首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
Fatty acid synthase (FAS) is a multifunctional homodimeric protein, and is the key enzyme required for the anabolic conversion of dietary carbohydrates to fatty acids. FAS synthesizes long-chain fatty acids from three substrates: acetyl-CoA as a primer, malonyl-CoA as a 2 carbon donor, and NADPH for reduction. The entire reaction is composed of numerous sequential steps, each catalyzed by a specific functional domain of the enzyme. FAS comprises seven different functional domains, among which the β-ketoacyl synthase (KS) domain carries out the key condensation reaction to elongate the length of fatty acid chain. Acyl tail length controlled fatty acid synthesis in eukaryotes is a classic example of how a chain building multienzyme works. Different hypotheses have been put forward to explain how those sub-units of FAS are orchestrated to produce fatty acids with proper molecular weight. In the present study, molecular dynamic simulation based binding free energy calculation and access tunnels analysis showed that the C16 acyl tail fatty acid, the major product of FAS, fits to the active site on KS domain better than any other substrates. These simulations supported a new hypothesis about the mechanism of fatty acid production ratio: the geometric shape of active site on KS domain might play a determinate role.  相似文献   

2.
De novo fatty acid biosynthesis in humans is accomplished by a multidomain protein, the Type I fatty acid synthase (FAS). Although ubiquitously expressed in all tissues, fatty acid synthesis is not essential in normal healthy cells due to sufficient supply with fatty acids by the diet. However, FAS is overexpressed in cancer cells and correlates with tumor malignancy, which makes FAS an attractive selective therapeutic target in tumorigenesis. Herein, we present a crystal structure of the condensing part of murine FAS, highly homologous to human FAS, with octanoyl moieties covalently bound to the transferase (MAT—malonyl‐/acetyltransferase) and the condensation (KS—β‐ketoacyl synthase) domain. The MAT domain binds the octanoyl moiety in a novel (unique) conformation, which reflects the pronounced conformational dynamics of the substrate‐binding site responsible for the MAT substrate promiscuity. In contrast, the KS binding pocket just subtly adapts to the octanoyl moiety upon substrate binding. Besides the rigid domain structure, we found a positive cooperative effect in the substrate binding of the KS domain by a comprehensive enzyme kinetic study. These structural and mechanistic findings contribute significantly to our understanding of the mode of action of FAS and may guide future rational inhibitor designs.  相似文献   

3.
Human microsomal cytochrome P450 (CYP) 2E1 is widely known for its ability to oxidize >70 different, mostly compact, low molecular weight drugs and other xenobiotic compounds. In addition CYP2E1 oxidizes much larger C9–C20 fatty acids that can serve as endogenous signaling molecules. Previously structures of CYP2E1 with small molecules revealed a small, compact CYP2E1 active site, which would be insufficient to accommodate medium and long chain fatty acids without conformational changes in the protein. In the current work we have determined how CYP2E1 can accommodate a series of fatty acid analogs by cocrystallizing CYP2E1 with ω-imidazolyl-octanoic fatty acid, ω-imidazolyl-decanoic fatty acid, and ω-imidazolyl-dodecanoic fatty acid. In each structure direct coordination of the imidazole nitrogen to the heme iron mimics the position required for native fatty acid substrates to yield the ω-1 hydroxylated metabolites that predominate experimentally. In each case rotation of a single Phe298 side chain merges the active site with an adjacent void, significantly altering the active site size and topology to accommodate fatty acids. The binding of these fatty acid ligands is directly opposite the channel to the protein surface and the binding observed for fatty acids in the bacterial cytochrome P450 BM3 (CYP102A1) from Bacillus megaterium. Instead of the BM3-like binding mode in the CYP2E1 channel, these structures reveal interactions between the fatty acid carboxylates and several residues in the F, G, and B′ helices at successive distances from the active site.  相似文献   

