首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The proximal urethra plays a central role in maintaining urinary continence, and sympathetic excitatory innervation to urethral smooth muscle is a major factor in promoting tonic contraction of this organ. Elevated estrogen levels are often associated with incontinence in humans. Because elevated estrogen levels result in degeneration of sympathetic nerves from the closely related uterine smooth muscle, we examined the effects of chronic estrogen administration on proximal urethral innervation. Ovariectomized virgin female rats received either vehicle or 17 beta-estradiol for 1 week, and smooth muscle size and parasympathetic, sensory and sympathetic nerve densities were assessed quantitatively throughout the first 3 mm of the proximal urethral smooth muscle. In vehicle-infused ovariectomized rats, parasympathetic nerves immunoreactive for vesicular acetylcholine transporter were most abundant, while calcitonin gene-related peptide-immunoreactive sensory nerves and tyrosine hydroxylase-immunoreactive sympathetic nerves were less numerous. The densities of parasympathetic and sensory nerves remained constant along the proximal urethra, while sympathetic nerves showed a significant increase along a proximal-distal gradient. Administration of 17beta-estradiol for 7 days via subcutaneous osmotic pump did not change smooth muscle area in sections, and neither densities nor total innervation of any nerve population was altered. These findings reveal a rich cholinergic innervation of the proximal urethra, and a pronounced gradient in sympathetic innervation. Unlike the embryologically similar uterine smooth muscle, estrogen does not influence muscle size or composition of innervation, indicating that estrogen's actions on innervation are highly target-specific. Thus, estrogen's effects on urinary continence apparently occur independently of any significant remodeling of smooth muscle or resident innervation.  相似文献   

2.
Brown adipose tissue (BAT) is richly provided with sympathetic noradrenergic nerves but is believed to lack a parasympathetic nerve supply. Acetylcholine is the predominant transmitter of postganglionic parasympathetic nerves. The vesicular acetylcholine transporter (VAChT) resides in synaptic vesicles of cholinergic nerve terminals and is used as a marker for peripheral cholinergic nerves. We sought cholinergic nerves in rat BAT using VAChT immunohistochemistry (IHC) on cryosections of interscapular, cervical, mediastinal, and perirenal depots. Mediastinal BAT was the sole depot provided with putative parasympathetic perivascular and parenchymal cholinergic nerves. The absence of vasoactive intestinal peptide-positive nerves suggested their nature as pure cholinergic fibers. By confocal microscopy, both cholinergic and noradrenergic nerves were detected in mediastinal BAT. Cold exposure and fasting led to increased density of VAChT-positive fibers and of noradrenergic sympathetic nerves at morphometry. The unexpected double innervation of mediastinal BAT may explain the inhibitory influence on thermogenesis observed after systemic injection of muscarinic antagonists in rats, and raises questions about the physiological role of its cholinergic nerve supply.  相似文献   

3.
Summary The distribution of nerve fibers displaying neuropeptide Y immunoreactivity in relationship to the catecholaminergic innervation of rat, guinea pig, and rabbit liver was investigated by single- and double-label immunofluorescence methods. In all three species, neuropeptide Y-immunoreactive fibers are prominent in association with the vasculature, biliary pathway, and stromal compartment. The neuropeptide Y innervation of the parenchyma, on the other hand, differs among the three species in term of density. It is quite sparse in the rat and rabbit, particularly in the former species. In the guinea pig liver, numerous single, varicose neuropeptide Y-containing nerve fibers innervate the hepatic parenchyma; often, thin processes surround single hepatocytes and lie close to sinusoids. The immunoreactive pattern of tyrosine hydroxylase, a marker for catecholaminergic neurons and fibers, is comparable to that of neuropeptide Y. Most neuropeptide Y-containing nerve fibers also contain tyrosine hydroxylase immunoreactivity, in all three species, with the exception of the rabbit parenchyma, where a substantial proportion of catecholaminergic fibers lack immunoreactivity for neuropeptide Y. Finally, systemic administration of the sympathetic neurotoxin, 6-hydroxydopamine, in rats and guinea pigs resulted in virtually complete elimination of both neuropeptide Y- and tyrosine hydroxylase-immunoreactive fibers. These findings are consistent with the hypothesis that neuropeptide Y-containing nerve fibers form a subpopulation of the sympathetic innervation of the mammalian liver, which is likely to originate from prevertebral sympathetic ganglia.  相似文献   

