首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Feeding on floral nectar has multiple positive effects on parasitic wasps, including increased longevity and fecundity, and in addition, nectar feeding can also alter parasitoid behaviour. To advance understanding of the effects of nectar feeding on Diaeretiella rapae (McIntosh) [Hymenoptera: Braconidae], the activities of 1‐day‐old female D. rapae with or without a prior buckwheat (Fagopyrum esculentum) nectar meal were quantified. Nectar increased searching time of D. rapae by a factor of 40 compared with individuals provided with water only and reduced the time spent stationary. The number of attacks to aphids by nectar‐fed parasitoids was not significantly (P = 0.06) higher than that of unfed D. rapae, suggesting that the conditions of the experiment facilitated host finding by ‘quiet’ parasitoids. Nevertheless, nectar feeding modified the behaviour of D. rapae in a way that parasitoids were more explorative and less inactive. This represents one additional mechanism through which nectar feeding impacts parasitoid biology and suggests that a synergy between increased host searching, increased longevity and increased fecundity should lead to an enhancement of biocontrol when D. rapae females have access to nectar in the field.  相似文献   

2.
秦秋菊  李莎  毛达  李娜  李梦杰  刘顺 《生态学报》2016,36(7):1890-1897
植物花外蜜的分泌是一种植物间接防御反应。为了明确植食性昆虫、机械伤和机械伤诱导的挥发性气体在植物花外蜜诱导分泌中的作用,分析了咀嚼式口器昆虫棉铃虫Helicoverpa armigera(Hübner)、刺吸式口器昆虫棉蚜Aphis gossypii Glover取食、剪刀机械伤、剪刀机械伤+棉铃虫反吐物、针刺机械伤以及机械伤诱导挥发物、顺式-茉莉酮对棉花Gossypium hirsutum L.叶片花外蜜分泌量的影响。结果表明,棉铃虫取食、剪刀机械伤、剪刀机械伤+棉铃虫反吐物处理均显著增加了被处理叶片花外蜜的分泌量。棉花花外蜜的诱导效应在处理叶片上表现明显,并且在较幼嫩的第3片真叶上也有系统性增长。顺式-茉莉酮和机械伤挥发物处理1 d对棉花较幼嫩的第4、5片真叶花外蜜有诱导效应。棉花叶片花外蜜的诱导主要与植物组织损伤有关;不同口器类型的昆虫对棉花叶片花外蜜的诱导量不同,咀嚼式口器的棉铃虫对棉花花外蜜的诱导强度显著高于刺吸式口器的棉蚜;顺式-茉莉酮和机械伤诱导的挥发物能作为棉花植株间交流的信息物质诱导棉花幼嫩叶片花外蜜的分泌。  相似文献   

3.
Insect parasitoids and herbivores must balance the risk of egg limitation and time limitation in order to maximize reproductive success. Egg and time limitation are mediated by oviposition and egg maturation rates as well as by starvation risk and other determinants of adult lifespan. Here, we assessed egg load and nutritional state in the soybean aphid parasitoid Binodoxys communis under field conditions to estimate its risk of becoming either egg‐ or time‐limited. The majority of female B. communis showed no signs of egg limitation. Experimental field manipulations of B. communis females suggested that an average of 4–8 eggs were matured per hour over the course of a day. Regardless, egg loads remained constant over the course of the day at approximately 80 eggs, suggesting that egg maturation compensates for oviposition. This is the first case of such “egg load buffering” documented for a parasitoid in the field. Despite this buffering, egg loads dropped slightly with increasing host (aphid) density. This suggests that egg limitation could occur at very high host densities as experienced in outbreak years in some locations in the Midwestern USA. Biochemical analyses of sugar profiles showed that parasitoids fed upon sugar in the field at a remarkably high rate. Time limitation through starvation thus seems to be very low and aphid honeydew is most likely a source of dietary sugar for these parasitoids. This latter supposition is supported by the fact that body sugar levels increase with host (aphid) density. Together, these results suggest that fecundity of B. communis benefits from both dynamic egg maturation strategies and sugar‐feeding.  相似文献   

