共查询到20条相似文献,搜索用时 0 毫秒
1.
Sex allocation theories provide excellent opportunities to investigate not only the extent to which individuals' behaviour is adaptive, but also how they use relevant information for their decision-making. Here, we investigated whether female parasitoid wasps recognize the sex ratios of other females and adjust their laying sex ratios accordingly. Specifically, we tested the prediction of reciprocal cooperation over sex allocation. Theory predicts more female-biased (cooperative) sex ratios than in the interest of individual benefit, when a restricted number of ovipositing females interact for a long period and their offspring mate within the natal patch. This is because the female-biased sex ratio reduces competition for mates among the male offspring of the females and increases the overall reproductive productivity of the patch. In this case, females would be expected to respond to more even (noncooperative) sex ratios by others and to retaliate by also producing a less female-biased sex ratio to avoid exploitation by defectors. However, contrary to this prediction, our experiment using a sterile male technique showed that female Melittobia australica did not change their offspring sex ratios in response to the sex ratios produced by other females. This suggests that their extremely female-biased sex ratios cannot be explained by reciprocity. A meta-analysis of studies examining sex recognition ability in parasitoid wasps also did not support the predicted pattern of relevant sex ratio adjustment, suggesting that parasitoid females do not possess this ability. Here, we discuss the conditions necessary for the evolution of reciprocity linked to recognition ability. 相似文献
2.
Jun Tagawa 《Entomologia Experimentalis et Applicata》2000,97(2):193-202
The ability of the gregarious larval endoparasitoid Cotesia glomerata L. (Hymenoptera: Braconidae) to adjust progeny sex ratio and clutch size was investigated. The sex ratios (proportion of males) of field clusters were diverse, but many (70%) were female-biased. Nearly 10% yielded males only, suggesting a low percentage of unmated females in the field. In over half of the clusters containing females, the sex ratio was below 0.3. Superparasitism was common in the field, and females were believed to increase progeny sex ratio when attacking previously-parasitized hosts. However, in a single oviposition bout, sex allocation was not precisely controlled both in the field and laboratory. In the laboratory, the number of eggs laid in a day tended to decrease with increasing female age. For females which were offered two hosts per day and for those offered three hosts per day, this value became nearly the same several days after the start of oviposition. The total number of hosts which a female could parasitize during her lifetime was often less than 40. Some of the old females which attacked more than 40 hosts produced male-biased clutches; this was due to sperm depletion, because sperm remained viable throughout a female's lifetime. The amount of sperm used in a single oviposition bout seemed fixed and was not dependent on the number of eggs laid. Females with much oviposition experience did not produce new eggs to compensate for deposited eggs, and the efficiency of egg use (deposited eggs/total eggs) was more than 80%. 相似文献
3.
Abstract.
- 1 We tested the hypothesis that biased sex ratios in the aphidiid parasitoid, Aphidius ervi, are the result of sex-specific mortality of immatures due to hyperparasitism. The solitary hyperparasitoid, Dendrocerus carpenteri, deposits its eggs on the prepupa or pupa of the primary parasitoid after its pea-aphid host is mummified.
- 2 In dichotomous choice tests, females of D.carpenteri accepted immatures of both sexes of A.ervi with equal frequency. Independent of the sex of the primary parasitoid, the probability of a mummified pea aphid being hyperparasitized did not differ between large (adult at the time of death) and small (fourth nymphal instar) mummies.
- 3 As predicted by‘host quality’models of offspring sex allocation, D.carpenteri produced a higher proportion of female than male offspring in large mummies. These laboratory results were supported by field data.
- 4 Because hyperparasitism by D.carpenteri is random with regard to host sex, it should have no influence on optimal sex allocation by the primary parasitoid.
4.