4.
5.
Thioethers are the main flavor compounds found in Liliaceae Allium vegetables and have been shown to have beneficial effects against several diseases correlated with metabolic syndrome. The inhibitory effects of six thioethers on fatty acid synthase (FAS) were investigated. Dose-dependent and time-dependent inhibitions of FAS by one trisulfide and two disulfides were revealed. Diallyl trisulfide (DATS, IC50 = 8.37 μM) was the most active of these thioethers. Inhibition kinetics, substrate protection analysis, and stoichiometric assay revealed that DATS interacted with both essential sulfhydryl groups on the acyl-carrier protein and β-ketoacyl synthase domain of FAS to inactivate the enzyme. The inactivation by DATS represented affinity-labeling kinetics. The active thioethers also inhibited the differentiation and lipid accumulation of 3T3-L1 preadipocytes, and the effect was related to their inhibition of FAS. It is suggested that the inhibition on FAS by thioethers and Allium vegetables is an important factor for their effects against metabolic syndrome.  相似文献   

6.
The production of hydrocarbons in nature has been documented for only a limited set of organisms, with many of the molecular components underpinning these processes only recently identified. There is an obvious scope for application of these catalysts and engineered variants thereof in the future production of biofuels. Here we present biochemical characterization and crystal structures of a cytochrome P450 fatty acid peroxygenase: the terminal alkene forming OleTJE (CYP152L1) from Jeotgalicoccus sp. 8456. OleTJE is stabilized at high ionic strength, but aggregation and precipitation of OleTJE in low salt buffer can be turned to advantage for purification, because resolubilized OleTJE is fully active and extensively dissociated from lipids. OleTJE binds avidly to a range of long chain fatty acids, and structures of both ligand-free and arachidic acid-bound OleTJE reveal that the P450 active site is preformed for fatty acid binding. OleTJE heme iron has an unusually positive redox potential (−103 mV versus normal hydrogen electrode), which is not significantly affected by substrate binding, despite extensive conversion of the heme iron to a high spin ferric state. Terminal alkenes are produced from a range of saturated fatty acids (C12–C20), and stopped-flow spectroscopy indicates a rapid reaction between peroxide and fatty acid-bound OleTJE (167 s−1 at 200 μm H2O2). Surprisingly, the active site is highly similar in structure to the related P450BSβ, which catalyzes hydroxylation of fatty acids as opposed to decarboxylation. Our data provide new insights into structural and mechanistic properties of a robust P450 with potential industrial applications.  相似文献   

7.
Many intriguing facets of lipoxygenase (LOX) catalysis are open to a detailed structural analysis. Polyunsaturated fatty acids with two to six double bonds are oxygenated precisely on a particular carbon, typically forming a single chiral fatty acid hydroperoxide product. Molecular oxygen is not bound or liganded during catalysis, yet it is directed precisely to one position and one stereo configuration on the reacting fatty acid. The transformations proceed upon exposure of substrate to enzyme in the presence of O2 (RH + O2 → ROOH), so it has proved challenging to capture the precise mode of substrate binding in the LOX active site. Beginning with crystal structures with bound inhibitors or surrogate substrates, and most recently arachidonic acid bound under anaerobic conditions, a picture is consolidating of catalysis in a U‐shaped fatty acid binding channel in which individual LOX enzymes use distinct amino acids to control the head‐to‐tail orientation of the fatty acid and register of the selected pentadiene opposite the non‐heme iron, suitably positioned for the initial stereoselective hydrogen abstraction and subsequent reaction with O2. Drawing on the crystal structures available currently, this review features the roles of the N‐terminal β‐barrel (C2‐like, or PLAT domain) in substrate acquisition and sensitivity to cellular calcium, and the α‐helical catalytic domain in fatty acid binding and reactions with O2 that produce hydroperoxide products with regio and stereospecificity. LOX structures combine to explain how similar enzymes with conserved catalytic machinery differ in product, but not substrate, specificities.  相似文献   

8.
Human alpha-fetoprotein (HAFP) has three binding sites for polyunsaturated fatty acids with association constant Ka = 1.8 X 10(7) M-1. One of these binding sites overlaps with a retinoid binding site with Ka = 2.6 X 10(6)M-1. Competition experiments with bilirubin showed that this compound does not compete neither with fatty acids nor with retinoids. Thus, the two bilirubin binding sites previously demonstrated appear as two additional binding sites on HAFP. Nevertheless, the close proximity of two fatty acid binding sites and two bilirubin binding sites resulted in a modification of the binding constants for fatty acids. It is hypothesised that the binding properties of HAFP reflect the three domain structures of the protein recently deduced from the study of the nucleotide sequence of HAFP mRNA and AFPcDNA segments.  相似文献   

