首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The genome of the facultative anaerobic γ-proteobacterium Shewanella oneidensis MR-1 encodes for three terminal oxidases: a bd-type quinol oxidase and two heme-copper oxidases, a A-type cytochrome c oxidase and a cbb 3-type oxidase. In this study, we used a biochemical approach and directly measured oxidase activities coupled to mass-spectrometry analysis to investigate the physiological role of the three terminal oxidases under aerobic and microaerobic conditions. Our data revealed that the cbb 3-type oxidase is the major terminal oxidase under aerobic conditions while both cbb 3-type and bd-type oxidases are involved in respiration at low-O2 tensions. On the contrary, the low O2-affinity A-type cytochrome c oxidase was not detected in our experimental conditions even under aerobic conditions and would therefore not be required for aerobic respiration in S. oneidensis MR-1. In addition, the deduced amino acid sequence suggests that the A-type cytochrome c oxidase is a ccaa 3-type oxidase since an uncommon extra-C terminal domain contains two c-type heme binding motifs. The particularity of the aerobic respiratory pathway and the physiological implication of the presence of a ccaa 3-type oxidase in S. oneidensis MR-1 are discussed.  相似文献   

2.
The ubiquitous opportunistic pathogen Pseudomonas aeruginosa has five aerobic terminal oxidases: bo3-type quinol oxidase (Cyo), cyanide-insensitive oxidase (CIO), aa3-type cytochrome c oxidase (aa3), and two cbb3-type cytochrome c oxidases (cbb3-1 and cbb3-2). These terminal oxidases are differentially regulated under various growth conditions and are thought to contribute to the survival of this microorganism in a wide variety of environmental niches. Here, we constructed multiple mutant strains of P. aeruginosa that express only one aerobic terminal oxidase to investigate the enzymatic characteristics and in vivo function of each enzyme. The Km values of Cyo, CIO, and aa3 for oxygen were similar and were 1 order of magnitude higher than those of cbb3-1 and cbb3-2, indicating that Cyo, CIO, and aa3 are low-affinity enzymes and that cbb3-1 and cbb3-2 are high-affinity enzymes. Although cbb3-1 and cbb3-2 exhibited different expression patterns in response to oxygen concentration, they had similar Km values for oxygen. Both cbb3-1 and cbb3-2 utilized cytochrome c4 as the main electron donor under normal growth conditions. The electron transport chains terminated by cbb3-1 and cbb3-2 generate a proton gradient across the cell membrane with similar efficiencies. The electron transport chain of aa3 had the highest proton translocation efficiency, whereas that of CIO had the lowest efficiency. The enzymatic properties of the terminal oxidases reported here are partially in agreement with their regulatory patterns and may explain the environmental adaptability and versatility of P. aeruginosa.  相似文献   

3.
4.
Shewanella species are a group of facultative Gram-negative microorganisms with remarkable respiration abilities that allow the use of a diverse array of terminal electron acceptors (EA). Like most bacteria, S. oneidensis possesses multiple terminal oxidases, including two heme-copper oxidases (caa3- and cbb3-type) and a bd-type quinol oxidase. As aerobic respiration is energetically favored, mechanisms underlying the fact that these microorganisms thrive in redox-stratified environments remain vastly unexplored. In this work, we discovered that the cbb3-type oxidase is the predominant system for respiration of oxygen (O2), especially when O2 is abundant. Under microaerobic conditions, the bd-type quinol oxidase has a significant role in addition to the cbb3-type oxidase. In contrast, multiple lines of evidence suggest that under test conditions the caa3-type oxidase, an analog to the mitochondrial enzyme, has no physiological significance, likely because of its extremely low expression. In addition, expression of both cbb3- and bd-type oxidases is under direct control of Crp (cAMP receptor protein) but not the well-established redox regulator Fnr (fumarate nitrate regulator) of canonical systems typified in Escherichia coli. These data, collectively, suggest that adaptation of S. oneidensis to redox-stratified environments is likely due to functional loss of the caa3-type oxidase and switch of the regulatory system for respiration.  相似文献   

