首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Septins are filamentous GTPases that associate with cell membranes and the cytoskeleton and play essential roles in cell division and cellular morphogenesis. Septins are implicated in many human diseases including cancer and neuropathies. Small molecules that reversibly perturb septin organization and function would be valuable tools for dissecting septin functions and could be used for therapeutic treatment of septin-related diseases. Forchlorfenuron (FCF) is a plant cytokinin previously shown to disrupt septin localization in budding yeast. However, it is unknown whether FCF directly targets septins and whether it affects septin organization and functions in mammalian cells. Here, we show that FCF alters septin assembly in vitro without affecting either actin or tubulin polymerization. In live mammalian cells, FCF dampens septin dynamics and induces the assembly of abnormally large septin structures. FCF has a low level of cytotoxicity, and these effects are reversed upon FCF washout. Significantly, FCF treatment induces mitotic and cell migration defects that phenocopy the effects of septin depletion by small interfering RNA. We conclude that FCF is a promising tool to study mammalian septin organization and functions.  相似文献   

2.
Septin proteins bind GTP and heterooligomerize into filaments with conserved functions across a wide range of eukaryotes. Most septins hydrolyze GTP, altering the oligomerization interfaces; yet mutations designed to abolish nucleotide binding or hydrolysis by yeast septins perturb function only at high temperatures. Here, we apply an unbiased mutational approach to this problem. Mutations causing defects at high temperature mapped exclusively to the oligomerization interface encompassing the GTP-binding pocket, or to the pocket itself. Strikingly, cold-sensitive defects arise when certain of these same mutations are coexpressed with a wild-type allele, suggestive of a novel mode of dominance involving incompatibility between mutant and wild-type molecules at the septin–septin interfaces that mediate filament polymerization. A different cold-sensitive mutant harbors a substitution in an unstudied but highly conserved region of the septin Cdc12. A homologous domain in the small GTPase Ran allosterically regulates GTP-binding domain conformations, pointing to a possible new functional domain in some septins. Finally, we identify a mutation in septin Cdc3 that restores the high-temperature assembly competence of a mutant allele of septin Cdc10, likely by adopting a conformation more compatible with nucleotide-free Cdc10. Taken together, our findings demonstrate that GTP binding and hydrolysis promote, but are not required for, one-time events—presumably oligomerization-associated conformational changes—during assembly of the building blocks of septin filaments. Restrictive temperatures impose conformational constraints on mutant septin proteins, preventing new assembly and in certain cases destabilizing existing assemblies. These insights from yeast relate directly to disease-causing mutations in human septins.  相似文献   

