共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Many non-coding RNAs form structures that interact with cellular machinery to control gene expression. A central goal of molecular and synthetic biology is to uncover design principles linking RNA structure to function to understand and engineer this relationship. Here we report a simple, high-throughput method called in-cell SHAPE-Seq that combines in-cell probing of RNA structure with a measurement of gene expression to simultaneously characterize RNA structure and function in bacterial cells. We use in-cell SHAPE-Seq to study the structure–function relationship of two RNA mechanisms that regulate translation in Escherichia coli. We find that nucleotides that participate in RNA–RNA interactions are highly accessible when their binding partner is absent and that changes in RNA structure due to RNA–RNA interactions can be quantitatively correlated to changes in gene expression. We also characterize the cellular structures of three endogenously expressed non-coding RNAs: 5S rRNA, RNase P and the btuB riboswitch. Finally, a comparison between in-cell and in vitro folded RNA structures revealed remarkable similarities for synthetic RNAs, but significant differences for RNAs that participate in complex cellular interactions. Thus, in-cell SHAPE-Seq represents an easily approachable tool for biologists and engineers to uncover relationships between sequence, structure and function of RNAs in the cell. 相似文献
5.
In the present study the whole bacterial community structure of Tapovan hot spring soil located in the state of Uttarakhand, India was analysed through next generation sequencing. The hot spring soil is slightly alkaline in nature with abundance of sulphur. The spring soil was rich in various metallic and non-metallic elements required for bacterial survival. The community was found to comprise of 14 bacterial phyla with representation of members belonging to Firmicutes, Proteobacteria, Thermi, Bacteroidetes, Aquificae, Actinobacteria, chloroflexi, TM7, Fusobacteria etc. At the genus level Bacillus, Pseudomonas, Symbiobacterium, Thermus, Geobacillus, Anoxybacillus were found in abundance as compared to other genera like Flavobacterium, Ureibacillus, Clostridium, Meiothermus, Acinetobacter, Desulfotomaculum and Rheinheimera. 相似文献
6.
Sims D Mendes-Pereira AM Frankum J Burgess D Cerone MA Lombardelli C Mitsopoulos C Hakas J Murugaesu N Isacke CM Fenwick K Assiotis I Kozarewa I Zvelebil M Ashworth A Lord CJ 《Genome biology》2011,12(10):R104-13
RNA interference (RNAi) screening is a state-of-the-art technology that enables the dissection of biological processes and disease-related phenotypes. The commercial availability of genome-wide, short hairpin RNA (shRNA) libraries has fueled interest in this area but the generation and analysis of these complex data remain a challenge. Here, we describe complete experimental protocols and novel open source computational methodologies, shALIGN and shRNAseq, that allow RNAi screens to be rapidly deconvoluted using next generation sequencing. Our computational pipeline offers efficient screen analysis and the flexibility and scalability to quickly incorporate future developments in shRNA library technology. 相似文献
7.
Thermodynamic folding algorithms and structure probing experiments are commonly used to determine the secondary structure of RNAs. Here we propose a formal framework to reconcile information from both prediction algorithms and probing experiments. The thermodynamic energy parameters are adjusted using 'pseudo-energies' to minimize the discrepancy between prediction and experiment. Our framework differs from related approaches that used pseudo-energies in several key aspects. (i) The energy model is only changed when necessary and no adjustments are made if prediction and experiment are consistent. (ii) Pseudo-energies remain biophysically interpretable and hold positional information where experiment and model disagree. (iii) The whole thermodynamic ensemble of structures is considered thus allowing to reconstruct mixtures of suboptimal structures from seemingly contradicting data. (iv) The noise of the energy model and the experimental data is explicitly modeled leading to an intuitive weighting factor through which the problem can be seen as folding with 'soft' constraints of different strength. We present an efficient algorithm to iteratively calculate pseudo-energies within this framework and demonstrate how this approach can be used in combination with SHAPE chemical probing data to improve secondary structure prediction. We further demonstrate that the pseudo-energies correlate with biophysical effects that are known to affect RNA folding such as chemical nucleotide modifications and protein binding. 相似文献
8.
9.
