首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As the number of complete microbial genomes publicly available is still growing, the problem of annotation quality in these very large sequences remains unsolved. Indeed, the number of annotations associated with complete genomes is usually lower than those of the shorter entries encountered in the repository collections. Moreover, classical sequence database management systems have difficulties in handling entries of such size. In this context, the Enhanced Microbial Genomes Library (EMGLib) was developed to try to alleviate these problems. This library contains all the complete genomes from prokaryotes (bacteria and archaea) already sequenced and the yeast genome in GenBank format. The annotations are improved by the introduction of data on codon usage, gene orientation on the chromosome and gene families. It is possible to access EMGLib through two database systems set up on WWW servers: the PBIL server at http://pbil.univ-lyon1.fr/emglib.html and the MICADO server at http://locus.jouy.inra.fr/micado  相似文献   

2.

Summary

The classification of transposable elements (TEs) is key step towards deciphering their potential impact on the genome. However, this process is often based on manual sequence inspection by TE experts. With the wealth of genomic sequences now available, this task requires automation, making it accessible to most scientists. We propose a new tool, PASTEC, which classifies TEs by searching for structural features and similarities. This tool outperforms currently available software for TE classification. The main innovation of PASTEC is the search for HMM profiles, which is useful for inferring the classification of unknown TE on the basis of conserved functional domains of the proteins. In addition, PASTEC is the only tool providing an exhaustive spectrum of possible classifications to the order level of the Wicker hierarchical TE classification system. It can also automatically classify other repeated elements, such as SSR (Simple Sequence Repeats), rDNA or potential repeated host genes. Finally, the output of this new tool is designed to facilitate manual curation by providing to biologists with all the evidence accumulated for each TE consensus.

Availability

PASTEC is available as a REPET module or standalone software (http://urgi.versailles.inra.fr/download/repet/REPET_linux-x64-2.2.tar.gz). It requires a Unix-like system. There are two standalone versions: one of which is parallelized (requiring Sun grid Engine or Torque), and the other of which is not.  相似文献   

3.
4.
Strain HIMB11 is a planktonic marine bacterium isolated from coastal seawater in Kaneohe Bay, Oahu, Hawaii belonging to the ubiquitous and versatile Roseobacter clade of the alphaproteobacterial family Rhodobacteraceae. Here we describe the preliminary characteristics of strain HIMB11, including annotation of the draft genome sequence and comparative genomic analysis with other members of the Roseobacter lineage. The 3,098,747 bp draft genome is arranged in 34 contigs and contains 3,183 protein-coding genes and 54 RNA genes. Phylogenomic and 16S rRNA gene analyses indicate that HIMB11 represents a unique sublineage within the Roseobacter clade. Comparison with other publicly available genome sequences from members of the Roseobacter lineage reveals that strain HIMB11 has the genomic potential to utilize a wide variety of energy sources (e.g. organic matter, reduced inorganic sulfur, light, carbon monoxide), while possessing a reduced number of substrate transporters.  相似文献   

5.
6.

Background

Genome annotation is one way of summarizing the existing knowledge about genomic characteristics of an organism. There has been an increased interest during the last several decades in computer-based structural and functional genome annotation. Many methods for this purpose have been developed for eukaryotes and prokaryotes. Our study focuses on comparison of functional annotations of prokaryotic genomes. To the best of our knowledge there is no fully automated system for detailed comparison of functional genome annotations generated by different annotation methods (AMs).

Results

The presence of many AMs and development of new ones introduce needs to: a/ compare different annotations for a single genome, and b/ generate annotation by combining individual ones. To address these issues we developed an Automated Tool for Bacterial GEnome Annotation ComparisON (BEACON) that benefits both AM developers and annotation analysers. BEACON provides detailed comparison of gene function annotations of prokaryotic genomes obtained by different AMs and generates extended annotations through combination of individual ones. For the illustration of BEACON’s utility, we provide a comparison analysis of multiple different annotations generated for four genomes and show on these examples that the extended annotation can increase the number of genes annotated by putative functions up to 27 %, while the number of genes without any function assignment is reduced.