9.
Human fatty acid synthase (FAS) is uniquely expressed at high levels in many tumor types. Pharmacological inhibition of FAS therefore represents an important therapeutic opportunity. The drug Orlistat, which has been approved by the US Food and Drug Administration, inhibits FAS, induces tumor cell-specific apoptosis and inhibits the growth of prostate tumor xenografts. We determined the 2.3-A-resolution crystal structure of the thioesterase domain of FAS inhibited by Orlistat. Orlistat was captured in the active sites of two thioesterase molecules as a stable acyl-enzyme intermediate and as the hydrolyzed product. The details of these interactions reveal the molecular basis for inhibition and suggest a mechanism for acyl-chain length discrimination during the FAS catalytic cycle. Our findings provide a foundation for the development of new cancer drugs that target FAS.  相似文献   

10.
The fatty acid synthase (FAS) of animal tissue is a dimer of two identical subunits, each with a Mr of 260,000. The subunit is a single multifunctional protein having seven catalytic activities and a site for binding of the prosthetic group 4'-phosphopantetheine. The mRNA coding for the subunit has an estimated size of 10-16 kb, which is about twice the number of nucleotides needed to code for the estimated 2300 amino acids. We have isolated a positive clone, lambda CFAS, containing FAS gene sequences by screening a chicken genomic library with a segment of a 3' untranslated region of goose fatty acid synthase cDNA clone, pGFAS3, as a hybridization probe. The DNA insert in lambda CFAS hybridizes with synthetic oligonucleotide probes prepared according to the known amino acid sequence of the thioesterase component of the chicken liver fatty acid synthase [Yang, C.-Y., Huang, W.-Y., Chirala, S., & Wakil, S.J. (1988) Biochemistry (preceding paper in this issue)]. Further characterization of the DNA insert shows that the lambda CFAS clone contains about a 4.7-kbp segment from the 3' end of the chicken FAS gene that codes for a portion of the thioesterase domain. Complete sequence analyses of this segment including S1 nuclease mapping, showed that the lambda CFAS clone contains the entire 3' untranslated region of the chicken FAS gene and three exons that code for 162 amino acids of the thioesterase domain from the COOH-terminal end of the fatty acid synthase. Using the exon region of the genomic clone, we were able to isolate a cDNA clone that codes for the entire thioesterase domain of chicken liver fatty acid synthase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
12.
The inhibitory effect of ursolic acid (UA) on fatty acid synthase (FAS, EC 2.3.1.85) was investigated. We found that UA potently inhibited the activity of FAS with a half-inhibitory concentration value (IC50) of 6.0 μg/ml. The inhibition kinetic results showed that the inhibition of FAS by UA was competitive against acetyl-CoA and malonyl-CoA, but uncompetitive to NADPH. UA at low concentration slowly inactivated FAS, but FAS was fast inactivated by high concentration of UA in a positive cooperative manner. Moreover, NADPH significantly enhanced the inactivation of FAS by low concentration of UA, but NADPH slightly decreased the inactivation of FAS by high concentration of UA. Taken together, the results suggest that ursolic acid decreases the FAS activity through inactivation of acetyl/malonyl transferase. The combination of NADPH and KR domain promotes the inhibitory effect of UA on FAS.  相似文献   

13.
F1-ATPase is the catalytic complex of rotary nanomotor ATP synthases. Bacterial ATP synthases can be autoinhibited by the C-terminal domain of subunit ϵ, which partially inserts into the enzyme''s central rotor cavity to block functional subunit rotation. Using a kinetic, optical assay of F1·ϵ binding and dissociation, we show that formation of the extended, inhibitory conformation of ϵ (ϵX) initiates after ATP hydrolysis at the catalytic dwell step. Prehydrolysis conditions prevent formation of the ϵX state, and post-hydrolysis conditions stabilize it. We also show that ϵ inhibition and ADP inhibition are distinct, competing processes that can follow the catalytic dwell. We show that the N-terminal domain of ϵ is responsible for initial binding to F1 and provides most of the binding energy. Without the C-terminal domain, partial inhibition by the ϵ N-terminal domain is due to enhanced ADP inhibition. The rapid effects of catalytic site ligands on conformational changes of F1-bound ϵ suggest dynamic conformational and rotational mobility in F1 that is paused near the catalytic dwell position.  相似文献   

