首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Microbial biofilms are a serious threat to human health. Recent studies have indicated that many clinically relevant biofilms are polymicrobial. In the present study, multispecies biofilms were grown in a reproducible manner in a 96-well microtiter plate. The efficacy of nine commercially available disinfectants against Staphylococcus aureus, Candida albicans, and Pseudomonas aeruginosa in multispecies biofilms was determined and compared. The results showed that the direction and the magnitude of the effect in a multispecies biofilm depend on the strain and the disinfectant used and challenge the common belief that organisms in multispecies biofilms are always less susceptible than in monospecies biofilms.  相似文献   

4.
Surfactant proteins (SP), originally known from human lung surfactant, are essential to proper respiratory function in that they lower the surface tension of the alveoli. They are also important components of the innate immune system. The functional significance of these proteins is currently reflected by a very large and growing number of publications. The objective goal of this study was to elucidate whether Staphylococcus aureus and Pseudomonas aeruginosa is able to express surfactant proteins. 10 different strains of S. aureus and P. aeruginosa were analyzed by means of RT-PCR, Western blot analysis, ELISA, immunofluorescence microscopy and immunoelectron microscopy. The unexpected and surprising finding revealed in this study is that different strains of S. aureus and P. aeruginosa express and secrete proteins that react with currently commercially available antibodies to known human surfactant proteins. Our results strongly suggest that the bacteria are either able to express ‘human-like’ surfactant proteins on their own or that commercially available primers and antibodies to human surfactant proteins detect identical bacterial proteins and genes. The results may reflect the existence of a new group of bacterial surfactant proteins and DNA currently lacking in the relevant sequence and structure databases. At any rate, our knowledge of human surfactant proteins obtained from immunological and molecular biological studies may have been falsified by the presence of bacterial proteins and DNA and therefore requires critical reassessment.  相似文献   

5.
6.
7.
The occurrence of Pseudomonas aeruginosa and coagulase-positive Staphylococcus aureus in seawater from beaches of central Israel was investigated from June 1983 until June 1985. P. aeruginosa was monitored in 652 samples of seawater from 34 beaches, and S. aureus was monitored in 628 samples. P. aeruginosa was found in 44.8% of samples (6.5% with 1 bacterium per 100 ml of water), and S. aureus was recovered from 60.7% of samples (5.3% with 1 organism per 100 ml), compared with 91.6% of samples with total coliforms (TC) and 82.2% with fecal coliforms (FC). The correlation between the presence of P. aeruginosa to that of TC and FC was 99.1 and 98.3%, respectively, while S. aureus was found in 4.3 and 8% of samples where TC and FC, respectively, were absent. Monitoring of S. aureus as a supplementary indicator in populated beaches is recommended because it will add valuable information on the sanitary quality of the seawater.  相似文献   

8.
Two distinctive colony morphologies were noted in a collection of Pseudomonas aeruginosa transposon insertion mutants. One set of mutants formed wrinkled colonies of autoaggregating cells. Suppressor analysis of a subset of these mutants showed that this was due to the action of the regulator WspR and linked this regulator (and the chemosensory pathway to which it belongs) to genes that encode a putative fimbrial adhesin required for biofilm formation. WspR homologs, related in part by a shared GGDEF domain, regulate cell surface factors, including aggregative fimbriae and exopolysaccharides, in diverse bacteria. The second set of distinctive insertion mutants formed colonies that lysed at their center. Strains with the most pronounced lysis overproduced the Pseudomonas quinolone signal (PQS), an extracellular signal that interacts with quorum sensing. Autolysis was suppressed by mutation of genes required for PQS biosynthesis, and in one suppressed mutant, autolysis was restored by addition of synthetic PQS. The mechanism of autolysis may involve activation of the endogenous prophage and phage-related pyocins in the genome of strain PAO1. The fact that PQS levels correlated with autolysis suggests a fine balance in natural populations of P. aeruginosa between survival of the many and persistence of the few.  相似文献   

