首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tissue-specific patterns of microRNA (miRNA) expression contribute to organogenesis during embryonic development. Using the embryonic chicken gonads as a model for vertebrate gonadogenesis, we previously reported that miRNAs are expressed in a sexually dimorphic manner during gonadal sex differentiation. Being male biased, we hypothesised that up-regulation of microRNA 202* (MIR202*) is characteristic of testicular differentiation. To address this hypothesis, we used estrogen modulation to induce gonadal sex reversal in embryonic chicken gonads and analyzed changes in MIR202* expression. In ovo injection of estradiol-17beta at Embryonic Day 4.5 (E4.5) caused feminization of male gonads at E9.5 and reduced MIR202* expression to female levels. Female gonads treated at E3.5 with an aromatase inhibitor, which blocks estrogen synthesis, were masculinized by E9.5, and MIR202* expression was increased. Reduced MIR202* expression correlated with reduced expression of the testis-associated genes DMRT1 and SOX9, and up-regulation of ovary-associated genes FOXL2 and CYP19A1 (aromatase). Increased MIR202* expression correlated with down-regulation of FOXL2 and aromatase and up-regulation of DMRT1 and SOX9. These results confirm that up-regulation of MIR202* coincides with testicular differentiation in embryonic chicken gonads.  相似文献   

2.
3.
To elucidate the mechanisms of amphibian gonadal sex differentiation, we examined the expression of aromatase and androgen receptor (AR) mRNAs for days 17-31 after fertilization. The effects of inhibitors and sex steroid hormones were also examined. In ZZ males, expression of AR decreased after day 19, while aromatase expression was low throughout the sampling period. Males treated with 17beta-estradiol (E2) showed increasing aromatase expression after day 21, and formed ovaries. AR antagonist treatment also induced high-level aromatase expression and ovarian differentiation. In males co-treated with an aromatase inhibitor and E2, the undifferentiated gonads developed into testes despite high-level aromatase expression. Males treated with androgen and E2 before and during an estrogen sensitive period, respectively, also formed testes. In ZW females, AR expression persisted at a low-level, while aromatase expression increased after day 18. Short-term treatment with an aromatase inhibitor was ineffective in preventing ovarian differentiation, whereas long-term treatment resulted in testes developing from ovarian structure. Compared with the ZZ males and ZW females, WW females did not exhibit detectable expression of AR, suggesting that the active AR gene(s) itself, or a putative gene regulating AR gene expression, is located on Z chromosomes. From the time lag of aromatase expression between ZW females and ZZ males treated with E2 and the effect of AR antagonist, it was found that in males elevated AR expression suppresses aromatase expression directly or indirectly. Consequently, endogenous androgens, accumulated by blocking estrogen biosynthesis, induced testicular differentiation. The gonadogenesis of males is dependent on sex hormone, whereas that of females has evolved to hormone-independence.  相似文献   

4.
A better understanding of vertebrate sexual differentiation could be provided by a study of models in which genetic sex determination (GSD) of gonads can be reversed by temperature. In the newt Pleurodeles waltl, a P450 aromatase cDNA was isolated from adult gonads, and the nucleotide or deduced amino acid sequences showed a high level of identity with various vertebrate species. In adults, aromatase expression was found in gonads and brain. In developing gonads, the expression was found to fit with the thermo-sensitive period (TSP) and was detected in both ZZ and ZW larvae, as well as in ZW submitted during the whole TSP to a masculinizing temperature. In the latter individuals, in situ hybridization and semi quantitative RT-PCR showed that, at the end of TSP, aromatase expression was at the same level than in normal ZZ larvae and was significantly lower than in normal ZW ones. Furthermore, temperature-induced down regulation did not occur when heating was performed at the end of TSP. Our results confirm the importance of aromatase regulation in female versus male differentiation and demonstrate that a down regulation of aromatase expression is involved in the process of sex reversal.  相似文献   