14.
15.
The human fatty acid synthase (FAS) is a key enzyme in the metabolism of fatty acids and a target for antineoplastic and antiobesity drug development. Due to its size and flexibility, structural studies of mammalian FAS have been limited to individual domains or intermediate-resolution studies of the complete porcine FAS. We describe the high-resolution crystal structure of a large part of human FAS that encompasses the tandem domain of β-ketoacyl synthase (KS) connected by a linker domain to the malonyltransferase (MAT) domain. Hinge regions that allow for substantial flexibility of the subdomains are defined. The KS domain forms the canonical dimer, and its substrate-binding site geometry differs markedly from that of bacterial homologues but is similar to that of the porcine orthologue. The didomain structure reveals a possible way to generate a small and compact KS domain by omitting a large part of the linker and MAT domains, which could greatly aid in rapid screening of KS inhibitors. In the crystal, the MAT domain exhibits two closed conformations that differ significantly by rigid-body plasticity. This flexibility may be important for catalysis and extends the conformational space previously known for type I FAS and 6-deoxyerythronolide B synthase.  相似文献   

16.
Mycolic acids are long chain alpha-alkyl branched, beta-hydroxy fatty acids that represent a characteristic component of the Mycobacterium tuberculosis cell wall. Through their covalent attachment to peptidoglycan via an arabinogalactan polysaccharide, they provide the basis for an essential outer envelope membrane. Mycobacteria possess two fatty acid synthases (FAS); FAS-I carries out de novo synthesis of fatty acids while FAS-II is considered to elongate medium chain length fatty acyl primers to provide long chain (C(56)) precursors of mycolic acids. Here we report the crystal structure of Mycobacterium tuberculosis beta-ketoacyl acyl carrier protein synthase (ACP) II mtKasB, a mycobacterial elongation condensing enzyme involved in FAS-II. This enzyme, along with the M. tuberculosis beta-ketoacyl ACP synthase I mtKasA, catalyzes the Claisen-type condensation reaction responsible for fatty acyl elongation in FAS-II and are potential targets for development of novel anti-tubercular drugs. The crystal structure refined to 2.4 A resolution revealed that, like other KAS-II enzymes, mtKasB adopts a thiolase fold but contains unique structural features in the capping region that may be crucial to its preference for longer fatty acyl chains than its counterparts from other bacteria. Modeling of mtKasA using the mtKasB structure as a template predicts the overall structures to be almost identical, but a larger entrance to the active site tunnel is envisaged that might contribute to the greater sensitivity of mtKasA to the inhibitor thiolactomycin (TLM). Modeling of TLM binding in mtKasB shows that the drug fits the active site poorly and results of enzyme inhibition assays using TLM analogues are wholly consistent with our structural observations. Consequently, the structure described here further highlights the potential of TLM as an anti-tubercular lead compound and will aid further exploration of the TLM scaffold towards the design of novel compounds, which inhibit mycobacterial KAS enzymes more effectively.  相似文献   