4.
Resources added to agroecosystems to enhance biological control are potentially available to multiple members of the resident insect community—not only the biological control agents for which the resources are intended. Many studies have examined the effects of sugar feeding on the efficacy of biological control agents. However, such information is lacking for other, interacting species such as facultative hyperparasitoids, which may contribute to pest suppression but can also interfere with introduced biological control agents. Under greenhouse conditions, we tested the direct effects of sugar and nectar provisioning on the longevity, host‐killing impact and offspring production of two pupal parasitoids associated with leek moth, Acrolepiopsis assectella: the introduced biological control agent, Diadromus pulchellus, and the native facultative hyperparasitoid, Conura albifrons. Adding sucrose, buckwheat or a combination of buckwheat and common vetch to a sugar‐deprived system (potted leek plants in cages) increased parasitoid longevity and resulted in higher leek moth parasitism and mortality compared to water or common vetch treatments. However, the two parasitoid species exhibited a distinct temporal response to the treatments, likely influenced by differences in their life histories. This study provides insight into how integrating conservation biological control techniques could affect the success of a classical biological control programme.  相似文献   

5.
Host shifts by specialist insects can lead to reproductive isolation between insect populations that use different hosts, promoting diversification. When both a phytophagous insect and its ancestrally associated parasitoid shift to the same novel host plant, they may cospeciate. However, because adult parasitoids are free living, they can also colonize novel host insects and diversify independent of their ancestral host insect. Although shifts of parasitoids to new insect hosts have been documented in ecological time, the long‐term importance of such shifts to parasitoid diversity has not been evaluated. We used a genus of flies with a history of speciation via host shifting (Rhagoletis [Diptera: Tephritidae]) and three associated hymenopteran parasitoid genera (Diachasma, Coptera and Utetes) to examine cophylogenetic relationships between parasitoids and their host insects. We inferred phylogenies of Rhagoletis, Diachasma, Coptera and Utetes and used distance‐based cophylogenetic methods (ParaFit and PACo) to assess congruence between fly and parasitoid trees. We used an event‐based method with a free‐living parasitoid cost model to reconstruct cophylogenetic histories of each parasitoid genus and Rhagoletis. We found that the current species diversity and host–parasitoid associations between the Rhagoletis flies and parasitoids are the primary result of ancient cospeciation events. Parasitoid shifts to ancestrally unrelated hosts primarily occur near the branch tips, suggesting that host shifts contribute to recent parasitoid species diversity but that these lineages may not persist over longer time periods. Our analyses also stress the importance of biologically informed cost models when investigating the coevolutionary histories of hosts and free‐living parasitoids.  相似文献   

6.
Trophic interactions and environmental conditions determine the structure of food webs and the host expansion of parasitoids into novel insect hosts. In this study, we investigate plant–insect–parasitoid food web interactions, specifically the effect of trophic resources and environmental factors on the presence of the parasitoids expanding their host range after the invasion of Chrysodeixis chalcites (Esper) (Lepidoptera: Noctuidae). We also consider potential candidates for biological control of this non‐native pest. A survey of larval stages of Plusiinae (Lepidoptera: Noctuidae) and their larval parasitoids was conducted in field and vegetable greenhouse crops in 2009 and 2010 in various locations of Essex and Chatham‐Kent counties in Ontario, Canada. Twenty‐one plant–host insect–host parasitoid associations were observed among Trichoplusia ni (Hübner) (Lepidoptera: Noctuidae), C. chalcites, and larval parasitoids in three trophic levels of interaction. Chrysodeixis chalcites, an old‐world species that had just arrived in the region, was the most common in our samples. The larval parasitoids Campoletis sonorensis (Cameron) (Hymenoptera: Ichneumonidae), Cotesia vanessae (Reinhard), Cotesia sp., Microplitis alaskensis (Ashmead), and Meteorus rubens (Nees) (all Hymenoptera: Braconidae) expanded their host range into C. chalcites changing the structure of the food web. Copidosoma floridanum (Ashmead) (Hymenoptera: Encyrtidae) was the most common parasitoid of T. ni that was not found in the invasive species. Plant species, host abundance, and agro‐ecosystem were the most common predictors for the presence of the parasitoids expanding their host range into C. chalcites. Our results indicate that C. sonorensis, C. vanessae, and C. floridanum should be evaluated for their potential use in biological control of C. chalcites and T. ni.  相似文献   

