首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
We describe a mass spectrometric method for distinguishing between free and modified forms of the C‐terminal carboxyl group of peptides and proteins, in combination with chemical approaches for the isolation of C‐terminal peptides and site‐specific derivatization of the C‐terminal carboxyl group. This method could most advantageously be exploited to discriminate between peptides having C‐terminal carboxyl groups in the free (COOH) and amide (CONH2) forms by increasing their mass difference from 1 to 14 Da by selectively converting the free carboxyl group into methylamide (CONHCH3). This method has been proven to be applicable to peptides containing aspartic and glutamic acids, because all the carboxyl groups except the C‐terminal one are inert to derivatization, according to oxazolone chemistry. The efficiency of the method is illustrated by a comparison of the peaks of processed peptides obtained from a mixture of adrenomedullin, calcitonin, and BSA. Among these components of the mixture, only the C‐terminal peptide of BSA exhibited the mass shift of 13 Da upon treatment, eventually unambiguously validating the C‐terminal amide structures of adrenomedullin and calcitonin. The possibility of extending this method for the analysis of C‐terminal PTMs is also discussed.  相似文献   

2.
We have used synthetic peptides to study a conserved RNA binding motif in yeast poly(A)-binding protein. Two peptides, 45 and 44 amino acids in length, corresponding to amino and carboxyl halves of a 90-amino acid RNA-binding domain in the protein were synthesized. While the amino-terminal peptide had no significant affinity for nucleic acids, the carboxyl-terminal peptide-bound nucleic acids with similar characteristics to that for the entire 577 residue yeast poly(A)-binding protein. In 100 mM NaCl, the latter peptide retained over 50% of the intrinsic binding free energy of the protein, as well as, similar RNA versus DNA binding specificity. However, shuffling of the sequence of this 44 residue peptide had surprisingly little effect on its nucleic acid binding properties suggesting the overriding importance of amino acid composition as opposed to primary sequence. Deletion studies on the 44 residue peptide with the "correct" sequence succeeded in identifying amino acids important for conferring RNA specificity and for increasing our understanding of the molecular basis for nucleic acid binding by synthetic peptides. The shuffled peptide study, however, clearly indicates that considerable caution must be exercised before extrapolating results of structure/function studies on synthetic peptide analogues to the parent protein.  相似文献   

3.
The morphology of structures formed by the self‐assembly of short N‐terminal t‐butyloxycarbonyl (Boc) and C‐terminal methyl ester (OMe) protected and Boc‐deprotected hydrophobic peptide esters was investigated. We have observed that Boc‐protected peptide esters composed of either only aliphatic hydrophobic amino acids or aliphatic hydrophobic amino acids in combination with aromatic amino acids, formed highly organized structures, when dried from methanol solutions. Transmission and scanning electron microscopic images of the peptides Boc‐Ile‐Ile‐OMe, Boc‐Phe‐Phe‐Phe‐Ile‐Ile‐OMe and Boc‐Trp‐Ile‐Ile‐OMe showed nanotubular structures. Removal of the Boc group resulted in disruption of the ability to form tubular structures though spherical aggregates were formed. Both Boc‐Leu‐Ile‐Ile‐OMe and H‐Leu‐Ile‐Ile‐OMe formed only spherical nanostructures. Dynamic light scattering studies showed that aggregates of varying dimensions were present in solution suggesting that self‐assembly into ordered structures is facilitated by aggregation in solution. Fourier transform infrared spectroscopy and circular dichroism spectroscopy data show that although all four of the protected peptides adopt well‐defined tertiary structures, upon removal of the Boc group, only H‐Phe‐Phe‐Phe‐Ile‐Ile‐OMe had the ability to adopt β‐structure. Our results indicate that hydrophobic interaction is a very important determinant for self‐assembly and presence of charged and aromatic amino acids in a peptide is not necessary for self‐assembly. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