5.
Heme–copper oxidases (HCuOs) are the terminal components of the respiratory chain in the mitochondrial membrane or the cell membrane in many bacteria. These enzymes reduce oxygen to water and use the free energy from this reaction to maintain a proton-motive force across the membrane in which they are embedded. The heme–copper oxidases of the cbb3-type are only found in bacteria, often pathogenic ones since they have a low Km for O2, enabling the bacteria to colonize semi-anoxic environments. Cbb3-type (C) oxidases are highly divergent from the mitochondrial-like aa3-type (A) oxidases, and within the heme–copper oxidase family, cbb3 is the closest relative to the most divergent member, the bacterial nitric oxide reductase (NOR). Nitric oxide reductases reduce NO to N2O without coupling the reaction to the generation of any electrochemical proton gradient. The significant structural differences between A- and C-type heme–copper oxidases are manifested in the lack in cbb3 of most of the amino acids found to be important for proton pumping in the A-type, as well as in the different binding characteristics of ligands such as CO, O2 and NO. Investigations of the reasons for these differences at a molecular level have provided insights into the mechanism of O2 and NO reduction as well as the proton-pumping mechanism in all heme–copper oxidases. In this paper, we discuss results from these studies with the focus on the relationship between proton transfer and ligand binding and reduction. In addition, we present new data, which show that CO binding to one of the c-type hemes of CcoP is modulated by protein–lipid interactions in the membrane. These results show that the heme c-CO binding can be used as a probe of protein–membrane interactions in cbb3 oxidases, and possible physiological consequences for this behavior are discussed.  相似文献   

6.
The appearance of oxygen in the Earth''s atmosphere via oxygenic photosynthesis required strict anaerobes and obligate phototrophs to cope with the presence of this toxic molecule. Here we show that in the anoxygenic phototroph Rubrivivax gelatinosus, the terminal oxidases (cbb3, bd, and caa3) expand the range of ambient oxygen tensions under which the organism can initiate photosynthesis. Unlike the wild type, the cbb3/bd double mutant can start photosynthesis only in deoxygenated medium or when oxygen is removed, either by sparging cultures with nitrogen or by co-inoculation with strict aerobes bacteria. In oxygenated environments, this mutant survives nonphotosynthetically until the O2 tension is reduced. The cbb3 and bd oxidases are therefore required not only for respiration but also for reduction of the environmental O2 pressure prior to anaerobic photosynthesis. Suppressor mutations that restore respiration simultaneously restore photosynthesis in nondeoxygenated medium. Furthermore, induction of photosystem in the cbb3 mutant led to a highly unstable strain. These results demonstrate that photosynthetic metabolism in environments exposed to oxygen is critically dependent on the O2-detoxifying action of terminal oxidases.  相似文献   

7.
Vivek Sharma  Ville R.I. Kaila 《BBA》2010,1797(8):1512-21475
Cytochrome cbb3 is a distinct member of the superfamily of respiratory heme-copper oxidases, and is responsible for driving the respiratory chain in many pathogenic bacteria. Like the canonical heme-copper oxidases, cytochrome cbb3 reduces oxygen to water and couples the released energy to pump protons across the bacterial membrane. Homology modeling and recent electron paramagnetic resonance (EPR) studies on wild type and a mutant cbb3 enzyme [V. Rauhamäki et al. J. Biol. Chem. 284 (2009) 11301-11308] have led us to perform high-level quantum chemical calculations on the active site. These calculations bring molecular insight into the unique hydrogen bonding between the proximal histidine ligand of heme b3 and a conserved glutamate, and indicate that the catalytic mechanism involves redox-coupled proton transfer between these residues. The calculated spin densities give insight in the difference in EPR spectra for the wild type and a recently studied E383Q-mutant cbb3-enzyme. Furthermore, we show that the redox-coupled proton movement in the proximal cavity of cbb3-enzymes contributes to the low redox potential of heme b3, and suggest its potential implications for the high apparent oxygen affinity of these enzymes.  相似文献   

8.
Denitrification is a microbial process during which nitrate or nitrite is reduced under anaerobic condition to gaseous nitrogen. The Arabian Sea contains one of the major pelagic denitrification zones and in addition to this, denitrification also takes places along the continental shelf. Prokaryotic microorganisms were considered to be the only players in this process. However recent studies have shown that higher microeukaryotes such as fungi can also adapt to anaerobic mode of respiration and reduce nitrate to harmful green house gases such as NO and N2O. In this study we examined the distribution and biomass of fungi in the sediments of the seasonal anoxic region off Goa from two stations. The sampling was carried out in five different periods from October 2005, when dissolved oxygen levels were near zero in bottom waters to March 2006. We isolated mycelial fungi, thraustochytrids and yeasts. Species of Aspergillus and thraustochytrids were dominant. Fungi were isolated under aerobic, as well as anaerobic conditions from different seasons. Four isolates were examined for their denitrification activity. Two cultures obtained from the anoxic sediments showed better growth under anaerobic condition than the other two cultures that were isolated from oxic sediments. Our preliminary results suggest that several species of fungi can grow under oxygen deficient conditions and participate in denitrification processes.  相似文献   

9.