4.
In addition to the cholinergic innervation described in the sphincter of the efferent filament arteries (Bailly and Dunel-Erb, ′86), an aminergic component has been demonstrated by specific techniques. The Falck fluorescence technique reveals a network of nerve fibers displaying a green fluorescence characteristic of catecholamines. At the ultrastructural level two types of fibers are present, one with clear vesicles and another with densecored vesicles. Axo-axonal synaptic relationships exist between the two types. Results of 5- and 6-OHDA (hydroxydopamine) treatments confirm the presence of an aminergic component. These observations support the notion of a dual innervation: cholinergic and adrenergic of, respectively, parasympathetic and sympathetic origin. The presence of presynaptic modulation is suggested. The aminergic component could inhibit or reduce the release of acetylcholine from cholinergic nerve endings. These results suggest that the sympathetic innervation modulates the vasoconstriction effect of the parasympathetic component.  相似文献   

5.
The occurrence and distribution of neuropeptide Y in the human clitoris and penis was investigated by light immunohistochemistry. Neuropeptide Y-containing nerve fibers were detected in the tunicae of arteries and veins as well as among trabecular smooth muscle. The distribution pattern of the peptide was similar in both organs although a higher density of immunoreactive nerve fibers was detected in the penis. The immunolocalization of neuropeptide Y was also compared with that of neuron-specific enolase, a neuronal marker which labels the entire nerve network. It is suggested that neuropeptide Y is involved in the physiology of the penis and the clitoris, affecting vascular and nonvascular smooth muscle activity.  相似文献   

6.
Hepatic cirrhosis was induced in guinea pigs by ligation of the common bile duct and innervation of the liver was studied by fluorescence histochemistry (glyoxylic acid method), acetylcholinesterase (AChE) neurohistochemistry (modified Karnovsky and Roots method), and transmission electron microscopy. In control animals the adrenergic terminals showed connections with endothelial cells, hepatocytes and fat-storing cells, but no cholinergic terminals were evident. Cirrhosis was present 6 weeks after the bile duct ligation and marked fibrosis, accompanied by bile duct proliferation, was evident in the portal areas. Numerous AChE-positive nerve fibers traversed the collagenous bundles in the fibrotic areas, and cholinergic terminals formed close contacts with fibroblasts. Each axon terminal was found to contain numerous small coreless vesicles and AChE-reaction products were confirmed in the space between a nerve terminal and a fibroblast. In contrast, fluorescence adrenergic nerve fibers and their terminals remained unchanged. This study demonstrates that parasympathetic cholinergic innervation participates in some stages in the development of hepatic cirrhosis.  相似文献   

7.
The autonomic innervation of the ovary of the dab was studied histologically and physiologically. The ovary receives a branch of nerve bundles that emerge into the abdominal cavity at the postero-ventral end of the kidney and can be traced back to the sympathetic chain in the vicinity of the 5th vertebra. Almost all the nerve fibers are AChE-positive, and some of them also emit adrenergic fluorescence. Electrical stimulation of the ovarian nerves caused ovarian contractions, and administration of ACh elicited contractions of the ovary preparations, supporting the hypothesis that the ovary is innervated by excitatory cholinergic fibers. In the ovarian nerve bundles, many AChE-positive and non-fluorescent ganglion cells are scattered. Ultrastructural studies suggest that nerve endings situated on the ovarian smooth muscle and on ganglion cells are cholinergic. These results also suggest that the cells are the post-ganglionic neurons of the cholinergic innervation and the axons of the cells reach to the muscle cells. On the other hand, the adrenergic fluoresecent fibers possibly participate in the inhibitory innervation, since the presence of inhibitory beta-adrenoceptors were demonstrated by pharmacological studies.  相似文献   

