首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
The conversion of an anonymous DNA sample into numerous oligonucleotides is enzymatically feasible using an unusual restriction endonuclease, CviJI. Depending on reaction conditions, CviJI is capable of digesting DNA at a two or three base recognition sequence. CviJI normally cleaves RGCY sites between the G and C to leave blunt ends. Under 'relaxed' conditions CviJI* cleaves RGCY, and RGCR/YGCY, but not YGCR sites. In theory, CviJI* restriction of pUC19 (2686 bp) should produce 157 fragments, 75% of which are smaller than 20 bp. Instead, 96% of the CviJI* fragments were 18-56 bp long and none of the fragments were smaller than 18 bp. Thermal denaturation of these fragments generates sequence specific oligonucleotides homologous for the cognate template. The enzymatic conversion of anonymous DNA into sequence specific oligomers has implications for several conventional and novel molecular biology procedures.  相似文献   

2.
R.CviJI is unique among site-specific restriction endonucleases in that its activity can be modulated to recognize either a two or three base sequence. Normally R.CviJI cleaves RGCY sites between the G and C to leave blunt ends. In the presence of ATP R.CviJI* cleaves RGCN and YGCY sites, but not YGCR sites. The gene encoding R.CviJI was cloned from the eukaryotic Chlorella virus IL-3A and expressed in Escherichia coli. The primary E.coli cviJIR gene product is a 278 amino acid protein initiated from a GTG codon, rather than the expected 358 amino acid protein initiated from an in-frame upstream ATG codon. Interestingly, the 278 amino acid protein displays the normal restriction activity but not the R.CviJI* activity of the native enzyme. Nine restriction and modification proteins which recognize a central GC or CG sequence share short regions of identity with R.CviJI amino acids 144-235, suggesting that this region is the recognition and/or catalytic domain.  相似文献   

3.
4.
5.
The EcoRV restriction endonuclease recognises palindromic GATATC sequences and cuts between the central T and dA bases in a reaction that has an absolute requirement for a divalent metal ion, physiologically Mg(2+). Use has been made of base analogues, which delete hydrogen bonds between the protein and DNA (or hydrophobic interactions in the case of the 5-CH(3) group of thymine), to evaluate the roles of the outer two base-pairs (GATATC) in DNA recognition. Selectivity arises at both the binding steps leading to the formation of the enzyme-DNA-metal ion ternary complex (assayed by measuring the dissociation constant in the presence of the non-reactive metal Ca(2+)) and the catalytic step (evaluated using single-turnover hydrolysis in the presence of Mg(2+)), with each protein-DNA contact contributing to recognition. With the A:T base-pair, binding was reduced by the amount expected for the simple loss of a single contact; much more severe effects were observed with the G:C base-pair, suggesting additional conformational perturbation. Most of the modified bases lowered the rate of hydrolysis; furthermore, the presence of an analogue in one strand of the duplex diminished cutting at the second, unmodified strand, indicative of communication between DNA binding and the active site. The essential metal ion Mg(2+) plays a key role in mediating interactions between the DNA binding site and active centre and in many instances rescue of hydrolysis was seen with Mn(2+). It is suggested that contacts between the GATATC site are required for tight binding and for the correct assembly of metal ions and bound water at the catalytic site, functions important in providing acid/base catalysis and transition state stabilisation.  相似文献   

6.
It has been proposed that protein-DNA recognition is mediated via specific hydrogen bond, hydrophobic, and/or electrostatic interactions between the protein and DNA surfaces. We have attempted to map and quantitate the energies of these interactions for the TaqI endonuclease by constructing substrates substituted with base or phosphate analogues that either remove or sterically obstruct particular functional groups in the canonical TCGA sequence. The DNA backbone was also modified using a chemical approach (phosphate ethylation) which identified several phosphates in the recognition sequence essential for cleavage. The base analogues, N6-methyl-A, N7-deaza-A, N7-deaza-G, inosine, N4-methyl-C, 5-methyl-C, uracil, 5-bromo-U, and the phosphate analogues, alpha-thio-A, alpha-thio-G, alpha-thio-T, alpha-thio-A, were substituted for their corresponding unmodified counterpart in one strand of the TCGA duplex. The effects of these analogues were monitored by measuring the steady state (Km, kcat) and single-turnover (kst) kinetic constants. Only the N6-methyl-A-substituted DNA, which mimics in vivo methylation, was unreactive while the remaining analogue substitutions exhibited Michaelis-Menten kinetics. In general, the Km was either unchanged or lowered by the analogue substitutions. In contrast, many of the analogues severely reduced kcat, suggesting the modified functional groups served mainly to destabilize the transition state. Single-turnover measurements paralleled the kcat results, pointing to the N7 and N6 of A, the N7 of G, and one of the nonbridging oxygens 3' to T as putative contacts made in achieving the transition state. Substrates with double substitutions displayed simple additivity of delta delta G" implying that these changes behaved independently. The unmodified strand in 10 out of 12 hemisubstituted substrates had a normal kst value suggesting that a particular cleavage center is controlled predominantly by recognition of determinants on the same strand as the scissile bond. These results are discussed in relation to base analogue work from the EcoRI, RsrI, and EcoRV restriction endonucleases.  相似文献   