5.
6.
7.
In nonmammalian vertebrates, steroids have been hypothesized to induce somatic sex differentiation, since manipulations of the steroidal environment of gonads have led to various degrees of sex reversal. Whereas the critical role of estrogens in ovarian differentiation is well documented, studies on androgens have produced a perplexing variety of results depending upon species variations and nature of androgens used. In this way, testosterone induces masculinization of females in some species but provokes paradoxical feminization of males in many other species such as the urodelan Pleurodeles waltl. In reptiles this phenomenon could be interpreted by conversion of exogenous testosterone to estradiol by aromatase. Treatments of Pleurodeles larvae with nonaromatizable androgens bring support to this hypothesis and suggest a role of androgens in sex differentiation. Dihydrotestosterone (DHT) could not induce the paradoxical feminization of ZZ larvae. In addition, DHT as well as 11beta-hydroxy-androstenedione could drive a functional male differentiation of ZW larvae. Moreover, other 5alpha reduced androgens also induced sex reversal of female larvae. Yet, the 5alpha reductase inhibitor CGP 53133 and antiandrogens such as flutamide or cyproterone acetate did not exert any effect on male sex differentiation of ZZ larvae. Though the precise role of androgens is still unknown, especially for 11-oxygenated androgens, our results suggest an implication in male sex differentiation. In this way, testosterone could play a pivotal role in being metabolized either into other androgens during testis differentiation or into estradiol during ovarian differentiation.  相似文献   

8.
Estrogens play a key role in sexual differentiation of both the gonads and external traits in birds. The production of estrogen occurs via a well-characterised steroidogenic pathway, which is a multi-step process involving several enzymes, including cytochrome P450 aromatase. In chicken embryos, the aromatase gene (CYP19A1) is expressed female-specifically from the time of gonadal sex differentiation. To further explore the role of aromatase in sex determination, we ectopically delivered this enzyme using the retroviral vector RCASBP in ovo. Aromatase overexpression in male chicken embryos induced gonadal sex-reversal characterised by an enlargement of the left gonad and development of ovarian structures such as a thickened outer cortex and medulla with lacunae. In addition, the expression of key male gonad developmental genes (DMRT1, SOX9 and Anti-Müllerian hormone (AMH)) was suppressed, and the distribution of germ cells in sex-reversed males followed the female pattern. The detection of SCP3 protein in late stage sex-reversed male embryonic gonads indicated that these genetically male germ cells had entered meiosis, a process that normally only occurs in female embryonic germ cells. This work shows for the first time that the addition of aromatase into a developing male embryo is sufficient to direct ovarian development, suggesting that male gonads have the complete capacity to develop as ovaries if provided with aromatase.  相似文献   

9.
10.
The chicken embryo represents a suitable model for studying vertebrate sex determination and gonadal sex differentiation. While the basic mechanism of sex determination in birds is still unknown, gonadal morphogenesis is very similar to that in mammals, and most of the genes implicated in mammalian sex determination have avian homologues. However, in the chicken embryo, these genes show some interesting differences in structure or expression patterns to their mammalian counterparts, broadening our understanding of their functions. The novel candidate testis-determining gene in mammals, DMRT1, is also present in the chicken, and is expressed specifically in the embryonic gonads. In chicken embryos, DMRT1 is more highly expressed in the gonads and Müllerian ducts of male embryos than in those of females. Meanwhile, expression of the orphan nuclear receptor, Steroidogenic Factor 1 (SF1) is up-regulated during ovarian differentiation in the chicken embryo. This contrasts with the expression pattern of SF1 in mouse embryos, in which expression is down-regulated during female differentiation. Another orphan receptor initially implicated in mammalian sex determination, DAX1, is poorly conserved in the chicken. A chicken DAX1 homologue isolated from a urogenital ridge library lacked the unusual DNA-binding motif seen in mammals. Chicken DAX1 is autosomal, and is expressed in the embryonic gonads, showing somewhat higher expression in female compared to male gonads, as in mammals. However, expression is not down-regulated at the onset of testicular differentiation in chicken embryos, as occurs in mice. These comparative data shed light on vertebrate sex determination in general.  相似文献   