17.
Cerulenin, an antifungal antibiotic produced by Cephalosporium caerulens, is a potent inhibitor of fatty acid synthase in various organisms, including Saccharomyces cerevisiae. The antibiotic inhibits the enzyme by binding covalently to the active center cysteine of the condensing enzyme domain. We isolated 12 cerulenin-resistant mutants of S. cerevisiae following treatment with ethyl methanesulfonate. The mechanism of cerulenin resistance in one of the mutants, KNCR-1, was studied. Growth of the mutant was over 20 times more resistant to cerulenin than that of the wild-type strain. Tetrad analysis suggested that all mutants mapped at the same locus, FAS2, the gene encoding the α subunit of the fatty acid synthase. The isolated fatty acid synthase, purified from the mutant KNCR-1, was highly resistant to cerulenin. The cerulenin concentration causing 50% inhibition (IC50) of the enzyme activity was measured to be 400 μM, whereas the IC50 value was 15 μM for the enzyme isolated from the wild-type strain, indicating a 30-fold increase in resistance to cerulenin. The FAS2 gene was cloned from the mutant. Sequence replacement experiments suggested that an 0.8 kb EcoRV-HindIII fragment closely correlated with cerulenin resistance. Sequence analysis of this region revealed that the GGT codon encoding Gly-1257 of the FAS2 gene was altered to AGT in the mutant, resulting in the codon for Ser. Furthermore, a recombinant FAS2 gene, in which the 0.8 Kb EcoRV-HindIII fragment of the wild-type FAS2 gene was replaced with the same region from the mutant, when introduced into FAS2-defective S. cerevisiae complemented the FAS2 pheno-type and showed cerulenin resistance. These data indicate that one amino acid substitution (Gly → Ser) in the α subunit of fatty acid synthase is responsible for the cerulenin resistance of the mutant KNCR-1.  相似文献   

18.
Adult Drosophila melanogaster synthesizes dodecanoic and tetradecanoic acids in vivo, along with the more common 16- and 18-carbon fatty acids. The radiolabeled C12 and C14 fatty acids synthesized from sodium [1-14C]acetate are found primarily in the diacylglycerol and triacylglycerol fractions. Partially purified fatty acid synthetase (FAS) synthesizes C14, C16, and C18 fatty acids (as the free acids) at 0.2 M ionic strength. Increasing the ionic strength to 2.0 M causes partially purified FAS to synthesize primarily C12 and C14 fatty acids. Addition of aliquots of the microsomal pellet and other soluble protein fractions does not alter the pattern of fatty acids synthesized by FAS. The percentage of C12 and C14 fatty acids synthesized at high ionic strength by individual fractions from the FAS peak (Sepharose 6B column) is constant across the peak. None of the soluble protein fractions is able to relieve the inhibition of FAS by phenylmethylsulfonyl fluoride. These results indicate that the FAS of D. melanogaster has the inherent capability to form C12 and C14 fatty acids and that no other soluble protein appears to be involved in their synthesis.  相似文献   

19.
This is the first report of the effect of prostaglandins on the biochemical pathways for fatty acid synthesis. PGE2 and PGF inhibited fatty acid elongation in a lung microsomal fraction. Neither prostaglandin affected the de novo, or soluble, system for fatty acid synthesis (i.e. acetyl CoA carboxylase or fatty acid synthetase). The results also suggest that the initial inhibition of fatty acid synthesis leads to a decrease in free fatty acids available for esterification into phospholipids. The site and possible mechanisms of inhibition are discussed.  相似文献   

20.
FabI, enoyl-ACP reductase (ENR), is the rate-limiting enzyme in the last step for fatty acids biosynthesis in many bacteria. Triclosan (TCL) is a commercial bactericide, and as a FabI inhibitor, it can depress the substrate (trans-2-enoyl-ACP) binding with FabI to hinder the fatty acid synthesis. The structure-activity relationship between TCL derivatives and FabI protein has already been acknowledged, however, their combination at the molecular level has never been investigated. This paper uses the computer-aided approaches, such as molecular docking, molecular dynamics simulation, and binding free energy calculation based on the molecular mechanics/Poisson-Bolzmann surface area (MM/PBSA) method to illustrate the interaction rules of TCL derivatives with FabI and guide the development of new derivatives. The consistent data of the experiment and corresponding activity demonstrates that electron-withdrawing groups on side chain are better than electron-donating groups. 2-Hydroxyl group on A ring, promoting the formation of hydrogen bond, is vital for bactericidal effect; and the substituents at 4-position of A ring, 2′-position and 4′-position of B ring benefit antibacterial activity due to forming a hydrogen bond or stabilizing the conformation of active pocket residues of receptor. While the substituents at 3′-position and 5′-position of B ring destroy the π-π stacking interaction of A ring and NAD+ which depresses the antibacterial activity. This study provides a new sight for designing novel TCL derivatives with superior antibacterial activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号