7.
Reabsorption is a phase of nectar dynamics that occurs concurrently with secretion; it has been described in floral nectaries that exude nectar through stomata or unicellular trichomes, but has not yet been recorded in extrafloral glands. Apparently, nectar reabsorption does not occur in multicellular secretory trichomes (MST) due to the presence of lipophilic impregnations – which resemble Casparian strips – in the anticlinal walls of the stalk cells. It has been assumed that these impregnations restrict solute movement within MST to occur unidirectionally and exclusively by the symplast, thereby preventing nectar reflux toward the underlying nectary tissues. We hypothesised that reabsorption is absent in nectaries possessing MST. The fluorochrome lucifer yellow (LYCH) was applied to standing nectar of two floral and extrafloral glands of distantly related species, and then emission spectra from nectary sections were systematically analysed using confocal microscopy. Passive uptake of LYCH via the stalk cells to the nectary tissues occurred in all MST examined. Moreover, we present evidence of nectar reabsorption in extrafloral nectaries, demonstrating that LYCH passed the stalk cells of MST, although it did not reach the deepest nectary tissues. Identical (control) experiments performed with neutral red (NR) demonstrated no uptake of this stain by actively secreting MST, whereas diffusion of NR did occur in plasmolysed MST of floral nectaries at the post‐secretory phase, indicating that nectar reabsorption by MST is governed by stalk cell physiology. Interestingly, non‐secretory trichomes failed to reabsorb nectar. The role of various nectary components is discussed in relation to the control of nectar reabsorption by secretory trichomes.  相似文献   

8.
Extrafloral nectaries are a defence trait that plays important roles in plant–animal interactions. Gossypium species are characterized by cellular grooves in leaf midribs that secret large amounts of nectar. Here, with a panel of 215 G. arboreum accessions, we compared extrafloral nectaries to nectariless accessions to identify a region of Chr12 that showed strong differentiation and overlapped with signals from GWAS of nectaries. Fine mapping of an F2 population identified GaNEC1, encoding a PB1 domain‐containing protein, as a positive regulator of nectary formation. An InDel, encoding a five amino acid deletion, together with a nonsynonymous substitution, was predicted to cause 3D structural changes in GaNEC1 protein that could confer the nectariless phenotype. mRNA‐Seq analysis showed that JA‐related genes are up‐regulated and cell wall‐related genes are down‐regulated in the nectary. Silencing of GaNEC1 led to a smaller size of foliar nectary phenotype. Metabolomics analysis identified more than 400 metabolites in nectar, including expected saccharides and amino acids. The identification of GaNEC1 helps establish the network regulating nectary formation and nectar secretion, and has implications for understanding the production of secondary metabolites in nectar. Our results will deepen our understanding of plant–mutualism co‐evolution and interactions, and will enable utilization of a plant defence trait in cotton breeding efforts.  相似文献   

9.
Many laboratory studies have demonstrated that parasitoids of various species depend on sugar sources such as nectar or honeydew. However, studies about nectar acquisition by parasitoids foraging in the field are scarce. Tersilochus heterocerus Thomson is one of the more abundant and widespread parasitoids of the pollen beetle (Meligethes aeneus F.) but nothing is known about the nutritional ecology of this species. In this study we examined the nutritional state of T. heterocerus at the time of emergence and at various time periods throughout the season while foraging in the field using high-performance anion-exchange chromatography. We found that: (i) T. heterocerus emerge with relatively small amounts of sugar, composed mainly of trehalose, glucose and fructose; (ii) the first parasitoids caught just after they appeared in the field at the beginning of oilseed rape flowering had already consumed significant amounts of sugar reserves; and (iii) the total amount of sugar at the end of flowering was always significantly higher than the total amount of sugar at the beginning of flowering. This study provides valuable insights into the acquisition of sugar in the field by the parasitoid T. heterocerus and suggests that nectar acquisition takes place in the oilseed rape field or in the surrounding landscape.  相似文献   