4.
Jensen KJ  Brask J 《Biopolymers》2005,80(6):747-761
Monosaccharides and amino acids are fundamental building blocks in the assembly of nature's polymers. They have different structural aspects and, to a significant extent, different functional groups. Oligomerization gives rise to oligosaccharides and peptides, respectively. While carbohydrates and peptides can be found conjoined in nature, e.g., in glycopeptides, the aim of this review is the radical redesign of peptide structures using carbohydrates, particularly monosaccharides and cyclic oligosaccharides, to produce novel peptides, peptidomimetics, and abiotic proteins. These hybrid molecules, chimeras, have properties arising largely from the combination of structural characteristics of carbohydrates with the functional group diversity of peptides. This field includes de novo designed synthetic glycopeptides, sugar (carbohydrate) amino acids, carbohydrate scaffolds for nonpeptidal peptidomimetics of cyclic peptides, cyclodextrin functionalized peptides, and carboproteins, i.e., carbohydrate-based proteinmimetics. These successful applications demonstrate the general utility of carbohydrates in peptide and protein architecture.  相似文献   

5.
6.
The amino acid sequences of two closely related peptides from Gila monster (Heloderma suspectum) venom are reported. Helospectin I is a 38-residue peptide, His-Ser-Asp-Ala-Thr-Phe-Thr-Ala-Glu-Tyr-Ser-Lys-Leu-Leu-Ala-Lys-Leu-Ala- Leu-Gln - Lys-Tyr-Leu-Glu-Ser-Ile-Leu-Gly-Ser-Ser-Thr-Ser-Pro-Arg-Pro-Pro-Ser-Ser, and helospectin II is a 37-residue peptide identical to helospectin I except that it lacks serine 38. Helospectins are pancreatic secretagogues with structures and bioactivities similar to vasoactive intestinal peptide and other members of the glucagon superfamily. The relative significance of helospectin-I and helospectin-II is presently unknown. Comparison of the 28 residues of vasoactive intestinal peptide with residues 1-28 of helospectin shows that identical amino acids occur in 15 positions. Since members of the glucagon superfamily have similar structures but different biological actions, it is possible that helospectin is more closely related to a mammalian peptide awaiting discovery.  相似文献   

7.
Amino terminal fragments of human progastrin from gastrinoma   总被引:2,自引:0,他引:2  
Two peptides which copurified from a human gastrinoma were found to correspond to the amino acid sequence deduced for the amino terminal portion of human and porcine progastrin. The sequence of peptide A is Ser-Trp-Lys-Pro-Arg-Ser-Gln-Gln-Pro-Asp-Ala-Pro-Leu-Gly-Thr-Gly-Ala-Asn- Arg-Asp-Leu-Glu-Leu which is identical to an amino terminal portion of human progastrin. The sequence of peptide. B is identical to that of peptide A except it is missing the first five amino acids. If peptide A corresponds to the amino terminus of progastrin, the signal peptidase cleaves at an Ala-Ser bond.  相似文献   

8.
The color tone of melanoidins prepared from model systems by heating mixtures of 1 mmole amino acid or peptide and 1 mmole sugar in aqueous solution was investigated using ΔA (change of log absorbance per 100 mμ) as a parameter of color tone.

Amino acids and peptides were responsible for the color tone of melanoidins while sugar had no effect on the color tone. In addition, the color tone of melanoidin varied as the concentration ratio of amino acid to sugar changed. Melanoidins from tryptophan- and proline-xylose systems exhibited the lightest color tone. Melanoidins from peptides generally exhibited dark tones compared with those from amino acids.

Using the distribution pattern of color components fractionated by DEAE-cellulose chromatography, melanoidins have been classed into 4 groups based on the percentage of PI (non-adsorbed fraction on DEAE-cellulose): group 1, melanoidins containing 90 ~ 100% P1; group 2, 70~80% PI; group 3, 30~50% P1; group 4, less than 20% P1. Melanoidins derived from most amino acids examined, those from basic amino acids and proline, those from glutamic acid and glycine, and those from peptides and amino terminal monocarboxylic acids belonged to groups 2, 1, 3, and 4, respectively.