Conclusions

We developed BEACON, a fast tool for an automated and a systematic comparison of different annotations of single genomes. The extended annotation assigns putative functions to many genes with unknown functions. BEACON is available under GNU General Public License version 3.0 and is accessible at: http://www.cbrc.kaust.edu.sa/BEACON/.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1826-4) contains supplementary material, which is available to authorized users.  相似文献   

7.
Cyanobacterial KnowledgeBase (CKB) is a free access database that contains the genomic and proteomic information of 74 fully sequenced cyanobacterial genomes belonging to seven orders. The database also contains tools for sequence analysis. The Species report and the gene report provide details about each species and gene (including sequence features and gene ontology annotations) respectively. The database also includes cyanoBLAST, an advanced tool that facilitates comparative analysis, among cyanobacterial genomes and genomes of E. coli (prokaryote) and Arabidopsis (eukaryote). The database is developed and maintained by the Sub-Distributed Informatics Centre (sponsored by the Department of Biotechnology, Govt. of India) of the National Facility for Marine Cyanobacteria, a facility dedicated to marine cyanobacterial research. CKB is freely available at http://nfmc.res.in/ckb/index.html.  相似文献   

8.
9.
10.
FLIGHT (http://flight.icr.ac.uk/) is an online resource compiling data from high-throughput Drosophila in vivo and in vitro RNAi screens. FLIGHT includes details of RNAi reagents and their predicted off-target effects, alongside RNAi screen hits, scores and phenotypes, including images from high-content screens. The latest release of FLIGHT is designed to enable users to upload, analyze, integrate and share their own RNAi screens. Users can perform multiple normalizations, view quality control plots, detect and assign screen hits and compare hits from multiple screens using a variety of methods including hierarchical clustering. FLIGHT integrates RNAi screen data with microarray gene expression as well as genomic annotations and genetic/physical interaction datasets to provide a single interface for RNAi screen analysis and datamining in Drosophila.Key words: RNAi, database, integration, bioinformatics, phenotype  相似文献   

11.
12.
13.

Background

Transposable elements are mobile DNA repeat sequences, known to have high impact on genes, genome structure and evolution. This has stimulated broad interest in the detailed biological studies of transposable elements. Hence, we have developed an easy-to-use tool for the comparative analysis of the structural organization and functional relationships of transposable elements, to help understand their functional role in genomes.

Results

We named our new software VisualTE and describe it here. VisualTE is a JAVA stand-alone graphical interface that allows users to visualize and analyze all occurrences of transposable element families in annotated genomes. VisualTE reads and extracts transposable elements and genomic information from annotation and repeat data. Result analyses are displayed in several graphical panels that include location and distribution on the chromosome, the occurrence of transposable elements in the genome, their size distribution, and neighboring genes’ features and ontologies. With these hallmarks, VisualTE provides a convenient tool for studying transposable element copies and their functional relationships with genes, at the whole-genome scale, and in diverse organisms.

Conclusions

VisualTE graphical interface makes possible comparative analyses of transposable elements in any annotated sequence as well as structural organization and functional relationships between transposable elements and other genetic object. This tool is freely available at: http://lcb.cnrs-mrs.fr/spip.php?article867.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1351-5) contains supplementary material, which is available to authorized users.  相似文献   

14.

Background

Epigenome-wide association scans (EWAS) are an increasingly powerful and widely-used approach to assess the role of epigenetic variation in human complex traits. However, this rapidly emerging field lacks dedicated visualisation tools that can display features specific to epigenetic datasets.

Result

We developed coMET, an R package and online tool for visualisation of EWAS results in a genomic region of interest. coMET generates a regional plot of epigenetic-phenotype association results and the estimated DNA methylation correlation between CpG sites (co-methylation), with further options to visualise genomic annotations based on ENCODE data, gene tracks, reference CpG-sites, and user-defined features. The tool can be used to display phenotype association signals and correlation patterns of microarray or sequencing-based DNA methylation data, such as Illumina Infinium 450k, WGBS, or MeDIP-seq, as well as other types of genomic data, such as gene expression profiles. The software is available as a user-friendly online tool from http://epigen.kcl.ac.uk/cometand as an R Bioconductor package. Source code, examples, and full documentation are also available from GitHub.