Defined as the transition conditions in which the organism(s) performs simultaneous aerobic and anaerobic respiration or fermentation, microaerobic conditions are commonly present in the nature. Microaerobic metabolism of microorganisms is however poorly characterized. Being extremely sensitive to the change in cellular electron-accepting mechanisms, NAD(P)H fluorescence provides a useful ways for online monitoring of microaerobic metabolism. Its application to studies of microbial nitrate respiration and particularly, denitrification of Pseudomonas aeruginosa is reviewed here, centering on four topics: (1) online monitoring of anaerobic nitrate respiration by NAD(P)H fluorescence, (2) effects of denitrification on P. aeruginosa phenotypes, (3) microaerobic denitrification of P. aeruginosa in continuous culture, and (4) correlation between NAD(P)H fluorescence and denitrification-to-respiration ratio. Online NAD(P)H fluorescence is shown to sensitively detect the changes of cellular metabolism. For example, it revealed the intermediate nitrite accumulation in C-limited Escherichia coli performing anaerobic nitrate respiration via dissimilative ammonification, by exhibiting two-stage profiles with intriguing fluorescence oscillation. When applied to continuous culture studies of P. aeruginosa (ATCC 9027), the online fluorescence helped to identify that the bacterium conducted denitrification even at DO > 1 mg/l. In addition, the fluorescence profile showed a unique correlation with the fraction of electrons accepted by denitrification (out of all the electrons accepted by aerobic and anaerobic respiration). The applicability of online NAD(P)H fluorescence in monitoring and quantitatively describing the sensitive microaerobic state of microorganisms is clearly demonstrated.

  相似文献   

10.
11.
Pseudomonas aeruginosa is a metabolically flexible member of the Gammaproteobacteria. Under anaerobic conditions and the presence of nitrate, P. aeruginosa can perform (complete) denitrification, a respiratory process of dissimilatory nitrate reduction to nitrogen gas via nitrite (NO2), nitric oxide (NO) and nitrous oxide (N2O). This study focuses on understanding the influence of environmental conditions on bacterial denitrification performance, using a mathematical model of a metabolic network in P. aeruginosa. To our knowledge, this is the first mathematical model of denitrification for this bacterium. Analysis of the long-term behavior of the network under changing concentration levels of oxygen (O2), nitrate (NO3), and phosphate (PO4) suggests that PO4 concentration strongly affects denitrification performance. The model provides three predictions on denitrification activity of P. aeruginosa under various environmental conditions, and these predictions are either experimentally validated or supported by pertinent biological literature. One motivation for this study is to capture the effect of PO4 on a denitrification metabolic network of P. aeruginosa in order to shed light on mechanisms for greenhouse gas N2O accumulation during seasonal oxygen depletion in aquatic environments such as Lake Erie (Laurentian Great Lakes, USA). Simulating the microbial production of greenhouse gases in anaerobic aquatic systems such as Lake Erie allows a deeper understanding of the contributing environmental effects that will inform studies on, and remediation strategies for, other hypoxic sites worldwide.  相似文献   

12.
Bacterial adhesion and biofilm formation are both dependent on the production of extracellular polymeric substances (EPS) mainly composed of polysaccharides, proteins, lipids, and extracellular DNA (eDNA). eDNA promotes biofilm establishment in a wide range of bacterial species. In Pseudomonas aeruginosa eDNA is major component of biofilms and is essential for biofilm formation and stability. In this study we report that production of pyocyanin in P. aeruginosa PAO1 and PA14 batch cultures is responsible for promotion of eDNA release. A phzSH mutant of P. aeruginosa PAO1 that overproduces pyocyanin displayed enhanced hydrogen peroxide (H2O2) generation, cell lysis, and eDNA release in comparison to its wildtype strain. A ΔphzA-G mutant of P. aeruginosa PA14 deficient in pyocyanin production generated negligible amounts of H2O2 and released less eDNA in comparison to its wildtype counterpart. Exogenous addition of pyocyanin or incubation with H2O2 was also shown to promote eDNA release in low pyocyanin producing (PAO1) and pyocynain deficient (PA14) strains. Based on these data and recent findings in the biofilm literature, we propose that the impact of pyocyanin on biofilm formation in P. aeruginosa occurs via eDNA release through H2O2 mediated cell lysis.  相似文献   

