首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The performance and the granules characteristics of a 450 m(3) -UASB reactor operating for 1228 days, treating poultry slaughterhouse wastewater with an average COD reduction of 85% was examined. Granules were sampled in three different positions along the vertical central line of the reactor, revealing variations in the concentration of volatile total solids. Although the reactor had been in operation for an extended period of time, granule sizes of 0.5-1.5 mm appeared to predominate. The hollow core was well defined for granules with sizes ranging from 2 to 3 mm in all the sampling ports. The granules exhibited no layered microbial distribution and were packed with different morphotype cells intertwined randomly throughout the cross-section. Methanogenic Archaea predominated in the granules taken from every sampling port along the reactor. The results indicated that the characterization of the granules is a useful tool for the adoption of operational strategies toward optimization of UASB reactors.  相似文献   

2.
This paper discusses the microbial community structure of anaerobic granules and the effect of phase separation in anaerobic reactor on the characteristics of granules. Electron micrographs revealed that the core of anaerobic granular sludge consists predominantly of Methanosaeta-like cells, a key microorganism in granulation process. Granules in the methanogenic dominant zone of the reactor were stable and densely packed with smooth regular surface. On the other hand, granules subjected to acidogenic activities were less stable structures with broken parts and an irregular fissured surface. Anaerobic granules consisted of a vast diversity of species from the outer surface to the core of the granule and possessed a multi-layered structure. Viruses in the granules suggests the presence of bacteriophage in the granular biomass. These could be responsible for destroying cells and weakening the internal structure of granules, and thus possibly causing the breaking of granules. The observation of protozoa-like microorganism on the exterior zone of granular structure is believed to play an important role as bacterial predator and control the growth of bacterial cells. The images observed in this study shows that anaerobic granule harbour diverse number of microbial species, and act differently in acidogenic and methanogenic microbial zones.  相似文献   

3.
Aerobic granular sludge was cultivated from activated sludge with two types of supports, namely bivalve shell carrier (BSC) and anaerobic granules (ANG). Granules were characterized at different organic loading rates (OLRs) ranging from 2.5 to 15 kg COD/m3 d and these granules were observed to withstand high OLRs. The physico-chemical characteristics of the aerobic granules were better than those of seed sludge. The granule formation with ANG support was found to be similar to that of non-support cultivation, i.e. formation from activated sludge only. By contrast, BSC support showed better performance in terms of faster settleability, compactness and especially resistance against organic shock loading. It also enabled self-cleaning effect by removing biofilm attached on the reactor wall during the start-up phase resulting rapid granulation process.  相似文献   

4.
5.
AIMS: To obtain biomass and porosity profiles for aerobically grown granules of different diameters and to determine a suitable range of granule diameters for application in wastewater treatment. METHODS AND RESULTS: Microbial granules were cultivated in an aerobic granulated sludge reactor with model wastewaters containing acetate, or ethanol plus acetate, or glucose as the main carbon source. Granules were formed by retaining microbial aggregates using a settling time of 2 min. Sampled granules had diameters ranging from 0.45 to 3 mm. Microbial biomass in the granules was detected with the nucleic acid stain SYTO 9 and confocal laser scanning microscopy. The thickness of the microbial biomass layer was proportional to the granule diameter, and had a maximum value of 0.8 mm. The thickness of the microbial biomass layer correlated with the penetration depth of 0.1 microm fluorescent beads into the granule. CONCLUSIONS: The microbial biomass and porosity studies suggest that aerobically grown microbial granules should have diameters less than a critical diameter of 0.5 mm, if deployed for wastewater treatment applications. This critical diameter is based on the assumption that whole granules should have a porous biomass-filled matrix. SIGNIFICANCE AND IMPACT OF THE STUDY: This work could contribute to the development of aerobic granulation technology for effective biological wastewater treatment.  相似文献   

6.
Changes in juxtaglomerular (JG; renin-containing) cells in experimental hydronephrosis 1 month after ureteral ligation were investigated with immunoelectron-microscopical techniques. Two types of granules, electron dense (D) and lucent (L), were observed. D type granules were labeled more intensely with gold particles than those of L type. Granules intermediate between D and L types and exocytosis of D types were observed. In the cells containing D types exclusively, gold particles were restricted to the granules, whereas in the cells containing both D and L type granules, the particles were scattered throughout the cytoplasmic cytosol. The authors discuss the mechanisms of renin release in JG cells.  相似文献   

