with or without insulin, although the proportion of FDG 6-P did increase. The Rg' values for the livers were unaffected by any of the manipulations, but fasted rats accumulated proportionately more FDG 6-P after insulin administration than did fed rats. These results indicate that the combination of MD and FDG is a valuable and reliable tool when studying glucose metabolism in physiological and pathological models in vivo.  相似文献   

5.
Exogenous lipid is assimilated with different priorities in adipose tissue regions and varies in the fasting and fed conditions. The quantitative role of uptake of lipid in muscle has not been evaluated. In order to examine the uptake in other than adipose tissues, U14C-oleic acid in sesame oil was administered orally to conscious rats, and lipid label measured after different times in serum, heart, liver, mesenteric, retroperitoneal, inguinal and epididymal fat pads, as well as in red and white parts of gastrocnemius, extensor digitorum longus and soleus muscles. Lipid uptake in total adipose tissue was calculated from dissected adipose tissues plus lipids extracted from the eviscerated, skinned carcass. Lipid uptake in total muscle tissue was estimated from label in dissected muscles plus that in the carcass, assuming similar intracellular lipid contents and radioactivity as that averaged from dissected muscles. Lipid uptake in the liver was calculated from directly extracted lipid. Four hours after lipid administration to fed rats lipid radioactivity in heart and serum was minimal and had essentially disappeared at 8 hours. Liver label declined rapidly from peak values at or before 4 hours. Adipose tissue radioactivity increased gradually up to 16 hours and then decreased. Label in muscles was highest at 4 hours in the red gastrocnemius, and then decreased, while the other muscles showed a constant radioactivity over the observation period (24 hours). Radioactivity expressed per unit muscle mass seemed to be proportional to the oxidative capacity of muscles. In comparisons between fed and fasted rats at 16 hours, when adipose tissue label peaked, liver, individual muscles and carcass did not show any significant differences while adipose tissue label was fivefold higher in fed than fasted rats. The distribution of total measured lipid radioactivity between total adipose tissue, total muscle tissue and liver in fed rats at this time-point was 76. 8, 14. 4 and 8. 8% respectively, and in the fasted state 26. 4, 51. 6 and 22. 0%. These estimations suggest that lipid uptake in the fed state is dominated by adipose tissue, while in the fasted state the lipid uptake is higher in muscles than adipose tissues. It was concluded that uptake of absorbed, exogenous triglyceride in muscle is of significance, particularly in the fasted state. This lipid has a half life of several days. It is suggested that this lipid is oxidized in situ, contributing with a hidden fraction to lipid energy needs, or partially transferred to adipose tissue. Lipid uptake in muscle probably constitutes a significant fraction of assimilated exogenous lipid, particularly in the fasting state.  相似文献   

6.
Protein turnover in adipose tissue from fasted or diabetic rats   总被引:1,自引:0,他引:1  
M E Tischler  A H Ost  J Coffman 《Life sciences》1986,39(16):1447-1452
Protein synthesis and degradation in vitro were compared in epididymal fat pads from animals deprived of food for 48 h or treated 6 or 12 days prior with streptozotocin to induce diabetes. Although both fasting and diabetes led to depressed (-24% to -57%) protein synthesis, the diminution in protein degradation (-63% to -72%) was even greater, so that net in vitro protein balance improved dramatically. Insulin failed to inhibit protein degradation in fat pads of these rats as it does for fed animals. Although insulin stimulated protein synthesis in fat pads of fasted and 12 day diabetic rats, the absolute change was much smaller than that seen in the fed state. The inhibition of protein degradation by leucine also seems to be less in fasted animals, probably because leucine catabolism is slower in fasting. These results show that fasting and diabetes may improve protein balance in adipose tissue but diminish the regulatory effects of insulin.  相似文献   

7.
L A Sauer  R T Dauchy  D E Blask 《Life sciences》2001,68(25):2835-2844
Melatonin inhibits fatty acid uptake and linoleic acid-dependent growth in hepatoma 7288CTC in vivo in Buffalo rats. In this study we measured the effects of melatonin on arteriovenous differences for fatty acids across inguinal fat pads in fed and fasted rats to determine if fatty acid transport in white adipose tissue was also affected by melatonin. Intravenous infusion of melatonin in fasted tumor-bearing rats in vivo simultaneously and rapidly inhibited both fatty acid release from fat pads and fatty acid uptake by the tumors. Perfusion of fat pads in situ in normal rats with melatonin (0.1 nM) inhibited fatty acid release (fasted rats) and uptake (fed rats). Fatty acid transport was restored by addition of any of the following: a melatonin receptor antagonist (S 20928, 1.0 nM), pertussis toxin (0.5 microg/ml), forskolin (1 microM) or 8-Br-cAMP (10 microM). We conclude that fatty acid transport in inguinal fat pads requires cAMP and that melatonin inhibits this transport via a melatonin receptor-mediated, Gi protein-coupled signal transduction pathway. Melatonin has both anticachectic and lipid homeostatic actions in the white adipose tissue of inguinal fat pads.  相似文献   