3.
How cells recognize membrane curvature is not fully understood. In this issue, Bridges et al. (2016. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201512029) discover that septins, a component of the cytoskeleton, recognize membrane curvature at the micron scale, a common morphological hallmark of eukaryotic cellular processes.Eukaryotic cells have dedicated proteins that sense membranes, depending on their curvature (Antonny, 2011). Sensors of membrane curvature are important because they organize a wide variety of cellular functions, including vesicle trafficking and organelle shaping (McMahon and Gallop, 2005). Curvature-sensing proteins, for example, the Bin-Amphiphysin-Rvs (BAR) domain–containing proteins, have been mostly described to work at the nanometer scale (Zimmerberg and Kozlov, 2006). In contrast, a clear mechanism of sensing membrane curvature at the micron scale in eukaryotic cells has not been described. In this issue, Bridges et al. discover that septins, a poorly understood component of the cytoskeleton, recognize plasma membrane curvature at the micron scale and serve as landmarks for eukaryotic cells to know their local shape.Septins are an evolutionarily conserved family of GTP-binding proteins that assemble into nonpolar filaments and rings (John et al., 2007; Sirajuddin et al., 2007; Bertin et al., 2008). Septins have been implicated in diverse membrane organization events where micron-scale curvature takes place (Saarikangas and Barral, 2011; Mostowy and Cossart, 2012), including the cytokinetic furrow, the annulus of spermatozoa, the base of cellular protrusions (e.g., cilium and dendritic spines), and the phagocytic cup surrounding invasive bacterial pathogens (Fig. 1). However, the precise role of septin–membrane interactions remains elusive. It was first suggested in 1999 that the interaction of human septins with phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is important for septin localization (Zhang et al., 1999). More recently, work using recombinant septins from budding yeast Saccharomyces cerevisiae assembled on PI(4,5)P2 lipid monolayers showed that septins interact with membrane to facilitate filament assembly (Bridges et al., 2014). Membrane-facilitated septin assembly has also been observed using phospholipid liposomes, and in this case septins were also shown to induce membrane tubulation (Tanaka-Takiguchi et al., 2009). Given that (a) septins can interact with membrane, (b) septin assembly is membrane facilitated, and (c) septin assemblies are associated with a variety of membrane organization events from yeast to mammals, Bridges et al. (2016) hypothesized that septins serve as a mechanism to recognize membrane curvature.Open in a separate windowFigure 1.Morphological hallmarks of eukaryotic cells characterized by micron-scale membrane curvature and septin assembly. Septins have been implicated in membrane organization events where micron-scale curvature takes place. (A) A septin ring acts as a scaffold for cytokinesis proteins and forms a diffusion barrier at the cytokinetic furrow of a dividing cell. (B) A septin ring forms a diffusion barrier at the annulus of a mammalian spermatozoon, which separates the anterior and posterior tail. (C) A septin ring forms a diffusion barrier at the base of a cilium to separate the ciliary membrane from the plasma membrane. (D) In neurons, a septin-dependent diffusion barrier can localize at the base of dendritic spine necks. (E) During phagocytosis, a cup is formed at the plama membrane; septin rings assemble at the base of the phagocytic cup to regulate entry.In their new work, Bridges et al. (2016) provide several lines of evidence to support the hypothesis that septins recognize micron-scale curvature. First, using the filamentous fungus Ashbya gossypii, they performed in vivo localization studies and showed that the fungal septin Cdc11a concentrates in regions of positive micron-scale curvature and that the degree of concentration is proportional to the degree of curvature. Moreover, septins localize to curved membranes that also recruit septin-interacting proteins (e.g., the signaling protein Hsl7). These findings indicate that, by acting as curvature-sensing proteins, septins can localize signaling platforms in the cell. To test if septins can differentiate among micron-scale curvatures, Bridges et al. (2016) developed an elegant model system for septin assembly in vitro. They decorated silica beads with anionic phospholipid bilayers and measured the interaction affinity between purified fungal septin complexes and beads of different curvatures. Interestingly, septins were maximally recruited to “intermediate” sized beads (1.0–3.0 µm in diameter), with little to no recruitment to either very large (5.0–6.5 µm in diameter) or very small (0.3 µm in diameter) beads. These results indicate that septin filaments preferentially localize to a curvature (κ) of 0.7–2.0 µm−1 in the absence of other cellular factors. To provide additional information on the mechanism of sensing, the authors purified mutant septin complexes that fail to polymerize into filaments and showed that the affinity of septins for micron-scale membrane curvature does not require filament formation per se. However, septins must polymerize into filaments for stable membrane association. Collectively, in vivo experiments using A. gossypii and in vitro experiments using silica beads highlight that septins have the intrinsic ability to recognize membrane curvature at the micron scale.Finally, to study the recognition of micron-scale membrane curvature beyond fungi, Bridges et al. (2016) turn their attention to human septins. Using tissue culture cells, they observe that the abundance of septins is associated with the degree of membrane curvature. To confirm these observations in vitro, they purified human septins and analyzed their binding affinity to silica beads with phospholipid bilayers. As seen with A. gossypii septins, human septins also showed a preference for beads ∼1.0 µm in diameter, strongly suggesting an evolutionarily conserved property of septins for sensing membrane curvature at the micron scale.Based on their findings, Bridges et al. (2016) propose that septins provide eukaryotic cells with a mechanism to recognize curvature at the micron scale. This feature differentiates septins from other sensor proteins that strictly detect curvature at the nanometer scale (e.g., BAR domain–containing proteins). However, it is likely that septins do more than recognize membrane, and the precise role of septins in membrane recognition remains unknown. The highly conserved structural and biochemical properties of septins suggest they organize, stabilize, and functionalize membrane domains (Caudron and Barral, 2009; Kusumi et al., 2012; Bridges and Gladfelter, 2015). Although we are far from knowing the full repertoire of septin function, this new work by Bridges et al. (2016) reminds us that understanding how membranes can specify septin assembly is essential to understand the role of septins in eukaryotic cells.  相似文献   

4.
The septins are a family of proteins required for cytokinesis in a number of eukaryotic cell types. In budding yeast, these proteins are thought to be the structural components of a filament system present at the mother–bud neck, called the neck filaments. In this study, we report the isolation of a protein complex containing the yeast septins Cdc3p, Cdc10p, Cdc11p, and Cdc12p that is capable of forming long filaments in vitro. To investigate the relationship between these filaments and the neck filaments, we purified septin complexes from cells deleted for CDC10 or CDC11. These complexes were not capable of the polymerization exhibited by wild-type preparations, and analysis of the neck region by electron microscopy revealed that the cdc10Δ and cdc11Δ cells did not contain detectable neck filaments. These results strengthen the hypothesis that the septins are the major structural components of the neck filaments. Surprisingly, we found that septin dependent processes like cytokinesis and the localization of Bud4p to the neck still occurred in cdc10Δ cells. This suggests that the septins may be able to function in the absence of normal polymerization and the formation of a higher order filament structure.  相似文献   