Stephanie Chhan Douglass H. Morse 《Ethology : formerly Zeitschrift fur Tierpsychologie》2019,125(7):457-464
Mated females of haplodiploid species can vary the sex ratio of their offspring, but virgin or sperm‐depleted females can produce only males. Depending on the costs and benefits, the theory of constrained sex allocation states that female haplodiploids may vary in their propensity to mate, with important implications for the populations’ sex ratio. Unmated female parasitoid wasps Alabagrus texanus (Braconidae) have been observed to reject matings with males, even under highly confined spatial conditions. We performed field trials to determine whether unmated female A. texanus would mate. We then compared the preferences of the resulting unmated (constrained) and mated (unconstrained) female wasps for shelters constructed and occupied by their hosts, fern moth caterpillars Herpetogramma theseusalis (Crambidae) on fern fronds. We presented the wasps with pairs of shelters collected from the field that differed in size, as well as freshness, fern species, and presence or absence of caterpillars. Unconstrained females searched small shelters more frequently than did constrained females and tended to favor senesced (old) shelters over fresher ones. They did not differ in choice between shelters on marsh and sensitive ferns or between shelters containing caterpillars and empty shelters. The preference for small shelters by the unconstrained wasps may enhance their rate of contacting favorable hosts, but the foraging regime of the constrained females should expose them to caterpillars at sites infrequently searched by the unconstrained females. 相似文献
5.
拟寄生昆虫中的过寄生现象 总被引:2,自引:0,他引:2
对拟寄生昆虫同种过寄生现象做了综述。拟寄生昆虫的认识能力和寄生经历、其与寄主数量的相对比例、寄主的大小及两次被寄生的时间间隔等是导致过寄生是否出现的主要因素。过寄生常导致拟寄生昆虫发育历期延长、存活率下降、个体变小、子代雌性比降低。试验研究和大量饲养中应采取措施避免过寄生。 相似文献
6.
Henter HJ 《Journal of evolutionary biology》2004,17(4):886-896
The theory of constrained sex allocation posits that when a fraction of females in a haplodiploid population go unmated and thus produce only male offspring, mated females will evolve to lay a female-biased sex ratio. I examined evidence for constrained sex ratio evolution in the parasitic hymenopteran Uscana semifumipennis. Mated females in the laboratory produced more female-biased sex ratios than the sex ratio of adults hatching from field-collected eggs, consistent with constrained sex allocation theory. However, the male with whom a female mated affected her offspring sex ratio, even when sperm was successfully transferred, suggesting that constrained sex ratios can occur even in populations where all females succeed in mating. A positive relationship between sex ratio and fecundity indicates that females may become sperm-limited. Variation among males occurred even at low fecundity, however, suggesting that other factors may also be involved. Further, a quantitative genetic experiment found significant additive genetic variance in the population for the sex ratio of offspring produced by females. This has only rarely been demonstrated in a natural population of parasitoids, but is a necessary condition for sex ratio evolution. Finally, matings with larger males produced more female-biased offspring sex-ratios, suggesting positive selection on male size. Because the great majority of parasitic hymenoptera are monandrous, the finding of natural variation among males in their capacity to fertilize offspring, even after mating successfully, suggests that females may often be constrained in the sex allocation by inadequate number or quality of sperm transferred. 相似文献
7.
Bethia King 《Journal of evolutionary biology》1992,5(3):445-455
Sex ratio patterns in the parasitoid wasp Nasonia vitripennis are frequently cited in support of a major group of evolutionary sex ratio models referred to as local mate competition (LMC) models. It has been shown repeatedly that, as predicted by LMC models, females generally oviposit a greater proportion of sons in previously parasitized hosts than in unparasitized hosts. However, this sex ratio pattern is also a prediction of another group of sex ratio models, the host quality models. Here I test a prediction of LMC models that is not also a prediction of host quality models: a female should produce a greater proportion of sons when she parasitizes a host previously parasitized by a conspecific female than when she parasitizes a host previously parasitized by herself. Females made this predicted distinction between self- and conspecifically-parasitized hosts under some conditions. There was no evidence that a female recognizes a self-parasitized host when her exposure to the host is interrupted by exposure to an unparasitized host, or that a female can distinguish between hosts parasitized by sisters versus nonsisters. 相似文献
8.