11.
Sex determination and sexual differentiation in the avian model   总被引:2,自引:0,他引:2  
Chue J  Smith CA 《The FEBS journal》2011,278(7):1027-1034
The sex of birds is determined by the inheritance of sex chromosomes (ZZ male and ZW female). Genes carried on one or both of these sex chromosomes control sexual differentiation during embryonic life, producing testes in males (ZZ) and ovaries in females (ZW). This minireview summarizes our current understanding of avian sex determination and gonadal development. Most recently, it has been shown that sex is cell autonomous in birds. Evidence from gynandromorphic chickens (male on one side, female on the other) points to the likelihood that sex is determined directly in each cell of the body, independently of, or in addition to, hormonal signalling. Hence, sex-determining genes may operate not only in the gonads, to produce testes or ovaries, but also throughout cells of the body. In the chicken, as in other birds, the gonads develop into ovaries or testes during embryonic life, a process that must be triggered by sex-determining genes. This process involves the Z-linked DMRT1 gene. If DMRT1 gene activity is experimentally reduced, the gonads of male embryos (ZZ) are feminized, with ovarian-type structure, downregulation of male markers and activation of female markers. DMRT1 is currently the best candidate gene thought to regulate gonadal sex differentiation. However, if sex is cell autonomous, DMRT1 cannot be the master regulator, as its expression is confined to the urogenital system. Female development in the avian model appears to be shared with mammals; both the FOXL2 and RSPO1/WNT4 pathways are implicated in ovarian differentiation.  相似文献   

12.
During the evolution, sex determination occurred early. Sex determining factors were progressively isolated from other genes in sexual chromosomes, or gonosomes. Among vertebrates, evolution took two opposite pathways : in mammals, the system of XX:XY sex determination, with Y chromosome, induces male differentiation. In contrast, in birds, the system ZZ:ZW, with the W chromosome, induces female differentiation. But comparative studies show that the two pathways are not so simple. In the chicken as in the lower vertebrates, estrogens play a central role in gonadal sex differentiation. Several genes, show to be critical for mammalian determination, are also expressed in the chicken but their expression pattern differs, indicating functional plasticity. The W-linked female determinants remains still unknown. But comparative studies of the two pathways, with conserved and divergent elements, are broadening our understanding of sex determination.  相似文献   

13.
To clarify the importance of endogenous estrogens during sex differentiation in a teleost fish, the Nile tilapia, we examined the target events for endogenous estrogens and their role during gonadal sex differentiation. The expression of CYP19a (P450arom) precedes any morphological gonadal sex differentiation. Further to these findings, the treatment of XX fry with non-steroidal aromatase inhibitor (AI), Fadrozole, from seven to 14 days after hatching caused complete sex reversal to functional males. The XX sex reversal induced by AI was rescued completely with simultaneous estrogen treatment. We also found that XY fry treated with estrogen, before the appearance of morphological sex differences, caused complete sex reversal from males to females. Taken together, these results suggest that endogenous estrogens are required for ovarian differentiation. To identify the down-stream gene products of estrogen during ovarian differentiation, we performed subtractive hybridization using mRNA derived from normal and estrogen treated XY gonads. Two out of ten gene products were expressed in germ cells, whereas the others were expressed in somatic cells.  相似文献   

14.
Aromatase inhibitors administered before sexual differentiation of the gonads can induce sex reversal in female chickens. To analyze the process of sex reversal, we have followed for several months the changes induced by Fadrozole, a nonsteroidal aromatase inhibitor, in gonadal aromatase activity and in morphology and structure of the female genital system. Fadrozole was injected into eggs on day four of incubation, and its effects were examined during the embryonic development and for eight months after hatching. In control females, aromatase activity in the right and the left gonad was high in the middle third of embryonic development, and then decreased up to hatching. After hatching, aromatase activity increased in the left ovary, in particular during folliculogenesis, whereas in the right regressing gonad, it continued to decrease to reach testicular levels at one month. In treated females, masculinization of the genital system was characterized by the maintenance of the right gonad and its differentiation into a testis, and by the differentiation of the left gonad into an ovotestis or a testis; however, in all individuals, the left Müllerian duct and the posterior part of the right Müllerian duct were maintained. In testes and ovotestes, aromatase activity was lower than in gonads of control females (except in the right gonad as of one month after hatching) but remained higher than in testes of control and treated males. Moreover, in ovotestes, aromatase activity was higher in parts displaying follicles than in parts devoid of follicles. The main structural changes in the gonads during sex reversal were partial (in ovotestes) or complete (in testes) degeneration of the cortex in the left gonad, and formation of an albuginea and differentiation of testicular cords/tubes in the two gonads. Testicular cords/tubes transdifferentiated from ovarian medullary cords and lacunae whose epithelium thickened and became Sertolian. Transdifferentiation occurred all along embryonic and postnatal development; thus, new testicular cords/tubes were continuously formed while others degenerated. The sex reversed gonads were also characterized by an abundant fibrous interstitial tissue and abnormal medullary condensations of lymphoid-like cells; in the persisting testicular cords/tubes, spermatogenesis was delayed and impaired. Related to aromatase activity, persistence of too high levels of estrogens can explain the presence of oviducts, gonadal abnormalities and infertility in sex reversed females.  相似文献   