7.
The presence of secretory protein-I (SP-I) or chromogranin A (CGA) in granules isolated from the granular cells of the amphibian urinary bladder epithelium was investigated using ultraimmunohistochemistry. Granules were isolated by cell fractionation using Percoll density gradients. SP-I was isolated and purified from bovine parathyroid glands. Antibodies were raised in rabbits and purified by affinity chromatography. Ultraimmunocytochemistry, employing the avidin-biotin-peroxidase (ABC-complex) procedure, was used to localize SP-I on thin sections of isolated granules. About 27% of the granules from control (-ADH) cells were SP-I+, while 51% of the granules fractionated from hormone treated (+ADH) cells were positive for this protein (p less than 0.0001). Accordingly, granules from ADH-treated cells also showed a significant (p less than 0.0001) increase in total protein.  相似文献   

8.
It has generally been accepted that the formation of granules in anaerobic wastewater treatment systems requires a hydraulic upflow pattern. To evaluate this hypothesis, we operated an anaerobic migrating blanket reactor (AMBR) without a hydraulic upflow pattern, using a synthetic wastewater containing acetate, propionate, butyrate and sucrose. We provided conditions amenable to the formation of granules by operating the system with a moderate hydraulic selection pressure, which in this system was not the result of a hydraulic upflow pattern, but was provided by migration of biomass and intermittent mechanical mixing. Granules were first noticed after 2 months of operation, and it took another 2 months for a mature granular blanket to develop. Besides granules, approximately 1-cm-long Methanosaeta fibres developed and, after 6 months of operation, 30% of biomass consisted of these fibres. Quantitative membrane hybridization showed that almost all the total 16S rRNA extracted from fibres consisted of 16S rRNA from Methanosaeta concilii. This finding indicates that it was possible to develop pockets consisting almost entirely of an organism with a very limited substrate utilization spectrum (only acetate) in a system that was fed a synthetic wastewater containing acetate, propionate, butyrate and sucrose and that is known for its ability to develop biomass with a complex microbial community structure.  相似文献   

9.
In the present study, the factors influencing density of granular sludge particles were evaluated. Granules consist of microbes, precipitates and of extracellular polymeric substance. The volume fractions of the bacterial layers were experimentally estimated by fluorescent in situ hybridisation staining. The volume fraction occupied by precipitates was determined by computed tomography scanning. PHREEQC was used to estimate potential formation of precipitates to determine a density of the inorganic fraction. Densities of bacteria were investigated by Percoll density centrifugation. The volume fractions were then coupled with the corresponding densities and the total density of a granule was calculated. The sensitivity of the density of the entire granule on the corresponding settling velocity was evaluated by changing the volume fractions of precipitates or bacteria in a settling model. Results from granules originating from a Nereda reactor for simultaneous phosphate COD and nitrogen removal revealed that phosphate-accumulating organisms (PAOs) had a higher density than glycogen-accumulating organisms leading to significantly higher settling velocities for PAO-dominated granules explaining earlier observations of the segregation of the granular sludge bed inside reactors. The model showed that a small increase in the volume fraction of precipitates (1–5 %) strongly increased the granular density and thereby the settling velocity. For nitritation–anammox granular sludge, mainly granular diameter and not density differences are causing a segregation of the biomass in the bed.  相似文献   

10.
Granules were observed after more than two years of operation in two semi-continuously fed intermittently aerated reactors treating swine wastewater with aerobic:anoxic cycles of 1:1 h and 1:4 h. Subsequently, the granules and flocs were compared with respect to physical characteristics, activity, and microbial community structure. Granules exhibited higher specific nitrification and denitrification rates than flocs. However, once granule structural integrity was disrupted, the rates decreased to levels similar to those of flocs. Membrane hybridizations using 16S rRNA-targeted probes showed that ammonia oxidizing bacteria populations in flocs and granules were dominated by Nitrosomonas and Nitrosococcus mobilis. Granules provided better conditions for Nitrospira compared to flocs. The diversities of the dominant bacterial populations in granules and flocs were not significantly different. Our findings highlight the importance of structural integrity of granules to their nitrogen removing activity.  相似文献   