7.
DNA damage occurs unceasingly in all cells. Spontaneous DNA base loss, as well as the removal of damaged DNA bases by specific enzymes targeted to distinct base lesions, creates non-coding and lethal apurinic/apyrimidinic (AP) sites. AP sites are the central intermediate in DNA base excision repair (BER) and must be processed by 5' AP endonucleases. These pivotal enzymes detect, recognize, and cleave the DNA phosphodiester backbone 5' of, AP sites to create a free 3'-OH end for DNA polymerase repair synthesis. In humans, AP sites are processed by APE1, whereas in yeast the primary AP endonuclease is termed APN1, and these enzymes are the major constitutively expressed AP endonucleases in these organisms and are homologous to the Escherichia coli enzymes Exonuclease III (Exo III) and Endonuclease IV (Endo IV), respectively. These enzymes represent both of the conserved 5' AP endonuclease enzyme families that exist in biology. Crystal structures of APE1 and Endo IV, both bound to AP site-containing DNA reveal how abasic sites are recognized and the DNA phosphodiester backbone cleaved by these two structurally unrelated enzymes with distinct chemical mechanisms. Both enzymes orient the AP-DNA via positively charged complementary surfaces and insert loops into the DNA base stack, bending and kinking the DNA to promote flipping of the AP site into a sequestered enzyme pocket that excludes undamaged nucleotides. Each enzyme-DNA complex exhibits distinctly different DNA conformations, which may impact upon the biological functions of each enzyme within BER signal-transduction pathways.  相似文献   

8.
Positive-selection vectors utilizing lethality of the EcoRI endonuclease   总被引:12,自引:0,他引:12  
I Kuhn  F H Stephenson  H W Boyer  P J Greene 《Gene》1986,42(3):253-263
The construction and use of a series of positive-selection vectors are described. These plasmids encode EcoRI endonuclease, the synthesis of which is under the control of the lacUV5 promoter. The pKG2 plasmid encodes a wild-type EcoRI endonuclease. In the absence of EcoRI methylase, the endonuclease is lethal. Cloning into any of the unique restriction sites within the endonuclease-coding gene allows survival of the transformed EcoRI-methylase-less host. The pKGW and pKGS plasmids encode an altered EcoRI endonuclease which, when repressed in a lacIQ host, allows survival in the absence of the methylase. Induction with IPTG, however, results in cell death as a result of high-level EcoRI synthesis. Cloning into any of the unique restriction sites within the EcoRI gene of pKGW or pKGS allows survival of derepressed transformed cells. These vectors strongly select for cloning events which inactivate the endonuclease gene.  相似文献   

9.
10.
Substrate recognition by the EcoRI endonuclease   总被引:3,自引:0,他引:3  
J Heitman  P Model 《Proteins》1990,7(2):185-197
The EcoRI restriction endonuclease is one of the most widely used tools for recombinant DNA manipulations. Because the EcoRI enzyme has been extremely well characterized biochemically and its structure is known at 3 A resolution as an enzyme-DNA complex, EcoRI also serves as a paradigm for other restriction enzymes and as an important model of DNA-protein interactions. To facilitate a genetic analysis of the EcoRI enzyme, we devised an in vivo DNA scission assay based on our finding that DNA double-strand breaks induce the Escherichia coli SOS response and thereby increase beta-galactosidase expression from SOS::lacZ gene fusions. By site-directed mutagenesis, 50 of 60 possible point mutations were generated at three amino acids (E144, R145, and R200) implicated in substrate recognition by the crystal structure. Although several of these mutant enzymes retain partial endonuclease activity, none are altered in substrate specificity in vivo or in vitro. These findings argue that, in addition to the hydrogen bond interactions revealed by the crystal structure, the EcoRI enzyme must make additional contacts to recognize its substrate.  相似文献   