8.
The interactions between sympathetic nerve fibers and smooth muscle cells and fibroblasts from the newborn guinea pig vas deferens were studied in tissue culture with phase contrast microscopy, time-lapse microcinematography, catecholamine fluorescence histochemistry and scanning and transmission electron microscopy. The amount of sympathetic nerve fiber growth, its catecholamine fluorescence reaction and the size of the nerve cell bodies and their nuclei all increased in the presence of vas deferens tissue. Specific growth of nerve fibers to large clumps of vas deferens tissue was seen from distances of up to 2 mm. In contrast, no specific growth from a distance occurred to single cells or small groups of cells. However, random contact with a muscle cell often led to close, extensive, and long-lasting associations. Contact with fibroblasts was always transitory.The rate of sympathetic nerve fiber growth over individual muscle cells was faster than over fibroblasts, which, in turn, was faster than over the collagen-coated surface of the coverslip. Palpation of a muscle cell by a nerve fiber growth cone increased the rate of spontaneous contraction of the muscle cell, the extent of the increase being dependent on the number of nerve fibers involved. Multiple innervation of a smooth muscle cell occurred if nerve fibers reached the cell at about the same time, but not if there was a close association already established. These results are discussed in relation to possible interactions of sympathetic nerve fibers with smooth muscle cells in vivo.  相似文献   

9.
Summary In the present immunohistochemical study, the distribution of nerve fibers containing neuropeptide Y (NPY) and vasoactive intestinal polypeptide (VIP) in the larynx was examined and compared with that of fibers containing tyrosine hydroxylase (TH) and dopamine beta-hydroxylase (BDH), and with that of acetylcholinesterase (AChE)-positive nerve fibers, in intact and vagotomized rats and in rats subjected to removal of the superior cervical ganglion (SCG). Fibers showing TH/DBH-like immunoreactivity (LI) were only found in the walls of arteries and arterioles, whereas AChE-positive nerve fibers were located close to the acini and ducts of the glands, in blood vessel walls, in the perichondrium and in the lamina propria. NPY-LI and VIP-LI coexisted in local AChE-positive ganglionic cells and in a subpopulation of the AChE-positive fibers, NPY-LI also being present in some periarterial fibers showing TH/DBH-LI. Unilateral removal of the SCG eliminated the TH/DBH-innervation in the upper but not the lower parts of the larynx ipsilaterally, whereas the NPY-innervation of the arteries in the upper parts only partly disappeared and the NPY-innervation of the other structures remained unchanged. The distribution of VIP-innervation was unchanged after vagotomy and removal of the SCG. The results suggest that VIP is present in the postganglionic parasympathetic innervation, whereas NPY is present in both the postganglionic parasympathetic and sympathetic innervation of the rat larynx.  相似文献   

10.
Innervation of the guinea pig spleen studied by electron microscopy   总被引:1,自引:0,他引:1  
The innervation of the guinea pig spleen was investigated by electron microscopy. Unmyelinated nerve fibers in the capsulotrabecular and arterial systems were found to contain large and small granular and small agranular synaptic vesicles in their terminals and are thought to be sympathetic adrenergic in nature. They influence the contraction of the smooth muscle cells by diffusion innervation in these systems. These nerve terminals were also scattered in both the red and the white pulp. Pulp nerves wrapped by Schwann cells were further enclosed by myofibroblastic reticular cells. This condition revealed that the pulp nerves pass through the connective-tissue spaces of the reticular fibers, which contain elastic fibers, collagenous fibrils, and lamina densa-like materials of the usual basement laminae. One of the target cells for the pulp nerves is considered to be the myofibroblastic reticular cell in the reticular meshwork. Neurotransmitter substances released from the naked adrenergic nerve terminals travel through the reticular fibers and may play a role, by both close association innervation and diffusion innervation, in the contraction of reticular cells to expose the reticular fibers. At the exposed sides, connective-tissue elements of the reticular fibers are bathed with blood plasma, and the included naked nerve terminals, devoid of Schwann cells but with basement laminae of these cells, face free cells at some distance or are in close association with free cells, especially lymphocytes, macrophages, and plasma cells. The close ultrastructural relationship between the naked adrenergic nerve terminals and immunocytes strongly suggests that there is an intimate relationship between the immune system and the sympathetic nervous system through both close association innervation and diffusion innervation. Thus splenic adrenergic nerves of the guinea pig may play a triple role in 1) contraction of smooth muscle cells to regulate blood flow in the organ, 2) induction of the exposure of reticular fibers by contraction of the reticular cells in order to form a close relationship of the nerve terminals with the immunocytes, and 3) subsequent neuroimmunomodulation of the immunocytes.  相似文献   