B. K. GRILLENBERGER L. VAN DE ZANDE R. BIJLSMA J. GADAU L. W. BEUKEBOOM 《Journal of evolutionary biology》2009,22(3):460-470
Parasitoid Nasonia wasps adjust their progeny sex ratio to the presence of conspecifics to optimize their fitness. Another trait under female control is the induction of offspring diapause. We analysed progeny sex ratios and the proportion of diapausing offspring of individual Nasonia females in host patches parasitized by two species, Nasonia vitripennis and Nasonia giraulti, in North American field populations using microsatellite fingerprinting. Both Nasonia species produced similar sex ratios on hosts that were co‐parasitized by their own species as by the other species, indicating that females do not distinguish between con‐ and heterospecific clutches. The sex ratios of the diapause and adult fractions of mixed broods from single females were not correlated. We found further indications that N. vitripennis females take the emergence time of the offspring into account in their sex allocation. The reproductive strategies of Nasonia under multiparasitism are largely adaptive, but also partially constrained by information. 相似文献
9.
In an apple orchard at Armidale, the Northern Tablelands of NSW, population sex ratios ofAphelinus mali (Haldeman), an endoparasitoid of the woolly apple aphid,Eriosoma lanigerum (Hausmann) varied from 0.51 (proportion of males) at low host densities to female-biased at high host densities (proportion of males ranged from 0.35–0.39). This shift in sex ratio seems to be caused by the differences in allocation of sons and daughters to hosts of different sizes. In the fieldA. mali parasitizes all life stages (four nymphal instars and adult) of the woolly aphid upon encountering. According to Hughes'(1979) optimal diet model, such general host acceptance seems to be the best strategy. However, it allows the host nymphs or adults to continue to develop or reproduce until about to mummify (pupate). No mortality was observed when first or second-instar hosts were parasitized in the laboratory. Field collected small mummified hosts yielded male-biased sex ratios whereas large mummified hosts produced mainly females. In the laboratory, progeny from smaller hosts (first to third-instars) produced sex ratios which were not significantly different from 0.5 whereas progeny from larger hosts (third and fourth-instars) produced female-biased sex ratio. During winter (June–August) and early spring (September–October) when the host populations in the orchard were predominantly nymphs, the parasitoid tended to allocate equal resources to male and female offspring. In contrast, at peak population densities in summer and autumn (December–May) when larger hosts were available, the sex ratios were female-biased. The host size ofE. lanigerum andA. mali is, therefore, an important component in the dynamics of host-parasitoid interactions. 相似文献
10.
Abstract. 1. In haplodiploid organisms, virgin or sperm-depleted females can reproduce but are constrained to produce only male progeny. According to Godfray's constrained model, when p , the proportion of females constrained to produce only male progeny, is not null in a panmictic population, unconstrained females should bias their sex allocation towards females to compensate for the excess of males. These unconstrained females should be able to adjust the sex ratio in response to local variation of p .
2. In this paper an experimental approach is used to test the hypotheses of this model in the solitary endoparasitoid Venturia canescens under both field and laboratory conditions. Specifically, it is tested whether unconstrained females use their encounters with conspecifics (either male or female) to estimate p and then adjust their sex ratio accordingly.
3. As assumed by Godfray's model, constrained females actively search for host patches in the field and under laboratory conditions produce the same number of offspring during their lifetime as unconstrained females. As predicted by the model, unconstrained females produce a sex ratio biased towards females both in the laboratory and in the field.
4. The results show that this bias is not a response to encounters with conspecifics previous to oviposition. The hypothesis that the bias is due to differential mortality between sexes during ontogeny is also rejected. The proportions of constrained ovipositions estimated in two natural populations explain only a small fraction of the sex ratio bias observed in V. canescens. 相似文献
2. In this paper an experimental approach is used to test the hypotheses of this model in the solitary endoparasitoid Venturia canescens under both field and laboratory conditions. Specifically, it is tested whether unconstrained females use their encounters with conspecifics (either male or female) to estimate p and then adjust their sex ratio accordingly.