5.
Leisingera methylohalidivorans Schaefer et al. 2002 emend. Vandecandelaere et al. 2008 is the type species of the genus Leisingera. The genus belongs to the Roseobacter clade (Rhodobacteraceae, Alphaproteobacteria), a widely distributed lineage in marine environments. Leisingera and particularly L. methylohalidivorans strain MB2T is of special interest due to its methylotrophy. Here we describe the complete genome sequence and annotation of this bacterium together with previously unreported aspects of its phenotype. The 4,650,996 bp long genome with its 4,515 protein-coding and 81 RNA genes consists of three replicons, a single chromosome and two extrachromosomal elements with sizes of 221 kb and 285 kb.  相似文献   

6.
Halomonas zhanjiangensis Chen et al. 2009 is a member of the genus Halomonas, family Halomonadaceae, class Gammaproteobacteria. Representatives of the genus Halomonas are a group of halophilic bacteria often isolated from salty environments. The type strain H. zhanjiangensis JSM 078169T was isolated from a sea urchin (Hemicentrotus pulcherrimus) collected from the South China Sea. The genome of strain JSM 078169T is the fourteenth sequenced genome in the genus Halomonas and the fifteenth in the family Halomonadaceae. The other thirteen genomes from the genus Halomonas are H. halocynthiae, H. venusta, H. alkaliphila, H. lutea, H. anticariensis, H. jeotgali, H. titanicae, H. desiderata, H. smyrnensis, H. salifodinae, H. boliviensis, H. elongata and H stevensii. Here, we describe the features of strain JSM 078169T, together with the complete genome sequence and annotation from a culture of DSM 21076T. The 4,060,520 bp long draft genome consists of 17 scaffolds with the 3,659 protein-coding and 80 RNA genes and is a part of Genomic Encyclopedia of Type Strains, Phase I: the one thousand microbial genomes (KMG) project.  相似文献   

7.
Methanoplanus limicola Wildgruber et al. 1984 is a mesophilic methanogen that was isolated from a swamp composed of drilling waste near Naples, Italy, shortly after the Archaea were recognized as a separate domain of life. Methanoplanus is the type genus in the family Methanoplanaceae, a taxon that felt into disuse since modern 16S rRNA gene sequences-based taxonomy was established. Methanoplanus is now placed within the Methanomicrobiaceae, a family that is so far poorly characterized at the genome level. The only other type strain of the genus with a sequenced genome, Methanoplanus petrolearius SEBR 4847T, turned out to be misclassified and required reclassification to Methanolacinia. Both, Methanoplanus and Methanolacinia, needed taxonomic emendations due to a significant deviation of the G+C content of their genomes from previously published (pre-genome-sequence era) values. Until now genome sequences were published for only four of the 33 species with validly published names in the Methanomicrobiaceae. Here we describe the features of M. limicola, together with the improved-high-quality draft genome sequence and annotation of the type strain, M3T. The 3,200,946 bp long chromosome (permanent draft sequence) with its 3,064 protein-coding and 65 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.  相似文献   

8.
Staphylococcus cohnii subsp. cohnii belongs to the family Staphylococcaceae in the order Bacillales, class Bacilli and phylum Firmicutes. The increasing relevance of S. cohnii to human health prompted us to determine the genomic sequence of Staphylococcus cohnii subsp. cohnii strain hu-01, a multidrug-resistant isolate from a hospital in China. Here we describe the features of S. cohnii subsp. cohnii strain hu-01, together with the genome sequence and its annotation. This is the first genome sequence of the species Staphylococcus cohnii.  相似文献   

9.
Leucobacter salsicius M1-8T is a member of the Microbacteriaceae family within the class Actinomycetales. This strain is a Gram-positive, rod-shaped bacterium and was previously isolated from a Korean fermented food. Most members of the genus Leucobacter are chromate-resistant and this feature could be exploited in biotechnological applications. However, the genus Leucobacter is poorly characterized at the genome level, despite its potential importance. Thus, the present study determined the features of Leucobacter salsicius M1-8T, as well as its genome sequence and annotation. The genome comprised 3,185,418 bp with a G+C content of 64.5%, which included 2,865 protein-coding genes and 68 RNA genes. This strain possessed two predicted genes associated with chromate resistance, which might facilitate its growth in heavy metal-rich environments.  相似文献   