11.
The morphological characteristics of smooth muscle cells (SMCs) and their innervation of the suburothelial microvasculature of the mouse bladder were investigated by immunohistochemistry. Whole mount bladder mucosal preparations were immune-stained for α-smooth muscle actin (α-SMA) and/or neuronal markers and examined using confocal laser scanning microscopy. Suburothelial arterioles consisted of α-SMA-immunopositive circular smooth muscle cells, while the venular wall composed of α-SMA-positive SMCs that displayed several processes which extended from their cell bodies to form an extensive meshwork. In larger venules, a complex meshwork of stellate-shaped SMCs were observed. NG2 chondroitin sulphate proteoglycan-immunoreactive cell bodies of capillary pericytes were not immunoreactive for α-SMA. In the rat bladder suburothelial venules, circular SMCs were the dominant cell type expressing α-SMA-immunoreactivity. Since α-SMA-positive SMCs in suburothelial arterioles and venules in the mouse bladder had quite distinct morphologies, the innervation of both vessels could be examined by double labelling for α-SMA and various neuronal markers. Varicose nerve bundles immunoreactive for tyrosine hydroxylase (sympathetic nerves), choline acetyltransferase (cholinergic nerves) or substance P (primary afferent nerves) were all detected along side suburothelial arterioles. Single varicose nerve fibres positive for these three neuronal markers were also detected around the venules. Thus, whole mount preparations are useful when examining the morphology of α-SMA-positive SMCs of the microvasculature in the suburothelium of mouse bladder as well as their relationship with their innervations. In conclusion, arterioles and venules of the bladder suburothelium are the target of sympathetic, cholinergic and primary afferent nerve fibres.  相似文献   

12.
Summary The opioidergic, sympathetic and neuropeptide Y-positive innervation of the sphincter of Oddi (common bile duct sphincter and pancreatic duct sphincter), as well as other segments of the extrahepatic biliary tree was studied in the monkey by use of immunohistochemistry. Methionine-enkephalin-positive nerves were seen to innervate the smooth muscle of all portions of the sphincter of Oddi and also local ganglion cells. No methionine-enkephalin-positive nerves could be detected in the common bile duct, pancreatic duct or gallbladder. Tyrosine hydroxylase-positive nerves occurred between smooth muscle bundles and also ran to local ganglion cells as well as along the common bile duct. Neuropeptide Y-positive nerves were observed within smooth muscle of the sphincter of Oddi (all portions), common bile duct, pancreatic duct and gallbladder. No evidence of any differential innervation of the pancreatic duct and common bile duct sphincters could be detected with these markers.  相似文献   

13.
In the rabbit pineal gland two types of postganglionic nerve endings were found which are characterized by the presence of small dense-core vesicles or small clear vesicles. Pharmacological and cytochemical experiments showed then to be noradrenergic and cholinergic, respectively. Both types were often present in the same nerve bundle, occasionally in close opposition. Intrapineal neurons were only rarely observed. They showed cholinergic synapses on their perikaryon and dendrites as well as noradrenergic axo-dendritic close contacts. Bilateral extirpation of the superior cervical ganglia revealed the postganglionic sympathetic origin of the pineal noradrenergic nerve fibres. Moreover, it appeared that these ganglia are hardly, if at all, involved in the pathway of pineal cholinergic innervation. The results obtained from lesions of both facial nerves, taken together with the results reported in the literature, led to the conclusion that the postganglionic cholinergic nerve fibers in the pineal are of parasympathetic origin. A model for the sympathetic and parasympathetic pineal innervation is proposed.  相似文献   

14.
Summary Histochemical, immunocytochemical, and radioenzymatic techniques were used to examine the neurotransmitter-related properties of the innervation of thoracic hairy skin in rats during adulthood and postnatal development. In the adult, catecholamine-containing fibers were associated with blood vessels and piloerector muscles, and ran in nerve bundles throughout the dermis. The distribution of tyrosine hydroxylase (TH)-immunoreactive (IR) fibers was identical. Neuronal fibers displaying neuropeptide Y (NPY) immunoreactivity were seen in association with blood vessels. Double-labeling studies suggested that most, if not all, NPY-IR fibers were also TH-IR and likewise most, if not all, vessel-associated TH-IR fibers were also NPY-IR. Calcitonin gene-related peptide (CGRP)-IR fibers were observed near and penetrating into the epidermis, in close association with hair follicles and blood vessels, and in nerve bundles. A similar distribution of substance P (SP)-IR fibers was evident. In adult animals treated as neonates with the sympathetic neurotoxin 6-hydroxydopamine, a virtual absence of TH-IR and NPY-IR fibers was observed, whereas the distribution of CGRP-IR and SP-IR fibers appeared unaltered. During postnatal development, a generalized increase in the number, fluorescence intensity, and varicose morphology of neuronal fibers displaying catecholamine fluorescence, NPY-IR, CGRP-IR, and SP-IR was observed. By postnatal day 21, the distribution of the above fibers had reached essentially adult levels, although the density of epidermal-associated CGRP-IR and SP-IR fibers was significantly greater than in the adult. The following were not evident in thoracic hairy skin at any timepoint examined: choline acetyltransferase activity, acetylcholinesterase histochemical staining or immunoreactivity, fibers displaying immunoreactivity to vasoactive intestinal peptide, cholecystokinin, or leucine-enkephalin. The present study demonstrates that the thoracic hairy skin in developing and adult rats receives an abundant sympathetic catecholaminergic and sensory innervation, but not a cholinergic innervation.  相似文献   