Conclusion

Our new software allows visualisation of EWAS results with functional genomic annotations and with estimation of co-methylation patterns. coMET is available to a wide audience as an online tool and R package, and can be a valuable resource to interpret results in the fast growing field of epigenetics. The software is designed for epigenetic data, but can also be applied to genomic and functional genomic datasets in any species.  相似文献   

15.
Whole genome duplications (WGD) have now been firmly established in all major eukaryotic kingdoms. In particular, all vertebrates descend from two rounds of WGDs, that occurred in their jawless ancestor some 500 MY ago. Paralogs retained from WGD, also coined ‘ohnologs’ after Susumu Ohno, have been shown to be typically associated with development, signaling and gene regulation. Ohnologs, which amount to about 20 to 35% of genes in the human genome, have also been shown to be prone to dominant deleterious mutations and frequently implicated in cancer and genetic diseases. Hence, identifying ohnologs is central to better understand the evolution of vertebrates and their susceptibility to genetic diseases. Early computational analyses to identify vertebrate ohnologs relied on content-based synteny comparisons between the human genome and a single invertebrate outgroup genome or within the human genome itself. These approaches are thus limited by lineage specific rearrangements in individual genomes. We report, in this study, the identification of vertebrate ohnologs based on the quantitative assessment and integration of synteny conservation between six amniote vertebrates and six invertebrate outgroups. Such a synteny comparison across multiple genomes is shown to enhance the statistical power of ohnolog identification in vertebrates compared to earlier approaches, by overcoming lineage specific genome rearrangements. Ohnolog gene families can be browsed and downloaded for three statistical confidence levels or recompiled for specific, user-defined, significance criteria at http://ohnologs.curie.fr/. In the light of the importance of WGD on the genetic makeup of vertebrates, our analysis provides a useful resource for researchers interested in gaining further insights on vertebrate evolution and genetic diseases.  相似文献   

16.

Background

Multiple genome alignment remains a challenging problem. Effects of recombination including rearrangement, segmental duplication, gain, and loss can create a mosaic pattern of homology even among closely related organisms.

Methodology/Principal Findings

We describe a new method to align two or more genomes that have undergone rearrangements due to recombination and substantial amounts of segmental gain and loss (flux). We demonstrate that the new method can accurately align regions conserved in some, but not all, of the genomes, an important case not handled by our previous work. The method uses a novel alignment objective score called a sum-of-pairs breakpoint score, which facilitates accurate detection of rearrangement breakpoints when genomes have unequal gene content. We also apply a probabilistic alignment filtering method to remove erroneous alignments of unrelated sequences, which are commonly observed in other genome alignment methods. We describe new metrics for quantifying genome alignment accuracy which measure the quality of rearrangement breakpoint predictions and indel predictions. The new genome alignment algorithm demonstrates high accuracy in situations where genomes have undergone biologically feasible amounts of genome rearrangement, segmental gain and loss. We apply the new algorithm to a set of 23 genomes from the genera Escherichia, Shigella, and Salmonella. Analysis of whole-genome multiple alignments allows us to extend the previously defined concepts of core- and pan-genomes to include not only annotated genes, but also non-coding regions with potential regulatory roles. The 23 enterobacteria have an estimated core-genome of 2.46Mbp conserved among all taxa and a pan-genome of 15.2Mbp. We document substantial population-level variability among these organisms driven by segmental gain and loss. Interestingly, much variability lies in intergenic regions, suggesting that the Enterobacteriacae may exhibit regulatory divergence.

Conclusions

The multiple genome alignments generated by our software provide a platform for comparative genomic and population genomic studies. Free, open-source software implementing the described genome alignment approach is available from http://gel.ahabs.wisc.edu/mauve.  相似文献   