3. As assumed by Godfray's model, constrained females actively search for host patches in the field and under laboratory conditions produce the same number of offspring during their lifetime as unconstrained females. As predicted by the model, unconstrained females produce a sex ratio biased towards females both in the laboratory and in the field.
4. The results show that this bias is not a response to encounters with conspecifics previous to oviposition. The hypothesis that the bias is due to differential mortality between sexes during ontogeny is also rejected. The proportions of constrained ovipositions estimated in two natural populations explain only a small fraction of the sex ratio bias observed in V. canescens. 相似文献
11.
Many species of parasitoid wasps produce a greater proportionof sons in small than in large hosts. As described by the host-sizemodel, natural selection is becoming a standard explanationfor the evolution of this phenomenon. We examined a criticalassumption of the host-size model, that host size has a morepositive effect on female than on male reproductive success.In laboratory experiments with the parasitoid wasp Spalangiacameroni, females that developed on larger hosts contained moreeggs at emergence. However, more eggs did not translate intomore offspring, at high or low density and regardless of whethera female had to burrow to reach hosts. The size of host on whicha female developed was also unrelated to her longevity, regardlessof the presence or absence of hosts. The size of host on whicha male developed had no effect on his sperm production or abilityto inseminate females, regardless of whether insemination abilitywas measured by the amount of sperm transferred to a female,by the proportion of a male's mates that produced any daughters,or by the proportion of daughters that a male's mates produced.Thus, despite data on multiple measures of fitness under a rangeof conditions, sex ratio manipulation in response to host sizein S. cameroni does not appear to be adaptive, and another explanationis needed. 相似文献
12.
According to theory, in species in which male variance in reproductive success exceeds that of the females, sons are more costly to produce; females mated with high quality males or those in better condition should produce more sons. In monogamous species, however, the variance in the reproductive success of the two sexes is often similar and mate choice is often mutual, making predictions regarding sex allocation more difficult. In the rock sparrow Petronia petronia, both males and females have a sexually selected yellow patch on the breast, whose size correlates with individual body condition. We investigated whether the brood sex ratio co‐varies with the size of the yellow patch of the father and the mother in a sample of 173 broods (818 chicks) over 8 breeding seasons. While the size of the yellow patch of the mother and the father did not predict per se a deviation from the expected 1:1 sex ratio, brood sex ratios were predicted by the interaction of male and female yellow patch size. This result is surprising, as the ornament is sexually selected by both males and females as an indicator of quality in both sexes and should therefore be inherited by all offspring irrespective of their sex. It indirectly suggests that other sex‐specific traits associated with patch size (e.g. polygyny in males and fecundity in females) may explain the sex allocation bias observed in rock sparrows. Thus, female individual quality alone, as expressed through the size of the yellow patch, was not associated with the biases in sex ratios reported in this study. Our results rather suggest that sex allocation occurs in response to male attractiveness in interaction with female attractiveness. In other words, females tend to preferentially allocate towards the sex of the parent with more developed ornament within the pair. 相似文献
13.
Sex ratios under asymmetrical local mate competition in the parasitoid wasp Nasonia vitripennis 总被引:1,自引:0,他引:1
Sex ratio theory has proved remarkably useful in testing theadaptive nature of animal behavior. A particularly productivearea in this respect is Hamilton's theory of local mate competition(LMC), which has been extended in numerous directions to includegreater biological realism, allowing more detailed tests inspecific organisms. We have presented one such extension, termedasymmetrical LMC, which occurs when egg laying by females ona patch is asynchronous, and emerging males do not disperse,resulting in the extent of LMC on a patch varying over time.Our aim here is to test whether the parasitoid wasp Nasoniavitripennis responds to variation in the degree of asymmetricalLMC. Specifically, we show that females adjust their offspringsex ratios in response to (1) variation in the amount of asynchronyin emergence between broods on a patch and (2) the number andproportion of previously parasitized hosts on the patch. Ourresults provide qualitative support for the predictions of theory,suggesting new levels of complexity in the sex ratio behaviorof this much-studied organism. However, our results do not alwaysprovide quantitative support for theory, suggesting furthercomplexities that must be clarified. 相似文献
14.