15.
16.
In the newt Pleurodeles waltl, genetic sex determination obeys female heterogamety (female ZW, male ZZ). In this species as in most of non-mammalian vertebrates, steroid hormones play a key role in sexual differentiation of gonads. In that context, male to female sex reversal can be obtained by treatment of ZZ larvae with estradiol. Male to female sex reversal has also been observed following treatment of ZZ larvae with testosterone, a phenomenon that was called the "paradoxical effect". Female to male sex reversal occurs when ZW larvae are reared at 32 degrees C during a thermosensitive period (TSP) that takes place from stage 42 to stage 54 of development. Since steroids play an important part in sex differentiation, we focussed our studies on the estrogen-producing enzyme aromatase during normal sex differentiation as well as in experimentally induced sex reversal situations. Our results based on treatment with non-aromatizable androgens, aromatase activity measurements and aromatase expression studies demonstrate that aromatase (i) is differentially active in ZZ and ZW larvae, (ii) is involved in the paradoxical effect and (iii) might be a target of temperature. Thus, the gene encoding aromatase might be one of the master genes in the process leading to the differentiation of the gonad in Pleurodeles waltl.  相似文献   

17.
鸟类性别决定候选基因在性反转鸡胚中的表达   总被引:1,自引:0,他引:1  
郑江霞  杨宁 《遗传》2007,29(1):81-86
DMRT1、PKCIW和FET1是鸟类性别决定过程中重要的候选基因。以芳香化酶抑制剂处理的鸡胚为实验材料, 对这3个基因的表达变化进行了研究。结果表明, 在整个性别决定关键时期(E4.5 ~ E10.5), DMRT1在雄性的表达量显著高于雌性, 并且在ZW性反转鸡胚中表达大幅上升, 表明DMRT1的上调表达是与睾丸形成相关的。PKCIW基因在雌性特异表达并在性反转鸡胚表达上升, 这可能与其特殊作用模式有关, 即使性反转鸡胚PKCIW代偿性的表达升高, 却也未能阻止睾丸的形成。此外, FET1为雌性特异表达, 但在性反转鸡胚中表达无变化。综上, 实验结果支持了DMRT1是鸟类睾丸发育决定因子的假说。  相似文献   

18.
A. Felip    F. Piferrer    M. Carrillo    S. Zanuy 《Journal of fish biology》2002,61(2):347-359
Gynogenesis showed little effect on general physiology and gonadal development in sea bass Dicentrarchus labrax . Meiogynogenetic fish showed well-developed gonads indicating low occurrence of developmental imbalances even after gynogenesis induction in this species. In addition, the proportion of sexes of meiogynogenetic sea bass was similar to the diploid controls in two independent trials, which did not deviate significantly from a 1:1 male: female sex ratio. Even considering some environmental influence on sex differentiation, as has been previously demonstrated, the fact that the proportion of sexes was similar between gynogenetic and control diploids essentially eliminates the possibility that in the sea bass the females are the homogametic sex. Although the mechanism of sex determination of this species still remains unknown, even after gynogenesis induction, the genetic mechanism of the ZW/ZZ type could probably operate in the sea bass.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号