11.
For shotgun cloning into M13 vectors, a double-stranded cassette of synthetic oligonucleotides containing a SmaI site within the two halves of an EcoK site, has been introduced into the vector M13mp8. Cloning of blunt end DNA into the SmaI site destroys the EcoK site, and recombinants are therefore preferentially selected on transfection into a K strain of E.coli. For deletion mutagenesis using synthetic oligonucleotides, an M13 vector with four copies of the EcoK cassette has been made to facilitate the joining of lacZ or a Factor Xa cleavage site to any protein reading frame.  相似文献   

12.
The XmaI endonuclease recognizes and cleaves the sequence C decreases CCGGG. Magnesium is required for catalysis, however, the enzyme forms stable, specific complexes with DNA in the absence of magnesium. An association constant of 1.2 x 10(9)/M was estimated for the affinity of the enzyme for a specific 195 bp fragment. Competition assays revealed that the site-specific association constant represented an approximately 10(4)-fold increase in affinity over that for non-cognate sites. Missing nucleoside analyses suggested an interaction of the enzyme with each of the cytosines and guanines within the recognition site. Recognition of each of the guanines was also indicated by dimethylsulfate interference footprinting assays. The phosphates 5' to the guanines within the recognition site appeared to be the major sites of interaction of XmaI with the sugar-phosphate backbone. No significant interaction of the protein was observed with phosphates flanking the recognition sequence. Comparison of the footprinting patterns of XmaI with those of the neoschizomer SmaI (CCC decreases GGG) revealed that the two enzymes utilize the same DNA determinants in their specific interaction with the CCCGGG recognition site.  相似文献   

13.
Under the standard reaction conditions, the restriction endonuclease HindIII cleaves double-stranded DNA, within the recognition sequence--A/AGCTT--at the position indicated by the arrow. In the presence of dimethyl sulfoxide the substrate specificity of this enzyme is reduced and cleavages occur at additional sites. We have determined the secondary sites in pBR322 DNA recognized by HindIII endonuclease under relaxed conditions and found that it cleaves the hexanucleotides: G/AGCTT, A/GGCTT, A/TGCTT, A/ATCTT, A/AGCCT, A/AGCAT, A/AGCGT, A/AGCTC, at the positions indicated by the arrows, producing fragments with cohesive ends.  相似文献   

14.
EcoP15 is a restriction-modification enzyme coded by the P15 plasmid of Escherichia coli. We have determined the sites recognized by this enzyme on pBR322 and simian virus 40 DNA. The enzyme recognizes the sequence:
In restriction, the enzyme cleaves the DNA 25 to 26 base-pairs 3′ to this sequence to leave single-stranded 5′ protrusions two bases long.  相似文献   

15.
We have characterized features of the site recognized by a double-stranded DNA endonuclease, I-SceII, encoded by intron 4 alpha of the yeast mitochondrial COX1 gene. We determined the effects of 36 point mutations on the cleavage efficiency of natural and synthetic substrates containing the Saccharomyces capensis I-SceII site. Most mutations of the 18-bp I-SceII recognition site are tolerated by the enzyme, and those mutant sites are cleaved between 42 and 100% as well as the wild-type substrate is. Nine mutants blocked cleavage to less than or equal to 33% of the wild-type, whereas only three point mutations, G-4----C, G-12----T, and G-15----C, block cleavage completely. Competition experiments indicate that these three substrates are not cleaved, at least in part because of a marked reduction in the affinity of the enzyme for those mutant DNAs. About 90% of the DNAs derived from randomization of the nucleotide sequence of the 4-bp staggered I-SceII cleavage site are not cleaved by the enzyme. I-SceII cleaves cloned DNA derived from human chromosome 3 about once every 110 kbp. The I-SceII recognition sites in four randomly chosen human DNA clones have 56 to 78% identity with the 18-bp site in yeast mitochondrial DNA; they are cleaved at least 50% as well as the wild-type mitochondrial substrate despite the presence of some substitutions that individually compromise cleavage of the mitochondrial substrate. Analysis of these data suggests that the effect of a given base substitution in I-SceII cleavage may depend on the sequence at other positions.  相似文献   