The color tone of each color component except for PI was generally very similar in most melanoidins. However, the color tone of P1 was variable. Therefore, melanoidin is composed of various color components having intrinsic color tones from yellowish-brown to dark brown and their color tone depends upon the variation of the amount of color components and upon the color tone of P1.  相似文献   

9.
Peptide self-assembly leading to cross-β amyloid structures is a widely studied phenomenon because of its role in amyloid pathology and the exploitation of amyloid as a functional biomaterial. The self-assembly process is governed by hydrogen bonding, hydrophobic, aromatic π-π, and electrostatic Coulombic interactions. A role for aromatic π-π interactions in peptide self-assembly leading to amyloid has been proposed, but the relative contributions of π-π versus general hydrophobic interactions in these processes are poorly understood. The Ac-(XKXK)(2)-NH(2) peptide was used to study the contributions of aromatic and hydrophobic interactions to peptide self-assembly. Position X was globally replaced by valine (Val), isoleucine (Ile), phenylalanine (Phe), pentafluorophenylalanine (F(5)-Phe), and cyclohexylalanine (Cha). At low pH, these peptides remain monomeric because of repulsion of charged lysine (Lys) residues. Increasing the solvent ionic strength to shield repulsive charge-charge interactions between protonated Lys residues facilitated cross-β fibril formation. It was generally found that as peptide hydrophobicity increased, the required ionic strength to induce self-assembly decreased. At [NaCl] ranging from 0 to 1000 mM, the Val sequence failed to assemble. Assembly of the Phe sequence commenced at 700 mM NaCl and at 300 mM NaCl for the less hydrophobic Ile variant, even though it displayed a mixture of random coil and β-sheet secondary structures over all NaCl concentrations. β-Sheet formation for F(5)-Phe and Cha sequences was observed at only 20 and 60 mM NaCl, respectively. Whereas self-assembly propensity generally correlated to peptide hydrophobicity and not aromatic character the presence of aromatic amino acids imparted unique properties to fibrils derived from these peptides. Nonaromatic peptides formed fibrils of 3-15 nm in diameter, whereas aromatic peptides formed nanotape or nanoribbon architectures of 3-7 nm widths. In addition, all peptides formed fibrillar hydrogels at sufficient peptide concentrations, but nonaromatic peptides formed weak gels, whereas aromatic peptides formed rigid gels. These findings clarify the influence of aromatic amino acids on peptide self-assembly processes and illuminate design principles for the inclusion of aromatic amino acids in amyloid-derived biomaterials.  相似文献   

10.
D J Abraham  A J Leo 《Proteins》1987,2(2):130-152
The fragment method of calculating partition coefficients (P) has been extended to include the common amino acids (AAs). The results indicate that polar and charged side chains influence the hydrophobicity of atoms in the side chain in a predictable manner. Field effects, as evidenced through polar proximity factors and bond factors, need to be considered for accurate estimation of transfer phenomena. The calculated log P and delta G degree ' values of the 20 AAs agree well with the observed values. Pro calculates to be more hydrophilic than the observed log P. Hydrophobicity scales for peptide side chain residues are compared and evaluated in terms of suitability. Calculated pi values for nonpolar side chain residues agree well with the observed values; calculated values for uncharged polar side chain residues deviate by about 0.6 log units except for Gln and Cys; and polar side chain residues with charged side chains calculate as too hydrophilic. Reasons for the differences are explored. We also suggest that tightly bound water to polar moieties in amino acids and peptides may be transferred into the octanol phase during partitioning experiments. A quantitative methodology is presented which characterizes the thermodynamic partitioning of groups and individual atoms in amino acids and proteins.  相似文献   