J. Antonio Baeza 《Invertebrate Biology》2010,129(3):266-276
Abstract. The sexual system of the semi-terrestrial shrimp Merguia rhizophorae is described, along with natural history observations on this unusual caridean. Individuals of M. rhizophorae in the Bocas del Toro Archipelago, Panama, were found occupying fossilized coral terraces in the upper and mid-intertidal zones, inhabiting caves and crevices, in and out of water. These fossilized coral terraces represent a new habitat for this species, which was previously reported only from mangrove swamps. Males, which made up 65% of the studied population, were smaller than females on average. No small juvenile females were observed, but transitional individuals having the characteristics of both males (gonopores) and females (ovaries) were observed in the population. These data suggest that individuals of M. rhizophorae are protandric hermaphrodites. Logistic regression indicated that the carapace length at which 50% of the individuals change sex is 4.89 mm. The abundance of shrimps at the study site was low. Shrimps were usually solitary, but occasionally observed in groups of ≤5 individuals. Shrimps were commonly observed walking while out of water, and in some cases, emerged shrimps jumped vigorously, presumably to avoid capture by the researcher or by predatory crabs. Additional studies on the reproductive biology and the behavioral ecology of members of this genus and of members of the closely related families Barbouridae and Lysmatidae will aid in understanding the evolutionary origin and the adaptive value of gender expression patterns in shrimps. 相似文献
15.
M. R. Strand 《Journal of Insect Behavior》1989,2(3):355-369
Oviposition behavior was used to determine the primary clutch size and sex ratio of the polyembryonic wasp Copidosoma floridanumAshmead (Hymenoptera: Encyrtidae) parasitizing Pseudoplusia includens(Walker) (Lepidoptera: Noctuidae). The laying of a female egg was associated with a pause in abdominal contractions during oviposition, while the laying of a male egg was associated with uninterrupted abdominal contractions. Although unmated females produced only male broods, they also displayed male and female egg oviposition movements. Wasps always laid a primary clutch of one or two eggs. For mated females if only one egg was laid, the emerging secondary clutch was all male or female, but if two eggs were laid a mixed brood of males and females was almost always produced. The secondary clutch of single sex broods was usually between 1000 and 1200 individuals, but the secondary clutch of mixed broods averaged 1143 females and 49 males. Thus, the primary sex ratio for mixed broods was 0.5 (frequency males), but the secondary sex ratio was 0.042. Manipulation of the sequence of male and female egg oviposition or of the primary clutch did not produce major alterations in the secondary clutch size or sex ratio. 相似文献
16.
X. Fauvergue K. R. Hopper M. F. Antolin D. J. Kazmer 《Journal of evolutionary biology》1998,11(5):611-622
In haplodiploid organisms, unmated or sperm depleted females are “constrained” to produce only male progeny. If such constrained females reproduce, the population sex ratio will shift toward males and unconstrained females will be selected to produce more females. Assuming that a female's own time spent constrained is an index of the population-wide level of constrained oviposition, and that constrained and unconstrained females reproduce at the same rate, the proportion of sons that females produce when unconstrained should decrease with increasing time spent constrained. Alternatively, if females cannot measure time spent constrained or if time spent constrained is not an index to the level of constrained oviposition in the population, the proportion of sons among progeny produced when unconstrained should not depend upon time spent constrained and should be female biased to an extent depending upon the average time spent constrained over evolutionary time. To test these predictions, we manipulated the amount of time spent virgin in the parasitoid wasp Aphelinus asychis Walker (Hymenoptera: Aphelinidae) and measured the number of males and females among progeny produced before and after mating. First, we found no interaction between age and age at mating in their effect on fecundity, which suggests that mating does not change fecundity. Second, we found that females mated at 8 days and 15 days produced equal sex ratios after mating but these were slightly more female biased than the sex ratios of females mated at 1 day. This observed “step response” suggests that females may perceive time from emergence to mating as a discrete rather than a continuous variable (i.e., short versus long), or that females do not perceive time per se but assess their age class (i.e., young versus old) at the time of mating. 相似文献
17.