15.
1. Using extracellular electrodes placed on the serosa, we recorded the modifications of the electrical activity of the colonic muslce fibers caused by the stimulation of vagal and splanchnic nerve fibers. 2. Vagal stimulation produces two types of junction potentials: excitatory junction potentials (EJPs) and inhibitory junction potentials (IJPs). The IJPs are elicited by stimulation of vagal fibers which innervate intramural non-adrenergic inhibitory neurons. 3. The conduction velocity of the nerve impulse along the vagal pre-ganglionic fibers is 1.01 m/sec for excitatory fibers and 0.5. m/sec for inhibitory fibers. 4. Splanchnic fiber stimulation causes EJP disappearance, blocking transmission between preganglionic fibers and intramural excitatory neurons, and a decrease in IJP amplitude that most likely indicates a previous hyperpolarization of the smooth muscle. 5. IJP persistence during splanchnic stimulation proves that sympathetic inhibition does not modify the transmission of the vagal influx onto the non-adrenergic inhibitory neurons of the intramural plexuses. 6. Through a comparative study of proximal and distal colonic innervation, we are able to show that there is a similar organization of both regions, that is a double inhibitory innervation: an adrenergic one of a sympathetic origin, and a non adrenergic one of a parasympathetic origin.  相似文献   

16.
Summary An immunohistochemical investigation of the mink pineal gland was performed by use of antibodies raised in rabbits against neuropeptide Y (NPY) and Cys-NPY (32–36)-amide recognizing neuropeptide Y with an amidation at position 36 (NPYamide). NPY-immunoreactive nerve fibers were located predominantly in the rostral part of the pineal gland and in the pineal stalk. Immunoreactive nerve fibers were found throughout the pineal gland, but the number of fibers in the caudal part of the gland was low. The fibers were present both in the perivascular spaces and between the pinealocytes. Many NPY-immunoreactive fibers were also located in the posterior and habenular commissures; some of these fibers were connected with the fibers in the rostral part of the mink pineal gland, indicating that at least some of the NPY-immunoreactive nerve fibers are of central origin. The nerve fibers immunoreactive to amidated NPY were distributed in a similar manner. However, the number of fibers immunoreactive to NPYamide was lower than the number of fibers immunoreactive to NPY itself. After removal of the superior cervical ganglia bilaterally 22 days or 12 months before sacrifice, NPY-immunoreactive nerve fibers remained in the gland. This immunohistochemical study of the mink pineal gland therefore shows that the NPY/NPYamide-immunoreactive nerve fibers innervating the pineal gland in this spegcies are a component of the central innervation or originnate from extracerebral parasympathetic ganglia.  相似文献   

17.
Our recent study showed that prenatal and early postnatal exposure of mice to side-steam tobacco smoke (SS), a surrogate to environmental tobacco smoke (ETS), leads to increased airway responsiveness and sensory innervation later in life. However, the underlying mechanism initiated in early life that affects airway responses later in life remains undefined. The concomitant increase in nerve growth factor (NGF) after exposures suggests that NGF may be involved the regulation of airway innervation. Since NGF regulates sympathetic nerve responses, as well as sensory nerves, we extended previous studies by examining neuropeptide Y (NPY), a neuropeptide associated with sympathetic nerves. Different age groups of mice, postnatal day (PD) 2 and PD21, were exposed to either SS or filtered air (FA) for 10 consecutive days. The level of NPY protein in lung and the density of NPY nerve fibers in tracheal smooth muscle were significantly increased in the PD2-11SS exposure group compared with PD2-11FA exposure. At the same time, the level of NGF in lung tissue was significantly elevated in the PD2-11SS exposure groups. However, neither NPY (protein or nerves) nor NGF levels were significantly altered in PD21-30SS exposure group compared with the PD21-30FA exposure group. Furthermore, pretreatment with NGF antibody or K252a, which inhibits a key enzyme (tyrosine kinase) in the transduction pathway for NGF receptor binding, significantly diminished SS-enhanced NPY tracheal smooth muscle innervation and the increase in methacholine-induced airway resistance. These findings show that SS exposure in early life increases NPY tracheal innervation and alters pulmonary function and that these changes are mediated through the NGF.  相似文献   