Temperature dependent chemical and enzymatic probing of the tRNA-like structure of TYMV RNA 总被引:2,自引:5,他引:2
下载免费PDF全文

In this paper we report on the thermal unfolding of the tRNA-like structure present at the 3' end of turnip yellow mosaic virus (TYMV) RNA. Diethyl pyrocarbonate (DEP), sodium bisulphite, nuclease S1 and ribonuclease T1 were used as structure probes at a broad range of temperatures. In this way most of the nucleotides present in the tRNA-like moiety were analysed. The melting behaviour of both secondary and tertiary interactions could be followed on the basis of the temperature dependent accessibility of the individual nucleotides or bases towards the various probes. The three-dimensional model of the tRNA-like domain (Dumas et al., J. Biomol. Struct. and Dyn. 4, 707 (1987] was supported by the results to a large extent. The interactions occurring between the T- and D-loop appear to be more complex than proposed in the latter model. Additional evidence for the presence of the RNA pseudoknot (Rietveld et al., Nucleic Acids Res. 10, 1929 (1982] was derived from the fact that the three coaxially stacked helical segments in the aminoacylacceptor arm displayed different melting transitions under certain experimental conditions. Aspects of melting behaviour and thermal stability of double helical regions within the tRNA-like structure are discussed, as well as the applicability of nucleases and modifying reagents at various temperatures in the analysis of RNA structure. 相似文献
10.
ABSTRACT: BACKGROUND: Next generation sequencing platforms are now well implanted in sequencing centres and some laboratories. Upcoming smaller scale machines such as the 454 junior from Roche or the MiSeq from Illumina will increase the number of laboratories hosting a sequencer. In such a context, it is important to provide these teams with an easily manageable environment to store and process the produced reads. RESULTS: We describe a user-friendly information system able to manage large sets of sequencing data. It includes, on one hand, a workflow environment already containing pipelines adapted to different input formats (sff, fasta, fastq and qseq), different sequencers (Roche 454, Illumina HiSeq) and various analyses (quality control, assembly, alignment, diversity studies,...) and, on the other hand, a secured web site giving access to the results. The connected user will be able to download raw and processed data and browse through the analysis result statistics. The provided workflows can easily be modified or extended and new ones can be added. Ergatis is used as a workflow building, running and monitoring system. The analyses can be run locally or in a cluster environment using Sun Grid Engine. CONCLUSIONS: NG6 is a complete information system designed to answer the needs of a sequencing platform. It provides a user-friendly interface to process, store and download high-throughput sequencing data. 相似文献
11.
Chaturaka Rodrigo Fabio Luciani 《Biochimica et Biophysica Acta (BBA)/General Subjects》2019,1863(2):511-519
Background
Next generation sequencing (NGS) methods have significantly contributed to a paradigm shift in genomic research for nearly a decade now. These methods have been useful in studying the dynamic interactions between RNA viruses and human hosts.Scope of the review
In this review, we summarise and discuss key applications of NGS in studying the host – pathogen interactions in RNA viral infections of humans with examples.Major conclusions
Use of NGS to study globally relevant RNA viral infections have revolutionized our understanding of the within host and between host evolution of these viruses. These methods have also been useful in clinical decision-making and in guiding biomedical research on vaccine design.General significance
NGS has been instrumental in viral genomic studies in resolving within-host viral genomic variants and the distribution of nucleotide polymorphisms along the full-length of viral genomes in a high throughput, cost effective manner. In the future, novel advances such as long read, single molecule sequencing of viral genomes and simultaneous sequencing of host and pathogens may become the standard of practice in research and clinical settings. This will also bring on new challenges in big data analysis. 相似文献12.
Background
Next generation sequencing (NGS) technologies that parallelize the sequencing process and produce thousands to millions, or even hundreds of millions of sequences in a single sequencing run, have revolutionized genomic and genetic research. Because of the vagaries of any platform’s sequencing chemistry, the experimental processing, machine failure, and so on, the quality of sequencing reads is never perfect, and often declines as the read is extended. These errors invariably affect downstream analysis/application and should therefore be identified early on to mitigate any unforeseen effects.Results
Here we present a novel FastQ Quality Control Software (FaQCs) that can rapidly process large volumes of data, and which improves upon previous solutions to monitor the quality and remove poor quality data from sequencing runs. Both the speed of processing and the memory footprint of storing all required information have been optimized via algorithmic and parallel processing solutions. The trimmed output compared side-by-side with the original data is part of the automated PDF output. We show how this tool can help data analysis by providing a few examples, including an increased percentage of reads recruited to references, improved single nucleotide polymorphism identification as well as de novo sequence assembly metrics.Conclusion
FaQCs combines several features of currently available applications into a single, user-friendly process, and includes additional unique capabilities such as filtering the PhiX control sequences, conversion of FASTQ formats, and multi-threading. The original data and trimmed summaries are reported within a variety of graphics and reports, providing a simple way to do data quality control and assurance.Electronic supplementary material
The online version of this article (doi:10.1186/s12859-014-0366-2) contains supplementary material, which is available to authorized users. 相似文献13.
14.