Kristen J. Navara 《Biology letters》2009,5(4):524-527
Skews in the human sex ratio at birth have captivated scientists for over a century. The accepted average human natal sex ratio is slightly male biased, at 106 males per 100 females or 51.5 per cent males. Studies conducted on a localized scale show that sex ratios deviate from this average in response to a staggering number of social, economical and physiological variables. However, these patterns often prove inconsistent when expanded to other human populations, perhaps because the nature of the influences themselves exhibit substantial cultural variation. Here, data collected from 202 countries over a decade show that latitude is a primary factor influencing the ratio of males and females produced at birth; countries at tropical latitudes produced significantly fewer boys (51.1% males) annually than those at temperate and subarctic latitudes (51.3%). This pattern remained strong despite enormous continental variation in lifestyle and socio-economic status, suggesting that latitudinal variables may act as overarching cues on which sex ratio variation in humans is based. 相似文献
18.
19.
Alex R. Kraaijeveld Irma C.T. Adriaanse Bert van den Bergh 《Entomologia Experimentalis et Applicata》1999,92(3):289-294
Parasitoid females are known to preferentially allocate female eggs to hosts with the higher resource value, usually leading to oviposition of female eggs in larger hosts and male eggs in smaller hosts. For koinobiont parasitoids, if male and female hosts are of equal size at time of oviposition, but differ in size in later developmental stages, the sex of the host could be used to indicate future resource value. Using parasitoids of the braconid genus Asobara, which are larval parasitoids of Drosophila, it is shown that parasitoids emerging from female hosts are larger than those from male hosts. Given this difference in resource value, ovipositing females should preferentially allocate female eggs to female hosts. An alternative strategy would be to decrease the difference in resource value between male and female hosts by castrating male hosts. The primary sex ratio of A. tabida in their two main host species does not differ between male and female hosts. In contrast to A. tabida, A. citri is known to partially castrate male hosts, but this does not decrease the size difference between male and female hosts. As in A. tabida, there is no difference in sex allocation to male and female hosts in A. citri. Despite the clear difference between the resource value of male and female hosts, these parasitoid species do not seem to make optimal use of this difference. They may not be able to discriminate between host sexes or, alternatively, there is a presently unknown fitness disadvantage to ovipositing in female hosts. 相似文献
20.
1. The reproductive fitness of a parasitoid depends on its mating and ovipositing success. Virgin haplodiploid females can reproduce, but produce only males, and may diminish fitness by producing more male offspring than required. Therefore, females must decide on whether to mate or oviposit first. 2. This study was conducted to assess the mating versus ovipositing decision and its impact on the reproductive fitness of Diaeretiella rapae (Hymenoptera: Aphididae), an endoparasitoid of the cabbage aphid Brevicoryne brassicae (Hemiptera: Aphididae). 3. When newly emerged females were given a choice between mating and ovipositing, about 62% of D. rapae females preferred to mate before ovipositing. Those females who oviposited before mating parasitised only 10% of the available aphids. After mating, females superparasitised their hosts with fertilised eggs, which resulted in a highly female‐biased sex ratio in the offspring. 4. Mating success was very high (91%) in the presence of hosts (cabbage aphid nymphs) compared with that in the absence of aphids. However, mating success was not influenced by the quality (size) of the hosts present in the mating arena, despite a parasitoid preference for larger hosts during oviposition. The time between pairing and mating was also shorter in the presence of host aphids. The mean number of aphids parasitised and the parasitism rate were significantly greater after mating. 相似文献