8.
In the present study, the effect of endurance training alone and endurance training combined with recombinant human growth hormone (rhGH) administration on subcutaneous abdominal adipose tissue lipolysis was investigated. Sixteen healthy women [age 75 +/- 2 yr (mean +/- SE)] underwent a 12-wk endurance training program on a cycle ergometer. rhGH was administered in a randomized, double-blinded, placebo-controlled design in addition to the training program. Subcutaneous abdominal adipose tissue lipolysis was estimated by means of microdialysis combined with measurements of subcutaneous abdominal adipose tissue blood flow (ATBF; (133)Xe washout). Whole body fat oxidation was estimated simultaneously by indirect calorimetry. Before and after completion of the training program, measurements were performed both at rest and during 60 min of continuous cycling at a workload corresponding to 60% of pretraining peak oxygen uptake. Endurance training alone did not affect subcutaneous abdominal adipose tissue lipolysis either at rest or during exercise, as reflected by identical levels of interstitial adipose tissue glycerol, subcutaneous abdominal ATBF, and plasma nonesterified fatty acids before and after completion of the training program. Similarly, no effect on subcutaneous abdominal adipose tissue lipolysis was observed when combining endurance training with rhGH administration. However, in both the placebo and the GH groups, fat oxidation was significantly increased during exercise performed at the same absolute workload after completion of the training program. We conclude that the changed lipid metabolism during exercise observed after endurance training alone or after endurance training combined with rhGH administration is not due to alterations in subcutaneous abdominal adipose tissue metabolism in elderly women.  相似文献   

9.
Growth hormone (GH) has a lipolytic effect in adipose tissue but this effect may differ in adipose tissue from various fat depots. This latter possibility was investigated in the present study, in which the effects of GH in vivo on catecholamine-induced lipolysis and the number of β-adrenergic receptors in isolated adipocytes from different fat depots of hypophysectomized rats were investigated. Female and male Sprague-Dawley rats were hypophysectomized or sham-operated at 45 days of age. One week after the operation, hormonal replacement therapy with L-thyroxine and hydrocortisone acetate was given. In addition, groups of rats were treated with GH (1.33 mg/kg per day, given as two daily subcutaneous injections). After 1 week of hormonal treatment, adipocytes were isolated from the parametrial, epididymal and inguinal fat pads, and glycerol release after catecholamine-stimulation and 125I-cyanopindolol binding were measured. Hypophysectomy resulted in a marked decrease in the lipolytic response to catecholamines. GH treatment significantly increased catecholamine-induced lipolysis with similar effects in adipocytes from parametrial or epididymal and inguinal fat depots in both female and male rats. There were no differences between norepinephrine compared with isoproterenol-induced responses. 125I-cyanopindolol binding was reduced after hypophysectomy and normalized by GH treatment, without differences between parametrial and inguinal adipose tissue regions. We conclude that the lipolytic effects of GH in the rat may partly be mediated by a stimulatory effect on β-adrenergic receptors in adipocytes. In addition, GH exerted similar effect on catecholamine-induced lipolysis and β-adrenergic receptors in adipocytes from parametrial, epididymal and inguinal fat depots.  相似文献   

10.
According to the Fick principle, any metabolic or hormonal exchange through a given tissue depends on the product of blood flow by arteriovenous difference. Because adipose tissue plays dual storage and endocrine roles, regulation of adipose tissue blood flow (ATBF) is of pivotal importance. Monitoring ATBF in humans can be achieved through different methodologies, such as the (133)Xe washout technique, considered to be the "gold standard", as well as microdialysis and other methods that are not well validated as of yet. This report describes a new method, called "adipose tissue microinfusion" or "ATM", which simultaneously quantifies ATBF by combining the (133)Xe washout technique together with variations of ATBF induced by local infusion of vasoactive agents. The most appropriate site for ATM investigation is the subcutaneous adipose tissue of the anterior abdominal wall. This innovative method conveniently enables the direct comparison of the effects on ATBF of any vasoactive compound, drug, or hormone against a contralateral saline control. The ATM method improves the accuracy and feasibility of physiological and pharmacological studies on the regulation of ATBF in vivo in humans.  相似文献   