10.
Anaerobaculum mobile Menes and Muxí 2002 is one of three described species of the genus Anaerobaculum, family Synergistaceae, phylum Synergistetes. This anaerobic and motile bacterium ferments a range of carbohydrates and mono- and dicarboxylic acids with acetate, hydrogen and CO2 as end products. A. mobile NGAT is the first member of the genus Anaerobaculum and the sixth member of the phylum Synergistetes with a completely sequenced genome. Here we describe the features of this bacterium, together with the complete genome sequence, and annotation. The 2,160,700 bp long single replicon genome with its 2,053 protein-coding and 56 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.  相似文献   

11.
In 2009 Phaeobacter caeruleus was described as a novel species affiliated with the marine Roseobacter clade, which, in turn, belongs to the class Alphaproteobacteria. The genus Phaeobacter is well known for members that produce various secondary metabolites. Here we report of putative quorum sensing systems, based on the finding of six N-acyl-homoserine lactone synthetases, and show that the blue color of P. caeruleus is probably due to the production of the secondary metabolite indigoidine. Therefore, P. caeruleus might have inhibitory effects on other bacteria. In this study the genome of the type strain DSM 24564T was sequenced, annotated and characterized. The 5,344,419 bp long genome with its seven plasmids contains 5,227 protein-coding genes (3,904 with a predicted function) and 108 RNA genes.  相似文献   

12.
Alistipes finegoldii Rautio et al. 2003 is one of five species of Alistipes with a validly published name: family Rikenellaceae, order Bacteroidetes, class Bacteroidia, phylum Bacteroidetes. This rod-shaped and strictly anaerobic organism has been isolated mostly from human tissues. Here we describe the features of the type strain of this species, together with the complete genome sequence, and annotation. A. finegoldii is the first member of the genus Alistipes for which the complete genome sequence of its type strain is now available. The 3,734,239 bp long single replicon genome with its 3,302 protein-coding and 68 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.  相似文献   

13.
Coriobacterium glomerans Haas and König 1988, is the only species of the genus Coriobacterium, family Coriobacteriaceae, order Coriobacteriales, phylum Actinobacteria. The bacterium thrives as an endosymbiont of pyrrhocorid bugs, i.e. the red fire bug Pyrrhocoris apterus L. The rationale for sequencing the genome of strain PW2T is its endosymbiotic life style which is rare among members of Actinobacteria. Here we describe the features of this symbiont, together with the complete genome sequence and its annotation. This is the first complete genome sequence of a member of the genus Coriobacterium and the sixth member of the order Coriobacteriales for which complete genome sequences are now available. The 2,115,681 bp long single replicon genome with its 1,804 protein-coding and 54 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.  相似文献   

14.
Leptonema illini Hovind-Hougen 1979 is the type species of the genus Leptonema, family Leptospiraceae, phylum Spirochaetes. Organisms of this family have a Gram-negative-like cell envelope consisting of a cytoplasmic membrane and an outer membrane. The peptidoglycan layer is associated with the cytoplasmic rather than the outer membrane. The two flagella of members of Leptospiraceae extend from the cytoplasmic membrane at the ends of the bacteria into the periplasmic space and are necessary for their motility. Here we describe the features of the L. illini type strain, together with the complete genome sequence, and annotation. This is the first genome sequence (finished at the level of Improved High Quality Draft) to be reported from of a member of the genus Leptonema and a representative of the third genus of the family Leptospiraceae for which complete or draft genome sequences are now available. The three scaffolds of the 4,522,760 bp draft genome sequence reported here, and its 4,230 protein-coding and 47 RNA genes are part of the Genomic Encyclopedia of Bacteria and Archaea project.  相似文献   

15.
Saccharomonospora cyanea Runmao et al. 1988 is a member of the genus Saccharomonospora in the family Pseudonocardiaceae that is moderately well characterized at the genome level thus far. Members of the genus Saccharomonospora are of interest because they originate from diverse habitats, such as soil, leaf litter, manure, compost, surface of peat, moist, over-heated grain, and ocean sediment, where they probably play a role in the primary degradation of plant material by attacking hemicellulose. Species of the genus Saccharomonospora are usually Gram-positive, non-acid fast, and are classified among the actinomycetes. S. cyanea is characterized by a dark blue (= cyan blue) aerial mycelium. After S. viridis, S. azurea, and S. marina, S. cyanea is only the fourth member in the genus for which a completely sequenced (non-contiguous finished draft status) type strain genome will be published. Here we describe the features of this organism, together with the draft genome sequence, and annotation. The 5,408,301 bp long chromosome with its 5,139 protein-coding and 57 RNA genes was sequenced as part of the DOE funded Community Sequencing Program (CSP) 2010 at the Joint Genome Institute (JGI).  相似文献   