11.
The intradiskal surface of the transmembrane protein, rhodopsin, consists of the amino terminal domain and three loops connecting six of the seven transmembrane helices. This surface corresponds to the extracellular surface of other G-protein receptors. Peptides that represent each of the extramembraneous domains on this surface (three loops and the amino terminus) were synthesized. These peptides also included residues which, based on a hydrophobic plot, could be expected to be part of the transmembrane helix. The structure of each of these peptides in solution was then determined using two-dimensional 1H nuclear magnetic resonance. All peptide domains showed ordered structures in solution. The structures of each of the peptides from intradiskal loops of rhodopsin exhibited a turn in the central region of the peptide. The ends of the peptides show an unwinding of the transmembrane helices to form this turn. The amino terminal domain peptide exhibited alpha-helical regions with breaks and bends at proline residues. This region forms a compact domain. Together, the structures for the loop and amino terminus domains indicate that the intradiskal surface of rhodopsin is ordered. These data further suggest a structural motif for short loops in transmembrane proteins. The ordered structures of these loops, in the absence of the transmembrane helices, indicate that the primary sequences of these loops are sufficient to code for the turn.  相似文献   

12.
13.
14.
15.
A method for calculating retention volumes of linear peptides with known primary structures and the values of their UV absorption at chosen wavelengths in reversed phase HPLC are described. These parameters are calculated for every peptide on the basis of the contributions of its amino acid residues determining its degree of retention and its UV spectrum. The contribution values are experimentally found from chromatograms of the free amino acids obtained by multiwavelength photometric detection under the conditions of the peptide chromatography. Thirty peptides have been chromatographed for the evaluation of the proposed method, and the correlation coefficients between the calculated and the experimental retention volumes have been found to be 0.95.  相似文献   

16.
A method for calculating retention volumes of linear peptides with known primary structures and the values of their UV absorption at chosen wavelengths in reversed phase HPLC are described. These parameters are calculated for every peptide on the basis of the contributions of its amino acid residues determining its degree of retention and its UV spectrum. The contribution values are experimentally found from chromatograms of the free amino acids obtained by multiwavelength photometric detection under the conditions of the peptide chromatography. Thirty peptides have been chromatographed for the evaluation of the proposed method, and the correlation coefficients between the calculated and the experimental retention volumes have been found to be 0.95.  相似文献   

17.
A new amino acid derivative, N alpha-(tert-butoxycarbonyl)-N epsilon-[N-(bromoacetyl)-beta-alanyl]-L-lysine (BBAL), has been synthesized as a reagent to be used in solid-phase peptide synthesis for introducing a side-chain bromoacetyl group at any desired position in a peptide sequence. The bromoacetyl group subsequently serves as a sulfhydryl-selective cross-linking function for the preparation of cyclic peptides, peptide conjugates, and polymers. BBAL is synthesized by condensation of N-bromoacetyl-beta-alanine with N alpha-Boc-L-lysine and is a white powder which is readily stored, weighed, and used with a peptide synthesizer, programmed for N alpha-Boc amino acid derivatives. BBAL residues are stable to final HF deprotection/cleavage. BBAL peptides can be directly coupled to other molecules or surfaces which possess free sulfhydryl groups by forming stable thioether linkages. Peptides containing both BBAL and cysteine residues can be self-coupled to produce either cyclic molecules or linear peptide polymers, also linked through thioether bonds. Products made with BBAL peptides may be characterized by amino acid analysis of acid hydrolyzates by quantification of beta-alanine, which separates from natural amino acids in suitable analytical systems. Where sulfhydryl groups on coupling partners arise from cysteine residues, S-(carboxymethyl)cysteine in acid hydrolyzates may also be assayed for this purpose. Examples are given of the use of BBAL in preparing peptide polymers and a peptide conjugate with bovine albumin to serve as immunogens or model vaccine components.  相似文献   