11.
According to Fick's principle, any metabolic or hormonal exchange through a given tissue depends on the product of the blood flow to that tissue and the arteriovenous difference. The proper function of adipose tissue relies on adequate adipose tissue blood flow (ATBF), which determines the influx and efflux of metabolites as well as regulatory endocrine signals. Adequate functioning of adipose tissue in intermediary metabolism requires finely tuned perfusion. Because metabolic and vascular processes are so tightly interconnected, any disruption in one will necessarily impact the other. Although altered ATBF is one consequence of expanding fat tissue, it may also aggravate the negative impacts of obesity on the body's metabolic milieu. This review attempts to summarize the current state of knowledge on adipose tissue vascular bed behavior under physiological conditions and the various factors that contribute to its regulation as well as the possible participation of altered ATBF in the pathophysiology of metabolic syndrome.  相似文献   

12.
13.
The location of lipoprotein lipase activity in rat adipose tissue was studied using intact epididymal fat pads, isolated adipocytes, and lipoprotein lipase activity secreted from adipocytes as enzyme sources. The enzyme activities of these preparations were characterized by gel filtration. The method used for isolation of adipocytes had been modified to minimize activation of lipoprotein lipase during the procedures. Extracts of intact adipose tissue separated into two major lipoprotein lipase activity peaks, designated "a" and "b", the "a" fraction representing about 30 (fasted rats) to 50% (fed rats) of the total enzyme activity. An intermediate fraction (designated "i") was frequently observed. Extracts of isolated adipocytes from fed rats contained about 35% and those from fasted rats about 65% of the lipoprotein lipase activity present in intact tissue. The "b" fraction constituted 80--97% of the adipocyte lipoprotein lipase activity. In contrast, the enzyme activity secreted from the adipocytes contained only the "a" and "i" fractions. These data implicate the existance of one intracellular form of lipoprotein lipase (corresponding to the "b" fraction), different from extracellular forms of the enzyme (corresponding to fractions "a" and "i"). A transformation of the intracellular to the extracellular forms appears to occur in conjunction with secretion of enzyme from the fat cell.  相似文献   

14.
It is well documented that adipose tissue glycogen content decreases during fasting and increases above control during refeeding. We now present evidence that these fluctuations result from adaptations intrinsic to adipose tissue glycogen metabolism that persist in vitro: in response to insulin (1 milliunit/ml), [3H]glucose incorporation into rat fat pad glycogen was reduced to 10% of control after a 3-day fast; incorporation increased 6-fold over fed control on the 4th day of refeeding following a 3-day fast. We have characterized this adaptation with regard to alterations in glycogen synthase and phosphorylase activity. In addition, we found that incubation of fat pads from fasted rats with insulin (1 milliunit/ml) increased glucose-6-P content, indicating that glucose transport was not the rate-limiting step for glucose incorporation into glycogen in the presence of insulin. In contrast, feeding a fat-free diet resulted in dramatic increases in glycogen content of fat pads without a concomitant increase in glucose incorporation into glycogen in response to insulin (1 milliunit/ml). Thus, fasting and refeeding appeared to alter insulin action on adipose tissue glycogen metabolism more than this dietary manipulation.  相似文献   

15.
Acetone-ether preparations of epididymal fat pads from fasted or fed rats contained two enzymes catalyzing the hydrolysis of long-chain monoacylglycerols. The enzymes were identified as monoacylglycerol lipase (Tornqvist, H. and Belfrage, P., (1976) J. Biol Chem. 251, 813--819) and lipoprotein lipase by their apparent pI values after electrofocusing in non-ionic detergent, selective inhibition properties, substrate specificity and positional specificity. It was estimated that monoacylglycerol lipase accounted for about 90% of the total monoacylglycerol-hydrolyzing activity in acetone-ether preparations from fasted and 70% from fed rats. Its enzyme activity did not change with the nutritional state in contrast to that of lipoprotein lipase. The latter enzyme hydrolyzed 2-monoacylglycerols at a much lower rate than the 1(3)-isomers. Monoacylglycerol lipase was located almost entirely in the adipocytes, thus most of the enzyme activity towards monoacylglycerols in the adipose tissue was found in this site. Fractionated sucrose homogenates of rat epididymal fat pads also contained a third enzyme with monoacylglycerol-hydrolyzing activity, identified as hormone-sensitive lipase by its pI, selective inhibition properties and substrate specificity. It was estimated that hormone-sensitive lipase accounted for less than 20% of the total activity against monoacylglycerols in these tissue preparations from fasted rats. Over-all quantitative estimations emphasized the dominant role of monoacylglycerol lipase over the other two enzymes in the hydrolysis of monoacylglycerols.  相似文献   

