首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J J Mrotek  P F Hall 《Biochemistry》1977,16(14):3177-3181
The ability of cytochalasin B to inhibit the steroidogenic response of mouse adrenal tumor cells (Y-1) to adrenocorticotropin (ACTH) was examined with two aims: to consider the specificity of the inhibitor and to determine at what point(s) in the steroidogenic pathway it acts. Cytochalasin B did not inhibit protein synthesis or transport of [3H]-cholesterol into the cells nor did it alter total cell concentration of ATP. Together with previous evidence, this suggests that the effects of cytochalasin observed are relatively specific in these cells. Cytochalasin inhibits the increase in conversion of [3H]cholesterol to 20alpha-[3H]dihydroprogesterone (20alpha-hydroxypregn-4-en-3-one: a major product of the steroid pathway in Y-1 cells) produced by ACTH but does not inhibit conversion of cholesterol to pregnenolone by mitochondrial and purified enzyme preparations from Y-1 cells and bovine adrenal, respectively. Cytochalasin does not inhibit the conversion of pregnenolone to 20alpha-dihydroprogesterone but was shown to inhibit increased transport of [3H]cholesterol to mitochondria resulting from the action of ACTH. These findings indicate that cytochalasin acts after cholesterol has entered the cells and before it is subjected to side-chain cleavage in mitochondria. In view of the known action of cytochalasin on microfilaments, it is proposed that these organelles are necessary for the transport of cholesterol to the mitochondrial cleavage enzyme and that at least one effect of ACTH (and cyclic AMP) is exerted upon this transport process. The specificity of the effects of cytochalasin is considered in relation to this conclusion.  相似文献   

2.
Transformation of a steroidogenic mouse adrenal cell line (Y-1) by simian adenovirus SA7 produced a cell line with low apparent steroidogenic activity. The effect of ACTH and cholera toxin on cyclic AMP production was similar in both not transformed and virus-transformed cells and activity of cyclic AMP-dependent protein kinase was also similar in both cells. In transformed cells, cholesterol was metabolized to delta 5-3 beta-hydroxysteroids, mainly 20 alpha-dihydropregnenolone while in not transformed cells, the major metabolites were delta 4-3 ketosteroids (20 alpha-dihydro- and 11 beta-hydroxy-20 alpha-dihydroprogesterone). In both cell lines ACTH increased the metabolism of cholesterol. Further studies with labelled pregnenolone and progesterone revealed a loss of delta 5-3 beta-hydroxysteroid dehydrogenase/isomerase and 11 beta-hydroxylase activity in the transformed cells.  相似文献   

3.
The slow step in steroid synthesis involves the transport of cholesterol from lipid droplets in the cytoplasm to the first enzyme in the pathway—the cytochrome P450 that converts cholesterol to pregnenolone (P450scc) which is located in the inner mitochondrial membrane. ACTH stimulates this intracellular transport of cholesterol in adrenal cells (Y-1 mouse adrenal tumour cells and cultured bovine fasciculata cells) and this effect of the trophic hormone is inhibited by cytochalasins, by anti-actin antibodies and DNase I suggesting that the response to ACTH requires a pool of monomeric (G-) actin that can be polymerized to F-actin. Recent studies have shown that lipid droplets and mitochondria of adrenal cells are both attached to intermediate filaments. Moreover ACTH reorganizes the cytoskeleton and changes the shape of the cell. These observations suggest a mechanism for transport of cholesterol that involves reorganization and contraction of actin microfilaments which may, in turn, cause movement of droplets and mitochondria together through their common attachment to intermediate filaments.  相似文献   

4.
Four clonal adrenal tumor cell lines which exhibit biochemical lesions in the ACTH-stimulated steroidogenic pathway have been isolated. Two of these cell lines, designated Y-6 and OS3, appear to contain their lesions at points proximal to cyclic AMP formation in the ACTH-stimulated steroidogenic pathway. Growth of Y-6 and OS3 as tumors in isogenic mice results in a restoration of ACTH sensitivity in both cell lines by mechanisms which do not appear to involve selection or fulfillment of specific nutritional requirements. Growth of Y-6 and OS3 as tumors in heterogenic mice results in restoration of ACTH sensitivity in Y-6 but not in OS3, suggesting that the biochemical lesions in these cell lines are at different loci. Two other cell lines, designated OS1 and OS4, possess biochemical lesions in the steroidogenic pathway beyond the formation of cyclic AMP and before the formation of pregnenolone. Growth of OS1 and OS4 as tumors in isogenic mice results in the repair of the biochemical lesions in these cells distal to cyclic AMP formation in the ACTH-stimulated steroidogenic pathway. The four cell lines described are potentially useful in elucidating the mechanism of action of ACTH in adrenal cells as well as in determining the factors required for maintaining differentiated function in cultured cells.  相似文献   

5.
Cytochalasin B inhibits increase in steroid synthesis by mouse adrenal tumor cells (Y-1), produced either by ACTH or cyclic AMP. Basal levels of steroid synthesis are not decreased and the inhibitor acts by decreasing the response of the side-chain cleavage step (cholesterol → pregnenolone) to ACTH. Inhibition is reversible and is seen in medium without glucose. These observations suggest that microfilaments may play a role in the response of adrenal cells to ACTH.  相似文献   