10.
Even for parasitoids with a wide host range, not all host species are equally suitable, and host quality often depends on the plant the host feeds on. We compared oviposition choice and offspring performance of a generalist pupal parasitoid, Pteromalus apum (Retzius) (Hymenoptera: Pteromalidae), on two congeneric hosts reared on two plant species under field and laboratory conditions. The plants contain defensive iridoid glycosides that are sequestered by the hosts. Sequestration at the pupal stage differed little between host species and, although the concentrations of iridoid glycosides in the two plant species differ, there was no effect of diet on the sequestration by host pupae. The rate of successful parasitism differed between host species, depending on the conditions they were presented in. In the field, where plant‐associated cues are present, the parasitoid used Melitaea cinxia (L.) over Melitaea athalia (Rottemburg) (Lepidoptera: Nymphalidae), whereas more M. athalia were parasitised in simplified laboratory conditions. In the field, brood size, which is partially determined by rate of superparasitism, depended on both host and plant species. There was little variation in other aspects of offspring performance related to host or plant species, indicating that the two host plants are of equal quality for the hosts, and the hosts are of equal quality for the parasitoids. Corresponding to this, we found no evidence for associative learning by the parasitoid based on their natal host, so with respect to these host species they are truly generalist in their foraging behaviour.  相似文献   

11.
The invasion of Halyomorpha halys (Stål) (Hemiptera: Pentatomidae) has caused severe economic damage in crops in North America and Europe, motivating research to identify its natural enemies, both in native and invaded areas. In its Asian native range, the main natural enemies are egg parasitoids, among which the most effective are Trissolcus japonicus (Ashmead) and Trissolcus mitsukurii (Ashmead) (Hymenoptera: Scelionidae) in China and Japan, respectively. In Europe, biology, host range, and impact of most native scelionid species are not well‐known. The present study aimed to investigate (1) presence and abundance of scelionid species that parasitize native Pentatomidae and Scutelleridae eggs in Northwest Italy, and (2) their ability to develop on H. halys eggs. During 4‐year field surveys, egg masses were collected and reared until bug nymph or adult parasitoid emergence. Then, the obtained scelionid females were tested for their ability to parasitize H. halys eggs in laboratory no‐choice experiments. Egg masses of all collected bug species were parasitized, and Telenomus spp. (Hymenoptera: Scelionidae), Trissolcus belenus (Walker), and Anastatus bifasciatus (Geoffroy) (Hymenoptera: Eupelmidae) were the most common parasitoids. In the laboratory, Trissolcus kozlovi Rjachovskij was the only species to significantly produce offspring from fresh H. halys eggs, whereas all tested Trissolcus species significantly induced host egg abortion (non‐reproductive effects). This study provides knowledge of the parasitoid species associated with native bugs, and represents a starting point to investigate the intricate interactions between native and exotic parasitoids recently found in northern Italy. These egg parasitoids could potentially be effective biocontrol agents of H. halys.  相似文献   