16.
The postprandial excursion of plasma triglyceride (TG) concentration is greater in men than in women. In this study, the disposition of dietary fat was examined in lean healthy men and women (n = 8/group) in either the overnight-fasted or fed (4.5 h after breakfast) states. A [14C]oleate tracer was incorporated into a test meal, providing 30% of total daily energy requirements. After ingestion of the test meal, measures of arteriovenous differences in TG and 14C across the leg were combined with needle biopsies of skeletal muscle and adipose tissue and respiratory gas collections to define the role of skeletal muscle in the clearance of dietary fat. The postprandial plasma TG and 14C tracer excursions were lower (P = 0.04) in women than in men in the overnight-fasted and fed states. Women, however, had significantly greater limb uptake of total TG compared with men on both the fasted (3,849 +/- 846 vs. 528 +/- 221 total micro mol over 6 h) and fed (4,847 +/- 979 vs. 1,571 +/- 334 total micromol over 6 h) days. This was also true for meal-derived 14C lipid uptake. 14C content of skeletal muscle tissue (micro Ci/g tissue) was significantly greater in women than in men 6 h after ingestion of the test meal. In contrast, 14C content of adipose tissue was not significantly different between men and women at 6 h. The main effect of nutritional state, fed vs. fasted, was to increase the postmeal glucose (P = 0.01) excursion (increase from baseline) and decrease the postmeal TG excursion (P = 0.02). These results support the notion that enhanced skeletal muscle clearance of lipoprotein TG in women contributes to their reduced postprandial TG excursion. Questions remain as to the mechanisms causing these sex-based differences in skeletal muscle TG uptake and metabolism. Furthermore, nutritional state can significantly impact postprandial metabolism in both men and women.  相似文献   

17.
Regulation of subcutaneous adipose tissue blood flow (ATBF) remains poorly elucidated in humans, especially during exercise. In the present study we tested the role of adenosine in the regulation of ATBF adjacent to active and inactive thigh muscles during intermittent isometric knee-extension exercise (1 s contraction followed by 2 s rest with workloads of 50, 100, and 150 N) in six healthy young women. ATBF was measured using positron emission tomography (PET) without and with unspecific adenosine receptor inhibitor theophylline infused intravenously. Adipose regions were localized from fused PET and magnetic resonance images. Blood flow in subcutaneous adipose tissue adjacent to active muscle increased from rest (1.0 ± 0.3 ml·100 g(-1)·min(-1)) to exercise (P < 0.001) and along with increasing exercise intensity (50 N = 4.1 ± 1.4, 100 N = 5.4 ± 1.8, and 150 N = 6.9 ± 3.0 ml·100 g(-1)·min(-1), P = 0.03 for the increase). In contrast, ATBF adjacent to inactive muscle remained at resting levels with all intensities (~1.0 ± 0.5 ml·100 g(-1)·min(-1)). During exercise theophylline prevented the increase in ATBF adjacent to active muscle especially during the highest exercise intensity (50 N = 4.3 ± 1.8 ml·100 g(-1)·min(-1), 100 N = 4.0 ± 1.5 ml·100 g(-1)·min(-1), and 150 N = 4.9 ± 1.8 ml·100 g(-1)·min(-1), P = 0.06 for an overall effect) but had no effect on blood flow adjacent to inactive muscle or adipose blood flow in resting contralateral leg. In conclusion, we report in the present study that 1) blood flow in subcutaneous adipose tissue of the leg is increased from rest to exercise in an exercise intensity-dependent manner, but only in the vicinity of working muscle, and 2) adenosine receptor antagonism attenuates this blood flow enhancement at the highest exercise intensities.  相似文献   

18.
A number of clinical and biochemical studies demonstrate that obesity and insulin resistance are associated with increases in oxidative stress and inflammation. Paradoxically, insulin sensitivity can be enhanced by oxidative inactivation of cysteine residues of phosphatases, and inflammation can be reduced by S‐glutathionylation with formation of protein‐glutathione mixed disulfides (PSSG). Although oxidation of protein‐bound thiols (PSH) is increased in multiple diseases, it is not known whether there are changes in PSH oxidation species in obesity.