11.
Anaerobic oxidation of volatile fatty acids (VFAs) as the key intermediates is restricted thermodynamically. Presently, enriched acetogenic and methanogenic cultures were used for syntrophic anaerobic digestion of VFAs in an upflow anaerobic sludge bed reactor fed with acetic, propionic, and butyric acids at maximum concentrations of 5.0, 3.0, and 4.0 g/L, respectively. Interactive effects of propionate, butyrate and acetate were analyzed. Hydraulic retention time (HRT) and acetate oxidizing syntrophs and methanogen (hydrogenotrophs) to syntrophic bacteria (propionate- and butyrate-oxidizing bacteria) population ratio (M/A) were investigated as key microbiological and operating variables of VFA anaerobic degradations. M/A did not affect the size distribution and had little effect on extracellular polymer contents of the granules. Granular sludge with close spatial microbial proximity enhanced syntrophic degradation of VFAs compared to other cultures, such as suspended cultures. Optimum conditions were found to be propionate = 1.93 g/L, butyrate = 2.15 g/L, acetate = 2.50 g/L, HRT = 22 h, and M/A = 2.5 corresponding to maximum VFA removal and biogas production rate. Results of verification experiments and predicted values from fitted correlations were in close agreement at the 95% confidence interval. Granules seemed to be smaller particles and less stable in construction with an irregular fractured surface compared to the original granules.  相似文献   

12.
Summary Heavy metals in electroplating effluent inhibited specific methanogenic activity (SMA) of anaerobic starch-degrading granules. The SMA of granules on the degradation of starch were reduced by 50% when each gram of biomass was in contact individually with 105 mg of zinc, 120 mg of nickel, 180 mg of copper, 310 mg of chromium, or >400 mg of cadmium. Granules had higher toxicity-resistance than flocculent sludge, due to their layered structure.  相似文献   

13.
The strictly anaerobic, pentachlorophenol (PCP) degrading bacterium DCB-2 was immobilized in an Upflow Anaerobic Sludge Blanket (UASB) reactor containing sterile granules. PCP and lactate were fed to the reactor and the concentration of chlorophenols in the effluent were monitored for 641 days. PCP was found to be degraded and transformed into 3.4.5-trichlorophenol in the reactor where DCB-2 was introduced into the granular sludge. PCP was still transformed to 3.4.5-trichlorophenol when the hydraulic retention time was decreased to six hours which was much lower than the generation time of DCB-2 insuring no free living cells in the reactor. This indicated that DCB-2 was immobilized in the granular layer. A control reactor that contained only sterile granules did not dechlorinate PCP indicating that the performance in the inoculated reactor was only due to the introduced bacteria. Immobilization of DCB-2 in the granules was further demonstrated by adding an antibody raised against DCB-2 to sliced granules. Bacteria thus visualized formed a net structure inside the granules. No DCB-2 bacteria could be found in granules from the control reactor. When lactate was omitted from the influent, the reactor still dechlorinated PCP in accordance with our findings that lactate was not used by DCB-2. This suggested that the reducing equivalents for reductive dechlorination were derived from the granules themselves. The reactor performance was 120 mol·l reactor-1·day-1, comparable to the best described performance of a UASB-reactor and to aerobic reactors. Our study demonstrates that granules can be constructed which possess specific abilities such as a dechlorinating activity and at the same time be high performing. This result have implications for eco-engineering of granules for anaerobic treatment of contaminated waters.  相似文献   

14.
The influence of a high energy substrate, i.e. sucrose, on the granular sludge yield and the development of different types of granular sludge was investigated by using Upflow Anaerobic Sludge Bed (UASB) reactors fed with synthetic wastewater. The feed COD was a mixture of volatile fatty acids (VFA) i.e., 20, 40, and 40% of the COD as C2-, C3-, and C4-VFA, respectively. Furthermore, experiments were carried out in which 10 and 30% of the VFA COD was substituted with sucrose. The following distinctly different types of granules were observed in each testrun: in the reactor fed with solely VFA, black (B) and white (W) granules developed; in the reactor fed with a mixture of 90% VFA and 10% sucrose, three types of granules i.e., B, W, and grey (G) granules could be seen; in the reactor fed with 70% VFA and 30% sucrose, only W and G granules were found. The granular sludge yield increased proportional to the amount of sucrose COD. At steady-state performance of the reactors, specific acidogenic (SAA) and methanogenic (SMA) activity tests on these granules revealed that B granules had the highest SMA with low SAA. The W granules had very high SMA with low SAA. G granules gave the highest SAA with a considerable SMA. Measurement of coenzyme F420 revealed that B granules consist mainly of acetoclastic methanogens. The fore-mentioned tests were supplemented with analyses of the wash-out cells present in the reactor effluent and the results suggested that acidogens, if present, prevail at the granule surface. The B granules were particularly rich in Ca, Mn, and Zn minerals. The size distribution analysis showed that the granule diameter increased in the following order: B相似文献   