16.
A new cloning strategy is described which utilizes direct selection of recombinants for shotgun sequencing in the filamentous bacteriophage M13. Direct selection is accomplished by insertional inactivation of the M13 gene X protein, a powerful inhibitor of phage-specific DNA synthesis when overproduced. An extra copy of gene X was inserted into the intergenic region of M13 and placed under the control of the bacteriophage T7 gene 10 promoter and RBS. Random fragments are cloned into the EcoRV cloning site of the new gene X cistron and recombinants are selected in an E. coli male strain producing T7 RNA polymerase. Cloning efficiencies obtained with M13-100 or phosphatase-treated M13mp19 vector are comparable. The direct selection capability of M13-100 was demonstrated to have the following advantages: (a) consistently achieved high ratios of recombinants to religated vector in the libraries, averaging about 500:1 (0.2% background), and (b) the elimination of the need for phosphatase treatment of the vector to reduce background. The direct selection strategy significantly improves the efficiency of shotgun library construction in M13, and should therefore facilitate the cloning aspects of large scale sequencing projects.  相似文献   

17.
A sequence-specific endonuclease present in extracts of Rhodopseudomonas sphaeroides 630 has been purified and characterized. The enzyme, Rsr II, recognises and cleaves the palindromic heptanucleotide sequence: (sequence; see test) By virtue of its unusual specificity, RsrII cuts most DNA molecules very infrequently which should facilitate the physical mapping of large genomes.  相似文献   

18.
We have proposed that the ability of T4 to produce non-glucosylated progeny after a single cycle of growth on a galU rglA rglB+ mutant of Escherichia coli is due to the initiation of the rglB+ function by a phage-coded, anti-restriction endonuclease protein. Based on this hypothesis, we screened T4 deletion mutants for failure to give a burst in this host. The absence of an arn gene in phage mutants lacking the 55.5- to 58.4-kilobase region is verified by their inability to protect secondary infecting non-glucosylated phage from rglB-controlled cleavage. A functional arn gene was cloned on plasmid pBR325, and the 0.8-kilobase insert DNA was shown to be homologous to the DNA missing in the arn deletion phage.  相似文献   

19.
I- Dmo I is a homing enzyme of the LAGLI-DADG type that recognizes up to 20 bp of DNA and is encoded by an archaeal intron of the hyperthermophilic archaeon Desulfurococcus mobilis . A combined mutational and DNA footprinting approach was employed to investigate the specificity of the I- Dmo I-substrate interaction. The results indicate that the enzyme binds primarily to short base paired regions that border the sites of DNA cleavage and intron insertion. The minimal substrate spans no more than 15 bp and while sequence degeneracy is tolerated in the DNA binding regions, the sequence and size of the cleavage region is highly conserved. The enzyme has a slow turnover rate and cuts the coding strand with a slight preference over the non-coding strand. Complex formation produces some distortion of the DNA double helix within the cleavage region. The data are compatible with the two DNA-binding domains of I- Dmo I bridging the minor groove, where cleavage occurs, and interacting within the major groove on either side, thereby stabilizing a distorted DNA double helix. This may provide a general mode of DNA interaction at least for the LAGLIDADG-type homing enzymes.  相似文献   

20.
The efficiency of cleavage of DNA duplexes with single EcoRII recognition sites by the EcoRII restriction endonuclease decreases with increasing substrate length. DNA duplexes of more than 215 bp are not effectively cleaved by this enzyme. Acceleration of the hydrolysis of long single-site substrates by EcoRII is observed in the presence of 11-14-bp substrates. The stimulation of hydrolysis depends on the length and concentration of the second substrate. To study the mechanism of EcoRII endonuclease stimulation, DNA duplexes with base analogs and modified internucleotide phosphate groups in the EcoRII site have been investigated as activators. These modified duplexes are cleaved by EcoRII enzyme with different efficiencies or are not cleaved at all. It has been discovered that the resistance of some of them can be overcome by incubation with a susceptible canonical substrate. The acceleration of cleavage of long single-site substrates depends on the type of modification of the activator. The modified DNA duplexes can activate EcoRII catalyzed hydrolysis if they can be cleaved by EcoRII themselves or in the presence of the second canonical substrate. It has been demonstrated that EcoRII endonuclease interacts in a cooperative way with two recognition sites in DNA. The cleavage of one of the recognition sites depends on the cleavage of the other. We suggest that the activator is not an allosteric effector but acts as a second substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号