Martin Mück-H?usl Manish Solanki Wenli Zhang Zsolt Ruzsics Anja Ehrhardt 《Nucleic acids research》2015,43(8):e50
Recombinant adenoviruses containing a double-stranded DNA genome of 26–45 kb were broadly explored in basic virology, for vaccination purposes, for treatment of tumors based on oncolytic virotherapy, or simply as a tool for efficient gene transfer. However, the majority of recombinant adenoviral vectors (AdVs) is based on a small fraction of adenovirus types and their genetic modification. Recombineering techniques provide powerful tools for arbitrary engineering of recombinant DNA. Here, we adopted a seamless recombineering technology for high-throughput and arbitrary genetic engineering of recombinant adenoviral DNA molecules. Our cloning platform which also includes a novel recombination pipeline is based on bacterial artificial chromosomes (BACs). It enables generation of novel recombinant adenoviruses from different sources and switching between commonly used early generation AdVs and the last generation high-capacity AdVs lacking all viral coding sequences making them attractive candidates for clinical use. In combination with a novel recombination pipeline allowing cloning of AdVs containing large and complex transgenes and the possibility to generate arbitrary chimeric capsid-modified adenoviruses, these techniques allow generation of tailored AdVs with distinct features. Our technologies will pave the way toward broader applications of AdVs in molecular medicine including gene therapy and vaccination studies. 相似文献
15.
ProteinSeq: high-performance proteomic analyses by proximity ligation and next generation sequencing
Darmanis S Nong RY Vänelid J Siegbahn A Ericsson O Fredriksson S Bäcklin C Gut M Heath S Gut IG Wallentin L Gustafsson MG Kamali-Moghaddam M Landegren U 《PloS one》2011,6(9):e25583
Despite intense interest, methods that provide enhanced sensitivity and specificity in parallel measurements of candidate protein biomarkers in numerous samples have been lacking. We present herein a multiplex proximity ligation assay with readout via realtime PCR or DNA sequencing (ProteinSeq). We demonstrate improved sensitivity over conventional sandwich assays for simultaneous analysis of sets of 35 proteins in 5 μl of blood plasma. Importantly, we observe a minimal tendency to increased background with multiplexing, compared to a sandwich assay, suggesting that higher levels of multiplexing are possible. We used ProteinSeq to analyze proteins in plasma samples from cardiovascular disease (CVD) patient cohorts and matched controls. Three proteins, namely P-selectin, Cystatin-B and Kallikrein-6, were identified as putative diagnostic biomarkers for CVD. The latter two have not been previously reported in the literature and their potential roles must be validated in larger patient cohorts. We conclude that ProteinSeq is promising for screening large numbers of proteins and samples while the technology can provide a much-needed platform for validation of diagnostic markers in biobank samples and in clinical use. 相似文献
16.
17.
18.
The secondary structure and sequence optimization of an RNA ligase ribozyme. 总被引:3,自引:0,他引:3
下载免费PDF全文

In vitro selection can generate functional sequence variants of an RNA structural motif that are useful for comparative analysis. The technique is particularly valuable in cases where natural variation is unavailable or non-existent. We report the extension of this approach to a new extreme--the identification of a 112 nt ribozyme secondary structure imbedded within a 186 nt RNA. A pool of 10(14) variants of an RNA ligase ribozyme was generated using combinatorial chemical synthesis coupled with combinatorial enzymatic ligation such that 172 of the 186 relevant positions were partially mutagenized. Active variants of this pool were enriched using an in vitro selection scheme that retains the sequence variability at positions very close to the ligation junction. Ligases isolated after four rounds of selection catalyzed self-ligation up to 700 times faster than the starting sequence. Comparative analysis of the isolates indicated that when complexed with substrate RNAs the ligase forms a nested, double pseudo-knot secondary structure with seven stems and several important joining segments. Comparative analysis also suggested the identity of mutations that account for the increased activity of the selected ligase variants; designed constructs incorporating combinations of these changes were more active than any of the individual ligase isolates. 相似文献
19.
Harrison RJ 《Seminars in cell & developmental biology》2012,23(2):230-236
Next generation sequencing (NGS) technology has had a transformatory effect upon population-level studies linking genetic variation to gene function. In this review, I briefly describe recent studies that have used top-down genome scanning and population genetic approaches to identify loci under recent selection, as well as some examples of how large NGS datasets can be deployed to detect the total level of deleterious, neutral and advantageous variation present in standing genetic variation. I then explore studies that have used some of these approaches to study gene function along with advances in sequencing populations under selection, QTL mapping techniques and emerging methodologies utilising targeted capture and NGS. 相似文献