9.
10.
Biofilm infections may not simply be the result of colonization by one bacterium, but rather the consequence of pathogenic contributions from several bacteria. Interspecies interactions of different organisms in mixed-species biofilms remain largely unexplained, but knowledge of these is very important for understanding of biofilm physiology and the treatment of biofilm-related infectious diseases. Here, we have investigated interactions of two of the major bacterial species of cystic fibrosis lung microbial communities -Pseudomonas aeruginosa and Staphylococcus aureus- when grown in co-culture biofilms. By growing co-culture biofilms of S. aureus with P. aeruginosa mutants in a flow-chamber system and observing them using confocal laser scanning microscopy, we show that wild-type P. aeruginosa PAO1 facilitates S. aureus microcolony formation. In contrast, P. aeruginosa mucA and rpoN mutants do not facilitate S. aureus microcolony formation and tend to outcompete S. aureus in co-culture biofilms. Further investigations reveal that extracellular DNA (eDNA) plays an important role in S. aureus microcolony formation and that P. aeruginosa type IV pili are required for this process, probably through their ability to bind to eDNA. Furthermore, P. aeruginosa is able to protect S. aureus against Dictyostelium discoideum phagocytosis in co-culture biofilms.  相似文献   

11.
12.
Surgical wounds and implant-associated Staphylococcus aureus and Pseudomonas aeruginosa infections are often difficult to treat because of limited susceptibility of several of these strains to conventional antibiotics. As a result, there is a constant need for new alternative drugs. The aim of this study was to investigate the antimicrobial properties of Lactobacillus fermentum, a probiotic bacterium, which we have isolated from colonic biopsies. The inhibition of S. aureus and P. aeruginosa growth was evaluated by coincubating with L. fermentum strains. Growth inhibition was tested for several of their clinical isolates using agar well diffusion assays. For biofilm assay S. aureus and P. aeruginosa were grown on the glass slides and in 96-well plates in presence of 2.5 μg/ml culture filtrate of L. fermentum. Biofilms were photographed using confocal microscope or stained with 0.1% crystal violet. Reduction in the cytotoxicity of S. aureus and P. aeruginosa was observed in presence of 2.5 μg/ml L. fermentum-spent media. Using in vitroexperiments, we showed that L. fermentum-secreted compound(s) inhibits the growth, cytotoxicity and biofilm formation of several S. aureus and P. aeruginosa strains. Compound(s) present in the culture supernatant of L. fermentum may have promising applications in treating hospital-acquired infections.  相似文献   

13.
The fields of mycology and bacteriology have traditionally functioned independently of each other despite the fundamental actuality that fungi and bacteria not only co-exist but also interact within several niches. In the clinical context, these interactions commonly occur within biofilms, which can be composed of single-species communities or mixed-species populations and recent studies have shown that the properties of mixed-species populations differ from those of their individual components. The interacting bacteria and fungi can exert effects on microbial behavior, dissemination, survival, the response to antimicrobials and, ultimately, patient prognosis. Microbes within biofilms exhibit increased resistance to antimicrobial agents, and a significant amount of research has thus focused on gaining an understanding of how inter-domain interactions affect biofilm formation and the response to antimicrobial therapies. Candida albicans, a commensal and opportunistic pathogen of humans, is among the fungi most frequently identified in mixed-species biofilms. Here, we review interactions between C. albicans and bacterial species with which it is commonly isolated, namely Pseudomonas aeruginosa and Staphylococcus aureus in order to look into the spectrum of biologically relevant fungal–bacterial interactions that have been described.  相似文献   

14.
The occurrence of Pseudomonas aeruginosa and coagulase-positive Staphylococcus aureus in seawater from beaches of central Israel was investigated from June 1983 until June 1985. P. aeruginosa was monitored in 652 samples of seawater from 34 beaches, and S. aureus was monitored in 628 samples. P. aeruginosa was found in 44.8% of samples (6.5% with 1 bacterium per 100 ml of water), and S. aureus was recovered from 60.7% of samples (5.3% with 1 organism per 100 ml), compared with 91.6% of samples with total coliforms (TC) and 82.2% with fecal coliforms (FC). The correlation between the presence of P. aeruginosa to that of TC and FC was 99.1 and 98.3%, respectively, while S. aureus was found in 4.3 and 8% of samples where TC and FC, respectively, were absent. Monitoring of S. aureus as a supplementary indicator in populated beaches is recommended because it will add valuable information on the sanitary quality of the seawater.  相似文献   