15.
Granules arising in the cytoplasm of Rana temporaria erythrocytes incubated in either solution containing acridine orange, chloroquine or antibiotic daunorubicine were studied cytophotometrically. The stuff concentrations in the granules were estimated under various conditions of incubation. The stuff concentrations in the granules appeared to be 1000-fold higher than in the incubation solutions. The average concentration in the granules did not depend on either the initial concentration of the stuff solution or the incubation time. The stuff concentration in the granules decreases with the increase of the granule size. Mechanisms of cation-acid segregation and accumulation by living cell are discussed.  相似文献   

16.
17.
The beige mouse, a homologue of the Chediak-Higashi syndrome in man, possesses abnormally large granules in many tissue cells. The granules in the mucosal mast cells (MMC) of the small intestine of beige and littermate C57BL/6J mice were examined after infecting the mice with the intestinal parasite, Nippostrongylus brasiliensis. MMC in both beige and littermate mice had irregular granules which contained paracrystalline substructures embedded in an amorphous matrix. Granules were not observed in fusion with the cell membrane. Instead, in late-stage mast cells, the granule membrane broke down, the granule contents were spread throughout the cytoplasm, and the cell organelles disintegrated. Unlike connective tissue mast cells, MMC were poorly demonstrated with formalin fixation and toluidine blue staining.  相似文献   

18.
Cortical granules remaining after fertilization in Xenopus laevis   总被引:9,自引:0,他引:9  
Eggs of Xenopus laevis were examined in an electron microscope at unfertilized egg, 1-cell, 2-cell, 32-cell, and blastula stages. Granules closely resembling cortical granules were observed within the “germinal plasm” as well as in the peripheral cytoplasm of all the eggs examined. A staining method was developed that makes it easier to count cortical granules in thick Epon sections. Light and electron microscope examinations revealed that granules remaining after fertilization possessed morphological characteristics wholly consistent with those of cortical granules of unfertilized eggs. These granules were confirmed to be true cortical granules.  相似文献   

19.
Both allatostatin immunoreactivity (AS-IR) and FMRFamide immunoreactivity (FMRFa-IR) have been demonstrated light-microscopically in the lateral heart nerve of Periplaneta americana. The identifical labeling of some fibers suggests the coexistence of the two antigens. Electron-microscopically, six granule types in the peripheral part of the lateral heart nerve can be distinguished according to their size and density (types 1–6). These granule types can be subdivided immunocytochemically by means of a new mirror-section technique. Granules of types 4 and 5 always exclusively show FMRFa-IR. In the populations of fibers containing granules of types 1 and 6, axon profiles can be found that contain granules colocalizing FMRFa-IR and AS-IR. Other axon profiles of these populations only contain immunonegative granules of the same ultrastructure. Granules of type 2 can be differentiated immunocytochemically in three forms in the same section: In some fibers, they are nonreactive; in other fibers of the same section, they show FMRFa-IR, whereas in a third fiber type, granules show AS-IR. Finally, granules of type 3 can be observed with FMRFA-IR. In other fibers, they occur with the same ultrastructure but exhibit no immunoreactivity. Two soma types occur in the lateral heart nerve. Soma type I is characterized by the production of electron-dense granules that show FMRFa-IR. Type II is in close contact with various fibers, forming different types of axosomatic synapses, hitherto unknown in Insecta.  相似文献   

20.
A mathematical model was developed to describe the anaerobic ammonium oxidation (ANAMMOX) process in a granular upflow anaerobic sludge blanket (UASB) reactor. ANAMMOX granules were cultivated in the UASB reactor by seeding aerobic granules. The granule‐based reactor had a great N‐loading resistant capacity. The model simulation results on the 1‐year reactor performance matched the experimental data well. The yield coefficient for the growth and the decay rate coefficient of the ANAMMOX granules were estimated to be 0.164 g COD g?1 N and 0.00016 h?1, respectively. With this model, the effects of process parameters on the reactor performance were evaluated. Results showed that the optimum granule diameter for the maximum N‐removal should be between 1.0 and 1.3 mm and that the optimum N loading rate should be 0.8 kg N m?3 d?1. In addition, the substrate micro‐profiles in the ANAMMOX granules were measured with a microelectrode to explore the diffusion dynamics within the granules, and the measured profiles matched the predicted results well. Biotechnol. Bioeng. 2009;103: 490–499. © 2009 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号