18.
From the nucleotide sequence of clones isolated from a cDNA library constructed from skin of Xenopus laevis, the existence of PYLa, a peptide comprised of 24 amino acids, was predicted. This peptide was synthesized by solid-phase methods and purified to homogeneity with an overall yield of 61%. The synthetic peptide was used as reference substance to search for its natural counterpart in skin secretion of Xenopus. Two peptides were found which were very similar to PYLa except for the absence of the first three amino acids. These 21-amino-acid peptides, termed PGLa, can be generated from PYLa by cleavage after the single arginine residue present in the latter. The two forms of PGLa differ in their retention time on HPLC but have identical amino acid compositions and terminal sequences. Tryptic hydrolysis of synthetic PYLa after the single arginine yields exclusively PGLa with the shorter retention time on HPLC. The chemical difference between the two forms of PGLa is currently not known. The possible biological role of these newly discovered constituents of frog skin secretion is discussed.  相似文献   

19.
C-Terminal binding protein (CtBP) interacts with a highly conserved amino acid motif (PXDLS) at the C terminus of adenovirus early region 1A (AdE1A) protein. This amino acid sequence has recently been demonstrated in the mammalian protein C-terminal interacting protein (CtIP) and a number of Drosophila repressors including Snail, Knirps and Hairy. In the study described here we have examined the structures of synthetic peptides identical to the CtBP binding sites on these proteins using NMR spectroscopy. It has been shown that peptides identical to the CtBP binding site in CtIP and at the N terminus of Snail form a series of beta-turns similar to those seen in AdE1A. The PXDLS motif towards the C terminus of Snail forms an alpha-helix. However, the motifs in Knirps and Hairy did not adopt well-defined structures in TFE/water mixtures as shown by the absence of medium range NOEs and a high proportion of signal overlap. The affinities of peptides for Drosophila and mammalian CtBP were compared using enzyme-linked immunosorbent assay. CtIP, Snail (N-terminal peptide) and Knirps peptides all bind to mammalian CtBP with high affinity (K(i) of 1.04, 1.34 and 0.52 microM, respectively). However, different effects were observed with dCtBP, most notably the affinity for the Snail (N-terminal peptide) and Knirps peptides were markedly reduced (K(i) of 332 and 56 microM, respectively) whilst the Hairy peptide bound much more strongly (K(i) for dCtBP of 6.22 compared to 133 microM for hCtBP). In addition we have shown that peptides containing identical PXDLS motifs but with different N and C terminal sequences have appreciably different affinities for mammalian CtBP and different structures in solution. We conclude that the factors governing the interactions of CtBPs with partner proteins are more complex than simple possession of the PXDLS motif. In particular the overall secondary structures and amino acid side chains in the binding sites of partner proteins are of importance as well as possible global structural effects in both members of the complex. These data are considered evidence for a multiplicity of CtBPs and partner proteins in the cell.  相似文献   

20.
Bracci L  Lozzi L  Lelli B  Pini A  Neri P 《Biochemistry》2001,40(22):6611-6619
Peptide libraries allow selecting new molecules, defined as mimotopes, which are able to mimic the structural and functional features of a native protein. This technology can be applied for the development of new reagents, which can interfere with the action of specific ligands on their target receptors. In the present study we used a combinatorial library approach to produce synthetic peptides mimicking the snake neurotoxin binding site of nicotinic receptors. On the basis of amino acid sequence comparison of different alpha-bungarotoxin binding receptors, we designed a 14 amino acid combinatorial synthetic peptide library with five invariant, four partially variant, and five totally variant positions. Peptides were synthesized using SPOT synthesis on cellulose membranes, and binding sequences were selected using biotinylated alpha-bungarotoxin. Each variant position was systematically identified, and all possible combinations of the best reacting amino acids in each variant position were tested. The best reactive sequences were identified, produced in soluble form, and tested in BIACORE to compare their kinetic constants. We identified several different peptides that can inhibit the binding of alpha-bungarotoxin to both muscle and neuronal nicotinic receptors. Peptide mimotopes have a toxin-binding affinity that is considerably higher than peptides reproducing native receptor sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号