12.
Labelling parasitoids with trace elements is a potentially powerful technique for studying dispersal and trophic interactions in these usually small insects. Laboratory experiments were conducted to investigate the feasibility and efficiency of different methods for trace element labelling of the hymenopteran parasitoid Cotesia glomerata. We concentrated on Sr as a marker and in some relevant aspects also compared its labelling efficiency to that of Rb, which is the trace element commonly used to label insects. Laboratory-reared wasps had a mean background level of 0.43±0.26 (SD) g g–1 for strontium (Sr) and 0.51±0.25 (SD) g g–1 for rubidium (Rb), which was much lower than that for seven other common trace elements (i.e. B, Mg, Al, Ca, Fe, Cu, and Zn). Cotesia glomerata could be effectively labelled with Sr by: (1) feeding adults on sucrose solution spiked with Sr; (2) rearing larvae from Pieris brassicae fed the cabbage plant (Brassica oleracea) soil-drenched with aqueous Sr; or (3) feeding adults on extrafloral nectar from a plant (Vicia faba) soil-drenched with aqueous Sr. Although Sr content in labelled wasps varied with the concentration and the method applied, it did not decline significantly with age. Labelled wasps could be unequivocally distinguished from unlabelled counterparts even 16 days after they were denied access to the Sr-enriched food sources. Labelling with Sr did not seem to have any negative effect on the parasitoid fitness. Thus, Sr is an ideal internal marker to label C. glomerata and other hymenopteran parasitoids for investigations of bi- and tri-trophic interactions.  相似文献   

13.
The Neotropical‐native figitid Aganaspis pelleranoi (Brèthes) and the Asian braconid Diachasmimorpha longicaudata (Ashmead) are two parasitoids of Tephritidae fruit flies with long and recent, respectively, evolutionary histories in the Neotropics. Both species experienced a recent range of overlap. In Argentina, A. pelleranoi is a potential species in biological control programs against the pestiferous tephritid species, Anastrepha fraterculus (Wiedemann) and Ceratitis capitata (Wiedemann), whereas D. longicaudata is already used in open‐field releases against Medfly in central‐western Argentina. To characterize the host‐foraging strategies of A. pelleranoi and D. longicaudata, olfactometer experiments were conducted comparing responses to C. capitata and A. fraterculus larvae, in two kinds of food substrate: fruit and artificial larval medium. To control the possible influence of host larvae used for parasitoid rearing on olfactory response, two strains of both parasitoid species, reared on both tephrtid species, were studied. Volatiles directly emanating either from A. fraterculus or C. capitata larvae may be detected by both A. pelleranoi and D. longicaudata, although chemical stimuli originating from the combination of host larvae and the habitat of the host were preferred. However, olfactory cues associated with host larvae probably play a relevant role in host searching behaviour of A. pelleranoi, whereas for D. longicaudata, the host‐habitat olfactory stimuli would be highly essential in short‐range host location. The strain of the parasitoids did not affect host search ability on the two tephritid species evaluated. These evidences are relevant for mass production of both parasitoids and their impact following open‐field augmentative releases.  相似文献   

14.
The diatom genera Licmophora and Fragilaria are frequent epiphytes on marine macroalgae and can be infected by intracellular parasitoids traditionally assigned to the oomycete genus Ectrogella. Much debate and uncertainty remains about the taxonomy of these oomycetes, not least due to their morphological and developmental plasticity. Here, we used single‐cell techniques to obtain partial sequences of the parasitoids 18S and cox2 genes. The former falls into two recently identified clades of Pseudo‐nitzschia parasites temporarily named OOM_1_2 and OOM_2, closely related to the genera of brown and red algal pathogens Anisolpidium and Olpidiopsis. A third group of sequences falls at the base of the red algal parasites assigned to Olpidiopsis. In one instance, two oomycete parasitoids seemed to co‐exist in a single diatom cell; this co‐occurrence of distinct parasitoid taxa not only within a population of diatom epiphytes, but also within the same host cell, possibly explains the ongoing confusion in the taxonomy of these parasitoids. We demonstrate the polyphyly of Licmophora parasitoids previously assigned to Ectrogella (sensu Sparrow, 1960) and show that parasites of red algae assigned to the genus Olpidiopsis are most likely not monophyletic. We conclude that combining single‐cell microscopy and molecular methods is necessary for their full characterisation.  相似文献   