Objective:

In this work, the hypothesis that obesity is associated with decreased levels of proteins containing oxidized protein thiols was tested.

Design and Methods:

The tissue levels of protein sulfenic acids (PSOH) and PSSG in liver, visceral adipose tissue, and skeletal muscle derived from glucose intolerant, obese‐prone Sprague‐Dawley rats were examined.

Results:

The data in this study indicate that decreases in PSSG content occurred in liver (44%) and adipose (26%) but not skeletal muscle in obese rats that were fed a 45% fat‐calorie diet versus lean rats that were fed a 10% fat‐calorie diet. PSOH content did not change in the tissue between the two groups. The activity of the enzyme glutaredoxin (GLRX) responsible for reversal of PSSG formation did not change in muscle and liver between the two groups. However, levels of GLRX1 were elevated 70% in the adipose tissue of the obese, 45% fat calorie‐fed rats.

Conclusion:

These are the first data to link changes in S‐glutathionylation and GLRX1 to adipose tissue in the obese and demonstrate that redox changes in thiol status occur in adipose tissue as a result of obesity.  相似文献   

19.
The aim of this study was to investigate whether the actively wintering American mink Mustela vison is strictly dependent on continuous food availability or if it has evolved physiological adaptations to tolerate nutritional scarcity. Fifty farm-bred male minks were divided into a fed control group and four experimental groups fasted for 2, 3, 5 or 7 days. The rate of weight loss was several-fold higher (1.5-3.2% day(-1)) in the mink than recorded previously in larger carnivores utilizing passive wintering strategies. The minks remained normoglycaemic, although their liver glycogen stores and glucose-6-phosphatase activities decreased during fasting. Adipose tissue constituted approximately 36% of their body mass after 7 days of food deprivation. Intra-abdominal fat, especially retroperitoneal but also mesenteric adipose tissue, were the most important fat depots to be hydrolyzed, but the ability of the mink to utilize its body lipids during fasting may be limited. The increased liver size, hepatic triacylglycerol accumulation and increases in the activities of plasma aminotransferases indicated liver dysfunction. Food deprivation also affected the red blood cell indices, and the blood monocyte and lymphocyte counts decreased suggesting immunosuppression during fasting. The results of the present study suggest that the mink has not evolved sophisticated adaptations to wintertime fasting.  相似文献   

20.

Aims/hypothesis

The actions of peripherally administered nesfatin-1 on glucose homeostasis remain controversial. The aim of this study was to characterize the mechanisms by which peripheral nesfatin-1 regulates glucose metabolism.

Methods

The effects of nesfatin-1 on glucose metabolism were examined in mice by continuous infusion of the peptide via osmotic pumps. Changes in AKT phosphorylation and Glut4 were investigated by Western blotting and immnuofluorescent staining. Primary myocytes, adipocytes and hepatocytes were isolated from male mice.

Results

Continuous peripheral infusion of nesfatin-1 altered glucose tolerance and insulin sensitivity in mice fed either normal or high fat diet, while central administration of nesfatin-1 demonstrated no effect. Nesfatin-1 increases insulin secretion in vivo, and in vitro in cultured min6 cells. In addition, nesfatin-1 up-regulates the phosphorylation of AKT in pancreas and min6 islet cells. In mice fed normal diet, peripheral nesfatin-1 significantly increased insulin-stimulated phosphorylation of AKT in skeletal muscle, adipose tissue and liver; similar effects were observed in skeletal muscle and adipose tissue in mice fed high fat diet. At basal conditions and after insulin stimulation, peripheral nesfatin-1 markedly increased GLUT4 membrane translocation in skeletal muscle and adipose tissue in mice fed either diet. In vitro studies showed that nesfatin-1 increased both basal and insulin-stimulated levels of AKT phosphorylation in cells derived from skeletal muscle, adipose tissue and liver.

Conclusions

Our studies demonstrate that nesfatin-1 alters glucose metabolism by mechanisms which increase insulin secretion and insulin sensitivity via altering AKT phosphorylation and GLUT 4 membrane translocation in the skeletal muscle, adipose tissue and liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号