17.
Mathieu Gautier 《Genetics》2015,201(4):1555-1579
In population genomics studies, accounting for the neutral covariance structure across population allele frequencies is critical to improve the robustness of genome-wide scan approaches. Elaborating on the BayEnv model, this study investigates several modeling extensions (i) to improve the estimation accuracy of the population covariance matrix and all the related measures, (ii) to identify significantly overly differentiated SNPs based on a calibration procedure of the XtX statistics, and (iii) to consider alternative covariate models for analyses of association with population-specific covariables. In particular, the auxiliary variable model allows one to deal with multiple testing issues and, providing the relative marker positions are available, to capture some linkage disequilibrium information. A comprehensive simulation study was carried out to evaluate the performances of these different models. Also, when compared in terms of power, robustness, and computational efficiency to five other state-of-the-art genome-scan methods (BayEnv2, BayScEnv, BayScan, flk, and lfmm), the proposed approaches proved highly effective. For illustration purposes, genotyping data on 18 French cattle breeds were analyzed, leading to the identification of 13 strong signatures of selection. Among these, four (surrounding the KITLG, KIT, EDN3, and ALB genes) contained SNPs strongly associated with the piebald coloration pattern while a fifth (surrounding PLAG1) could be associated to morphological differences across the populations. Finally, analysis of Pool-Seq data from 12 populations of Littorina saxatilis living in two different ecotypes illustrates how the proposed framework might help in addressing relevant ecological issues in nonmodel species. Overall, the proposed methods define a robust Bayesian framework to characterize adaptive genetic differentiation across populations. The BayPass program implementing the different models is available at http://www1.montpellier.inra.fr/CBGP/software/baypass/.  相似文献   

18.
Clustering is a popular technique for explorative analysis of data, as it can reveal subgroupings and similarities between data in an unsupervised manner. While clustering is routinely applied to gene expression data, there is a lack of appropriate general methodology for clustering of sequence-level genomic and epigenomic data, e.g. ChIP-based data. We here introduce a general methodology for clustering data sets of coordinates relative to a genome assembly, i.e. genomic tracks. By defining appropriate feature extraction approaches and similarity measures, we allow biologically meaningful clustering to be performed for genomic tracks using standard clustering algorithms. An implementation of the methodology is provided through a tool, ClusTrack, which allows fine-tuned clustering analyses to be specified through a web-based interface. We apply our methods to the clustering of occupancy of the H3K4me1 histone modification in samples from a range of different cell types. The majority of samples form meaningful subclusters, confirming that the definitions of features and similarity capture biological, rather than technical, variation between the genomic tracks. Input data and results are available, and can be reproduced, through a Galaxy Pages document at http://hyperbrowser.uio.no/hb/u/hb-superuser/p/clustrack. The clustering functionality is available as a Galaxy tool, under the menu option "Specialized analyzis of tracks", and the submenu option "Cluster tracks based on genome level similarity", at the Genomic HyperBrowser server: http://hyperbrowser.uio.no/hb/.  相似文献   

19.

Key message

We enhance power and accuracy of QTL mapping in multiple related families, by clustering the founders of the families on their local genomic similarity.

Abstract

MCQTL is a linkage mapping software application that allows the joint QTL mapping of multiple related families. In its current implementation, QTLs are modeled with one or two parameters for each parent that is a founder of the multi-cross design. The higher the number of parents, the higher the number of model parameters which can impact the power and the accuracy of the mapping. We propose to make use of the availability of denser and denser genotyping information on the founders to lessen the number of MCQTL parameters and thus boost the QTL discovery. We developed clusthaplo, an R package (http://cran.r-project.org/web/packages/clusthaplo/index.html), which aims to cluster haplotypes using a genomic similarity that reflects the probability of sharing the same ancestral allele. Computed in a sliding window along the genome and followed by a clustering method, the genomic similarity allows the local clustering of the parent haplotypes. Our assumption is that the haplotypes belonging to the same class transmit the same ancestral allele. So their putative QTL allelic effects can be modeled with the same parameter, leading to a parsimonious model, that is plugged in MCQTL. Intensive simulations using three maize data sets showed the significant gain in power and in accuracy of the QTL mapping with the ancestral allele model compared to the classical MCQTL model. MCQTL_LD (clusthaplo outputs plug in MCQTL) is a versatile and powerful tool for QTL mapping in multiple related families that makes use of linkage and linkage disequilibrium (web site http://carlit.toulouse.inra.fr/MCQTL/).  相似文献   

20.
A large comparative genomic sequence study has determined the extent of conservation between RNA editing sites within the mammalian evolutionary tree.See related research by Pinto et al., http://genomebiology.com/2014/15/1/R5  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号