15.
In the adult stage, many parasitoids require hosts for their offspring growth and plant-derived food for their survival and metabolic needs. In agricultural fields, nectar provisioning can enhance biological control by increasing the longevity and fecundity of many species of parasitoids. Provided in a host patch, nectar can also increase patch quality for parasitoids and affect their foraging decisions, patch time residence, patch preference or offspring allocation. The aim of this study was to investigate the impact of extrafloral nectar (EFN) provisioning close to hosts on parasitoid aggregation in patches. The aphid parasitoid Diaeretiella rapae (M’Intosh) was released inside or outside patches containing Brassica napus L. infested by Brevicoryne brassicae L. aphids and Vicia faba L. with or without EFN. When parasitoids were released outside patches, more parasitoids were observed in patches with EFN than in patches deprived of EFN. This higher recruitment could be linked to a higher attraction of a combination of host and food stimuli or a learning process. A release–recapture experiment of labeled parasitoids released within patches showed the higher retention of parasitoids in patches providing EFN and hosts, suggesting that food close to the host patch affects patch residence time. Both attractiveness and patch retention could be involved in the higher number of parasitoids foraging in host patches surrounded by nectar and for the higher parasitism recorded. Nectar provisioning in host patches also affected female offspring allocation inside the patch.  相似文献   

16.
The olive fruit fly, Bactrocera oleae (Tephritidae), is a direct pest of olives that has invaded the Mediterranean Region and California. Psyttalia lounsburyi (Braconidae), a larval parasitoid from Africa, has been approved for release in the USA as a classical biological agent. However, it has been difficult to rear the parasitoid in the laboratory because it is multivoltine, and the host develops only in fresh olives, which are not available for most of the year. A method to rear the parasitoid on the factitious host, Mediterranean fruit fly (Ceratitis capitata) was developed, but it was not very efficient for producing large numbers of parasitoids needed for release. We developed a number of ways to improve the efficiency of rearing, including the frequency and duration of exposure for oviposition, optimizing the density of adult parasitoids, host age, as well as methods to quickly standardize the number of larvae exposed and to count emerging adult parasitoids. We significantly improved the number of progeny produced per female and the sex ratio of progeny. Thanks to these improvements, we produced in 2017 over 119,000 adults and shipped over 53,900 for release in California.  相似文献   

17.
Observed changes in mean temperature and increased frequency of extreme climate events have already impacted the distributions and phenologies of various organisms, including insects. Although some research has examined how parasitoids will respond to colder temperatures or experimental warming, we know relatively little about how increased variation in temperature and humidity could affect interactions between parasitoids and their hosts. Using a study system consisting of emerald ash borer (EAB), Agrilus planipennis, and its egg parasitoid Oobius agrili, we conducted environmentally controlled laboratory experiments to investigate how increased seasonal climate variation affected the synchrony of host–parasitoid interactions. We hypothesized that increased climate variation would lead to decreases in host and parasitoid survival, host fecundity, and percent parasitism (independent of host density), while also influencing percent diapause in parasitoids. EAB was reared in environmental chambers under four climate variation treatments (standard deviations in temperature of 1.24, 3.00, 3.60, and 4.79°C), while Oagrili experiments were conducted in the same environmental chambers using a 4 × 3 design (four climate variation treatments × 3 EAB egg densities). We found that EAB fecundity was negatively associated with temperature variation and that temperature variation altered the temporal egg laying distribution of EAB. Additionally, even moderate increases in temperature variation affected parasitoid emergence times, while decreasing percent parasitism and survival. Furthermore, percent diapause in parasitoids was positively associated with humidity variation. Our findings indicate that relatively small changes in the frequency and severity of extreme climate events have the potential to phenologically isolate emerging parasitoids from host eggs, which in the absence of alternative hosts could lead to localized extinctions. More broadly, these results indicate how climate change could affect various life history parameters in insects, and have implications for consumer–resource stability and biological control.  相似文献   