13.
Formation of ATP during aerobic respiration and denitrification was determined inPseudomonas denitrificans. In the intact cell system, the ATP formation associated with denitrification was almost the same as that associated with aerobic respiration when lactate was used as an electron donor. The ATP formation was inhibited by KCN, NaN3 and DNP. No phosphate uptake occurred when NH2OH, DMPD or TMPD was used as an electron donor, although the production of N2O, N2 or NO from nitrite was accelerated under anaerobic conditions. In the cell-free system, the ATP formation was also demonstrated using an ATP trapping system and lactate as a substrate. The effects of inhibitors were almost the same as those observed with the intact cells. DMPD or TMPD together with ascorbate promoted the ATP formation during aerobic oxidation by the cell-free system whereas no stimulation of ATP formation was detected during denitrification.  相似文献   

14.
15.
Pseudomonas aeruginosa is the major pathogenic bacteria in cystic fibrosis and other forms of bronchiectasis. Growth in antibiotic-resistant biofilms contributes to the virulence of this organism. Sodium nitrite has antimicrobial properties and has been tolerated as a nebulized compound at high concentrations in human subjects with pulmonary hypertension; however, its effects have not been evaluated on biotic biofilms or in combination with other clinically useful antibiotics. We grew P. aeruginosa on the apical surface of primary human airway epithelial cells to test the efficacy of sodium nitrite against biotic biofilms. Nitrite alone prevented 99% of biofilm growth. We then identified significant cooperative interactions between nitrite and polymyxins. For P. aeruginosa growing on primary CF airway cells, combining nitrite and colistimethate resulted in an additional log of bacterial inhibition compared to treating with either agent alone. Nitrite and colistimethate additively inhibited oxygen consumption by P. aeruginosa. Surprisingly, whereas the antimicrobial effects of nitrite in planktonic, aerated cultures are nitric oxide (NO) dependent, antimicrobial effects under other growth conditions are not. The inhibitory effect of nitrite on bacterial oxygen consumption and biofilm growth did not require NO as an intermediate as chemically scavenging NO did not block growth inhibition. These data suggest an NO-radical independent nitrosative or oxidative inhibition of respiration. The combination of nebulized sodium nitrite and colistimethate may provide a novel therapy for chronic P. aeruginosa airway infections, because sodium nitrite, unlike other antibiotic respiratory chain “poisons,” can be safely nebulized at high concentration in humans.  相似文献   

16.
17.
Yoon MY  Lee KM  Park Y  Yoon SS 《PloS one》2011,6(1):e16105
Pseudomonas aeruginosa, a gram-negative bacterium of clinical importance, forms more robust biofilm during anaerobic respiration, a mode of growth presumed to occur in abnormally thickened mucus layer lining the cystic fibrosis (CF) patient airway. However, molecular basis behind this anaerobiosis-triggered robust biofilm formation is not clearly defined yet. Here, we identified a morphological change naturally accompanied by anaerobic respiration in P. aeruginosa and investigated its effect on the biofilm formation in vitro. A standard laboratory strain, PAO1 was highly elongated during anaerobic respiration compared with bacteria grown aerobically. Microscopic analysis demonstrated that cell elongation likely occurred as a consequence of defective cell division. Cell elongation was dependent on the presence of nitrite reductase (NIR) that reduces nitrite (NO(2) (-)) to nitric oxide (NO) and was repressed in PAO1 in the presence of carboxy-PTIO, a NO antagonist, demonstrating that cell elongation involves a process to respond to NO, a spontaneous byproduct of the anaerobic respiration. Importantly, the non-elongated NIR-deficient mutant failed to form biofilm, while a mutant of nitrate reductase (NAR) and wild type PAO1, both of which were highly elongated, formed robust biofilm. Taken together, our data reveal a role of previously undescribed cell biological event in P. aeruginosa biofilm formation and suggest NIR as a key player involved in such process.  相似文献   