18.
Pericytes are contractile cells that surround blood vessels. When contracting, they change the diameter of the vessel and therefore influence blood flow homeostasis; however, mechanisms controlling pericyte action are less well understood. Since blood flow regulation per se is controlled by the autonomic nervous system, the latter might also be involved in pericyte action. Hence, rat choroidal pericytes were analyzed for such a connection by using appropriate markers. Rat choroidal wholemounts and sections were prepared for immunohistochemistry of the pericyte marker chondroitin-sulfate-proteoglycan (NG2) and the pan-neuronal marker PGP9.5 or of tyrosine hydroxylase (TH), vasoactive intestinal polypeptide (VIP) and choline acetyl transferase (ChAT). Additionally, PGP9.5 and TH were analyzed in the choroid of DCX-dsRed2 transgenic rats, displaying red-fluorescent perivascular cells and serving as a putative model for studying pericyte function in vivo. Confocal laser-scanning microscopy revealed NG2-immunoreactive cells and processes surrounding the blood vessels. These NG2-positive cells were not co-localized with PGP9.5 but received close appositions of PGP9.5-, TH-, VIP- and ChAT-immunoreactive boutons and fibers. In the DCX-dsRed2 transgenic rat, PGP9.5 and TH were also densely apposed on the dsRed-positive cells adjacent to blood vessels. These cells were likewise immunoreactive for NG2, suggesting their pericyte identity. In addition to the innervation of vascular smooth muscle cells, the close relationship of PGP9.5 and further sympathetic (TH) and parasympathetic (VIP, ChAT) nerve fibers on NG2-positive pericytes indicated an additional target of the autonomic nervous system for choroidal blood flow regulation. Similar findings in the DCX-dsRed transgenic rat indicate the potential use of this animal model for in vivo experiments revealing the role of pericytes in blood flow regulation.  相似文献   

19.
Changes in contractile activity of saphenous artery in normotensive rats and in rats with regional hypotension have been investigated. The abdominal aorta was partially occluded in Wistar rats distally to the renal arteries. Four weeks later, a 5-7-mm segment of the femoral nerve in one hindlimb was resected to denervate the saphenous artery. After two weeks, the isometric contraction of innervated and denervated saphenous artery segments was studied. In normotensive rats, the denervation augmented vessel sensitivity to noradrenaline, phenylephrine, serotonin, and KCl (in the presence of phentolamine). Chronic hypotension also augmented vessel sensitivity to constrictor agonists, whereas denervation did not result in further increase of sensitivity. In glyoxilic acid-stained preparations obtained from hypotensive rats, a reduced intensity of fluorescence of adrenergic fibers was observed. It was assumed that the higher sensitivity of vascular smooth muscle in hypotensive rats is due to functional disturbances of sympathetic innervation.  相似文献   

20.
The autonomic nervous system regulates hormone secretion from the endocrine pancreas, the islets of Langerhans, thus impacting glucose metabolism. The parasympathetic and sympathetic nerves innervate the pancreatic islet, but the precise innervation patterns are unknown, particularly in human. Here we demonstrate that the innervation of human islets is different from that of mouse islets and does not conform to existing models of autonomic control of islet function. By visualizing axons in three dimensions and quantifying axonal densities and contacts within pancreatic islets, we found that, unlike mouse endocrine cells, human endocrine cells are sparsely contacted by autonomic axons. Few parasympathetic cholinergic axons penetrate the human islet, and the invading sympathetic fibers preferentially innervate smooth muscle cells of blood vessels located within the islet. Thus, rather than modulating endocrine cell function directly, sympathetic nerves may regulate hormone secretion in human islets by controlling local blood flow or by acting on islet regions located downstream.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号