18.
The role of natural enemy diversity in biological pest control has been debated in many studies, and understanding how interactions amongst predators and parasitoids affect herbivore populations is crucial for pest management. In this study, we assessed the individual and combined use of two species of natural enemies, the parasitoid Aphidius ervi Haliday, and the predatory brown lacewing Micromus variegatus (Fabricius), on their shared prey, the foxglove aphid, Aulacorthum solani (Kaltenbach), on sweet pepper. We hypothesized that the presence of intraguild predation (IGP) and predator facilitation (through induced aphid dropping behaviour) might have both negative and positive effects on aphid control, respectively. Our greenhouse trial showed that overall, the greatest suppression of aphids occurred in the treatment with both the parasitoid and the lacewing. While the combination of lacewings and parasitoids significantly increased aphid control compared to the use of parasitoids alone, the effect was not significantly different to the treatment with only predators, although there was a clear trend of enhanced suppression. Thus, the combined effects of both species of natural enemies were between additive and non‐additive, suggesting that the combination is neither positive nor negative for aphid control. High levels of IGP, as proven in the laboratory, were probably compensated for by the strong aphid suppression provided by the lacewings, whether or not supplemented with some level of predator facilitation. For aphid management over a longer time scale, it might still be useful to combine lacewings and parasitoids to ensure stable and resilient aphid control.  相似文献   

19.
  • 1 Parasitoids may often lack access to sugar (e.g. floral nectar) in agricultural settings. Strategically timed spraying of host plants with sugar solution may provide one means of enhancing parasitism at the same time as minimizing nontarget effects (e.g. benefiting the pest itself).
  • 2 Sucrose was sprayed in wheat fields of northern Utah (U.S.A.) to assess the effects on parasitism of the cereal leaf beetle Oulema melanopus by the larval parasitoid Tetrastichus julis.
  • 3 Early‐season sugar provisioning, when larvae of the pest were first hatching and parasitoid adults were newly emerged, did not affect the numbers of cereal leaf beetle larvae that matured in treated plots but increased parasitism rates of beetle larvae by four‐fold in 2006 and by seven‐fold in 2007.
  • 4 No net influx of adult parasitoids into plots was detected after the application of sugar. Locally‐emerging parasitoids may have spent less time searching for their own food needs versus hosts. A laboratory experiment also confirmed that access to sucrose significantly increased parasitoid longevity.
  • 5 The field experimental results obtained demonstrate that applications of sugar, implemented to target a key time of the growing season when benefits are maximized for parasitoids and minimized for their hosts, can strongly promote parasitism of the cereal leaf beetle in wheat fields.
  相似文献   

20.
Abstract 1. The use of flowering vegetation has been widely advocated as a strategy for providing parasitoids and predators with nectar and pollen. However, their herbivorous hosts and prey may exploit floral food sources as well. 2. Previous laboratory studies have shown that not all flower species are equally suitable in providing accessible nectar. Relatively little is known about actual nectar exploitation under field conditions. 3. The present study investigates nectar exploitation by the pest, Plutella xylostella, and its parasitoid, Diadegma semiclausum, under field conditions and examines whether floral nectar exploitation in the field can be predicted based on controlled laboratory studies. 4. Insects were collected from fields bordered by flowering margins containing Fagopyrum esculentum, Lobularia maritima, Anethum graveolens, Centaurea jacea or the grass Lolium perenne (control). Whole insect bodies were individually assayed by HPLC to establish their sugar profile as a measure of the level of energy reserves and the degree of food source use. 5. The average overall sugar content of P. xylostella and D. semiclausum collected in fields bordered by flowering margins was significantly higher than those of individuals collected from grass‐bordered control plots. To the authors’ knowledge, this represents the first demonstration that nectar‐providing plants enhance the energetic state of herbivores under field conditions. 6. In contrast to earlier laboratory studies, the present study did not find elevated sugar contents in P. xylostella and D. semiclausum individuals collected from fields bordered by buckwheat (F. esculentum). 7. The present study shows widespread sugar feeding by both the herbivore and its parasitoid. It also shows that laboratory studies establishing nectar exploitation under controlled conditions can not always be extrapolated to actual exploitation under field conditions. This emphasises the importance of studying field‐collected insects with regard to food source use and nutritional status.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号