15.
16.
17.
18.
Staphylococcus aureus and Pseudomonas aeruginosa are rapidly increasing as multidrug resistant strains worldwide. In nosocomial settings because of heavy exposure of different antimicrobials, resistance in these pathogens turned into a grave issue in both developed and developing countries. The aim of this study was to investigate in vitro antibiotic synergism of combinations of β-lactam–β-lactam and β-lactam–aminoglycoside against clinical isolates of S. aureus and P. aeruginosa. Synergy was determined by checkerboard double dilution method. The combination of amoxicillin and cefadroxil was found to be synergistic against 47 S. aureus isolates, in the FICI range of 0.14–0.50 (81.03%) followed by the combination of streptomycin and cefadroxil synergistic against 44 S. aureus isolates in the FICI range of 0.03–0.50 (75.86%). The combination of streptomycin and cefadroxil was observed to be synergistic against 39 P. aeruginosa isolates in the FICI range of 0.16–0.50 (81.28%). Further actions are needed to characterize the possible interaction mechanism between these antibiotics. Moreover, the combination of streptomycin and cefadroxil may lead to the development of a new and vital antimicrobial against simultaneous infections of S. aureus and P. aeruginosa.  相似文献   

19.
Motivated by recent advances in the physical and chemical basis of the Hofmeister effect, we measured the rate cell growth of S. aureus--a halophilic pathogenic bacterium--and of P. aeruginosa, an opportunistic pathogen, in the presence of different aqueous salt solutions at different concentrations (0.2, 0.6 and 0.9 M). Microorganism growth rates depend strongly on the kind of anion in the growth medium. In the case of S. aureus, chloride provides a favorable growth medium, while both kosmotropes (water structure makers) and chaotropes (water structure breakers) reduce the microorganism growth. In the case of P. aeruginosa, all ions affect adversely the bacterial survival. In both cases, the trends parallel the specific ion, or Hofmeister, sequences observed in a wide range of physico-chemical systems. The correspondence with specific ion effect obtained in other studies, on the activities of a DNA restriction enzyme, of horseradish peroxidase, and of Lipase A (Aspergillus niger) is particularly striking. This work provides compelling evidence for Hofmeister effects, physical chemistry in action, in these organisms.  相似文献   

20.
Previously it has been demonstrated that Staphylococcus aureus is sensitive toward Pseudomonas-secreted exotoxins, which preferentially target the electron transport chain in staphylococci. Here it is shown that a subpopulation of S. aureus survives these respiratory toxins of Pseudomonas aeruginosa by selection of the small-colony variant (SCV) phenotype. Purified pyocyanin alone causes the same effect. A hemB mutant of S. aureus survives cocultivation with P. aeruginosa without a decrease in CFU.Pseudomonas aeruginosa and Staphylococcus aureus are opportunistic pathogens and frequently coinfect the lungs of patients with cystic fibrosis (CF). P. aeruginosa excretes an arsenal of small respiratory inhibitors, like pyocyanin (5), hydrogen cyanide (2), or quinoline N-oxides (9), that may act against the commensal microbiota as well as host cells. Previously it has been demonstrated that S. aureus is sensitive toward the toxic products generated by P. aeruginosa and that these exotoxins preferentially target the electron transport chain (17).Staphylococcal species can be divided into two groups: the sensitive group, comprising pathogenic species such as S. aureus and S. epidermidis, and the resistant group, represented by nonpathogenic species such as S. carnosus, S. piscifermentans, and S. gallinarum. The resistance in the latter group was due to cydAB genes, which encode a pyocyanin- and cyanide-resistant cytochrome bd quinol oxidase (17). It has also been shown that the resistant or sensitive phenotype is determined by the CydB subunit, which is part of the cytochrome bd quinol oxidase of S. aureus. Despite its sensitivity to these exotoxins, S. aureus has frequently been coisolated with P. aeruginosa from the skin, eyes, and catheter infections and from the lungs of patients with CF. The aim of this study is to elucidate the escape mechanism of S. aureus by cocultivating S. aureus and P. aeruginosa. The findings indicate that a subpopulation of the staphylococcal community can survive in the presence of P. aeruginosa by the selection of small-colony variants (SCVs), which usually are defective in the electron transport chain. SCVs grow as tiny, nonpigmented colonies and are auxotrophic to hemin, menadione, or thymidine (14). Here we show that both a culture supernatant of P. aeruginosa and purified pyocyanin select for the SCV phenotype in S. aureus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号