16.
Salinicoccus carnicancri Jung et al. 2010 belongs to the genus Salinicoccus in the family Staphylococcaceae. Members of the Salinicoccus are moderately halophilic and originate from various salty environments. The halophilic features of the Salinicoccus suggest their possible uses in biotechnological applications, such as biodegradation and fermented food production. However, the genus Salinicoccus is poorly characterized at the genome level, despite its potential importance. This study presents the draft genome sequence of S. carnicancri strain CrmT and its annotation. The 2,673,309 base pair genome contained 2,700 protein-coding genes and 78 RNA genes with an average G+C content of 47.93 mol%. It was notable that the strain carried 72 predicted genes associated with osmoregulation, which suggests the presence of beneficial functions that facilitate growth in high-salt environments.  相似文献   

17.
Thermotoga thermarum Windberger et al. 1989 is a member to the genomically well characterized genus Thermotoga in the phylum ‘Thermotogae’. T. thermarum is of interest for its origin from a continental solfataric spring vs. predominantly marine oil reservoirs of other members of the genus. The genome of strain LA3T also provides fresh data for the phylogenomic positioning of the (hyper-)thermophilic bacteria. T. thermarum strain LA3T is the fourth sequenced genome of a type strain from the genus Thermotoga, and the sixth in the family Thermotogaceae to be formally described in a publication. Phylogenetic analyses do not reveal significant discrepancies between the current classification of the group, 16S rRNA gene data and whole-genome sequences. Nevertheless, T. thermarum significantly differs from other Thermotoga species regarding its iron-sulfur cluster synthesis, as it contains only a minimal set of the necessary proteins. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 2,039,943 bp long chromosome with its 2,015 protein-coding and 51 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.  相似文献   

18.
Phaeobacter gallaeciensis CIP 105210T (= DSM 26640T = BS107T) is the type strain of the species Phaeobacter gallaeciensis. The genus Phaeobacter belongs to the marine Roseobacter group (Rhodobacteraceae, Alphaproteobacteria). Phaeobacter species are effective colonizers of marine surfaces, including frequent associations with eukaryotes. Strain BS107T was isolated from a rearing of the scallop Pecten maximus. Here we describe the features of this organism, together with the complete genome sequence, comprising eight circular replicons with a total of 4,448 genes. In addition to a high number of extrachromosomal replicons, the genome contains six genomic island and three putative prophage regions, as well as a hybrid between a plasmid and a circular phage. Phylogenomic analyses confirm previous results, which indicated that the originally reported P. gallaeciensis type-strain deposit DSM 17395 belongs to P. inhibens and that CIP 105210T (= DSM 26640T) is the sole genome-sequenced representative of P. gallaeciensis.  相似文献   

19.
In a previous study we demonstrated up-regulation of the yeast GPH1 gene under conditions of phosphatidylethanolamine (PE) depletion caused by deletion of the mitochondrial (M) phosphatidylserine decarboxylase 1 (PSD1) (Gsell et al., 2013, PLoS One. 8(10):e77380. doi: 10.1371/journal.pone.0077380). Gph1p has originally been identified as a glycogen phosphorylase catalyzing degradation of glycogen to glucose in the stationary growth phase of the yeast. Here we show that deletion of this gene also causes decreased levels of phosphatidylcholine (PC), triacylglycerols and steryl esters. Depletion of the two non-polar lipids in a Δgph1 strain leads to lack of lipid droplets, and decrease of the PC level results in instability of the plasma membrane. In vivo labeling experiments revealed that formation of PC via both pathways of biosynthesis, the cytidine diphosphate (CDP)-choline and the methylation route, is negatively affected by a Δgph1 mutation, although expression of genes involved is not down regulated. Altogether, Gph1p besides its function as a glycogen mobilizing enzyme appears to play a regulatory role in yeast lipid metabolism.  相似文献   

20.
Corynebacterium terpenotabidum Takeuchi et. al 1999 is a member of the genus Corynebacterium, which contains Gram-positive and non-spore forming bacteria with a high G+C content. C. terpenotabidum was isolated from soil based on its ability to degrade squalene and belongs to the aerobic and non-hemolytic Corynebacteria. It displays tolerance to salts (up to 8%) and is related to Corynebacterium variabile involved in cheese ripening. As this is a type strain of Corynebacterium, this project describing the 2.75 Mbp long chromosome with its 2,369 protein-coding and 72 RNA genes will aid the Genomic Encyclopedia of Bacteria and Archaea project.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号