18.
The biomass yield of freshwater filamentous sulfur bacteria of the genus Beggiatoa, when grown lithoheterotrophically or mixotrophically, has been shown to increase 2 to 2.5 times under microaerobic conditions (0.12 mg/l oxygen) as compared to aerobic conditions (9 mg/l oxygen). The activity of the glyoxylate cycle key enzymes have been found to increase two to three times under microaerobic conditions (at an O2 concentration of 2 mg/l), and the activities of the sulfur metabolism enzymes increased three to five times (at an O2 concentration of 0.1–0.5 mg/l). It has also been found that, under microaerobic conditions, thiosulfate was almost completely oxidized to sulfate by the bacteria, without accumulation of intermediate metabolites. At the same time, a 2- to 15-fold decrease in the activities of the tricarboxylic acid cycle enzymes involved in the reduction of NAD and FAD was observed. Reorganization of the respiratory chain after changes in aeration and type of nutrition was also observed. It has been found that, in cells grown heterotrophically, the terminal part of the respiratory chain contained an aa 3-type oxidase, whereas, during mixotrophic, lithoheterotrophic, and autotrophic growth, aa 3-type oxidase synthesis was inhibited, and the synthesis of a cbb 3-type oxidase, which is induced under microaerobic conditions, was activated. The gene of the catalytic subunit CcoN of the cbb 3-type oxidase was sequenced and proved to be highly homologous to the corresponding genes of other proteobacteria.__________Translated from Mikrobiologiya, Vol. 74, No. 4, 2005, pp. 452–459.Original Russian Text Copyright © 2005 by Muntyan, Grabovich, Patritskaya, Dubinina.  相似文献   

19.
Nitric oxide (NO), polyamines (PAs), diamine oxidases (DAO) and polyamine oxidases (PAO) play important roles in wide spectrum of physiological processes such as germination, root development, flowering and senescence and in defence responses against abiotic and biotic stress conditions. This functional overlapping suggests interaction of NO and PA in signalling cascades. Exogenous application of PAs putrescine, spermidine and spermine to Arabidopsis seedlings induced NO production as observed by fluorimetry and fluorescence microscopy using the NO-binding fluorophores DAF-2 and DAR-4M. The observed NO release induced by 1 mM spermine treatment in the Arabidopsis seedlings was very rapid without apparent lag phase. These observations pave a new insight into PA-mediated signalling and NO as a potential mediator of PA actions. When comparing the functions of NO and PA in plant development and abiotic and biotic stresses common to both signalling components it can be speculated that NO may be a link between PA-mediated stress responses filing a gap between many known physiological effects of PAs and amelioration of stresses. NO production indicated by PAs could be mediated either by H2O2, one reaction product of oxidation of PAs by DAO and PAO, or by unknown mechanisms involving PAs, DAO and PAO.  相似文献   

20.
Chronic lung infection by Pseudomonas aeruginosa is the major severe complication in cystic fibrosis (CF) patients, where P. aeruginosa persists and grows in biofilms in the endobronchial mucus under hypoxic conditions. Numerous polymorphonuclear leukocytes (PMNs) surround the biofilms and create local anoxia by consuming the majority of O2 for production of reactive oxygen species (ROS). We hypothesized that P. aeruginosa acquires energy for growth in anaerobic endobronchial mucus by denitrification, which can be demonstrated by production of nitrous oxide (N2O), an intermediate in the denitrification pathway. We measured N2O and O2 with electrochemical microsensors in 8 freshly expectorated sputum samples from 7 CF patients with chronic P. aeruginosa infection. The concentrations of NO3 and NO2 in sputum were estimated by the Griess reagent. We found a maximum median concentration of 41.8 µM N2O (range 1.4–157.9 µM N2O). The concentration of N2O in the sputum was higher below the oxygenated layers. In 4 samples the N2O concentration increased during the initial 6 h of measurements before decreasing for approximately 6 h. Concomitantly, the concentration of NO3 decreased in sputum during 24 hours of incubation. We demonstrate for the first time production of N2O in clinical material from infected human airways indicating pathogenic metabolism based on denitrification. Therefore, P. aeruginosa may acquire energy for growth by denitrification in anoxic endobronchial mucus in CF patients. Such ability for anaerobic growth may be a hitherto ignored key aspect of chronic P. aeruginosa infections that can inform new strategies for treatment and prevention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号