6.
Much of the cholesterol used in steroid synthesis is stored in lipid droplets in the cytoplasm of steroid-forming cells. The cholesterol ester in these droplets is transported to the inner mitochondrial membrane where it enters the pathway to steroid hormones as free cholesterol—the substrate for the first enzyme, namely P450scc. It has been shown that this transport process governs the rate of steroid synthesis and is specifically stimulated by ACTH and its second messenger. The stimulating influence of ACTH on cholesterol transport is inhibited by cytochalasins, by monospecific anti-actin and by DNase I demonstrating that the steroidogenic cell must possess a pool of monomeric actin available for polymerization to F actin if it is to respond to ACTH and cyclic AMP. It has been shown that the two structures involved in cholesterol transport (droplets and mitochondria) are both bound to vimentin intermediate filaments in adrenal and Leydig cells. In addition these filaments are closely associated with the circumferential actomyosin ring in which they are crosslinked by actin microfilaments. In permeabilized adrenal cells Ca2+/calmodulin phosphorylates vimentin and this change is known to disrupt intermediate filaments and to cause contraction of actomyosin by phosphorylating myosin light chain kinase. Ca2+/calmodulin stimulated cholesterol transport and steroid synthesis and causes rounding of the responding cells by contraction of the actomyosin, if ATP is also added at the same time. Other agents that disrupt intermediate filaments include anti-vimentin plus ATP in permeabilized cells which also results in rounding of the cell. Acrylamide exerts a similar effect in intact adrenal cells and in addition causes rounding of the cells and increase in steroid synthesis without increase in cyclic AMP. It is also known that if adrenal cells are grown on surfaces treated with poly(HEMA), the cells grow in rounded form and steroid synthesis is increased in proportion to the degree of rounding (r = 0.92). This response does not involve increase in cellular levels of cylic AMP. It is proposed that in vivo where the cell is always round and cannot show more than strictly limited change in shape, ACTH activates Ca2+/calmodulin possibly by redistributing cellular Ca2+. Ca2+/calmodulin in turn promotes phosphorylation of vimentin and myosin light chain. The first of these phosphorylations shortens intermediate filaments and the second promotes contraction of the actomoyosin ring with internal shortening and approximation of lipid droplets and mitochondria. Details of the earlier events (activation of Ca2+/calmodulin) and later changes (transfer of cholesterol to the inner membrane) remain to be elucidated. It is clear however that the action of ACTH requires increase in cellular cyclic AMP. These experimental responses bypass this step in the response to ACTH.  相似文献   

7.
The mechanism of the prolonged stimulatory effect of corticotropin (ACTH) on adrenocortical synthesis of cortisol was studied in guinea-pig adrenocortical cells harvested from control animals and from guinea-pigs submitted 24 h before the sacrifice to a prolonged ether anesthesia in an attempt to induce a release of endogenous ACTH. As a result of this in vivo exposure to endogenous ACTH, the maximal capacity to produce glucocorticoids (by 1 X 10(5) cells incubated during 2 h) in response to ACTH increased from 579 +/- 111 ng (control group) to 915 +/- 143 ng for cells from treated animals, whereas the apparent affinity of the steroidogenic response to ACTH remained unchanged. This hyper-reactivity of cells from anesthetized animals was also evident in the presence of dibutyryl cyclic AMP. Moreover, there was increased conversion of exogenous pregnenolone into cortisol by cells from previously anesthetized animals. It was therefore concluded that ACTH increases in a lasting way the activity of steroidogenic pathway leading to cortisol synthesis by adrenocortical cells at sites distal to cyclic AMP generation. Besides an obvious increase of formation of pregnenolone in response to ACTH, it seems that this ACTH-induced enhancement in the capacity of the steroidogenic response to ACTH also implies a prolonged stimulatory influence of the peptide on the post-pregnenolone steroidogenic pathway leading to cortisol synthesis.  相似文献   

8.
In order to elucidate the relationship between cyclic AMP and the Ca2+-calmodulin system in the steroidogenic response to adrenocorticotropic hormone (ACTH), the effects of calmodulin inhibitors (trifluoperazine and W-7) on cortisol production and cellular cholesterol ester hydrolysis induced by ACTH or dibutyryl cyclic AMP in bovine adrenocortical cells were examined in the absence of extracellular Ca2+. These calmodulin inhibitors inhibited not only the cortisol production and the cholesterol ester hydrolysis induced by ACTH in the absence of extracellular Ca2+, but also inhibited the dibutyryl cyclic AMP-induced cortisol production and the cholesterol ester hydrolysis in the absence of extracellular Ca2+. These results suggested the possibility that cyclic AMP action was mediated by the Ca2+-calmodulin system in the activation process of cellular cholesterol ester hydrolysis in the steroidogenic response to ACTH.  相似文献   

9.
The effects of the calcium antagonists ruthenium red and D-600 and the cation ionophore A23187 on steroidogenesis were investigated. Steroidogenesis triggered by corticotrophin and cyclic AMP was inhibited by each of the agents. Incubation of Y-1 cells with an excess of ethyleneglycol-bis-(beta-amino-ethylether)-N,N'-tetraacetic acid (EGTA) abolished the steroidogenic response to corticotrophin while the response to cyclic AMP was unaffected. The ability of ruthenium red and D-600 (1 . 10(-5) M), and A23187 (6 . 10(-6 M) to inhibit a response which does not require the presence of extracellular calcium (cyclic AMP induced steroidogenesis) suggests that they are altering intracellular calcium. Neither of the calcium antagonists nor the cation ionophore inhibited the steroidogenic response to exogenous pregnenolone, thereby suggesting that the cells were still viable. Only when A23187 was used in the presence of a 15-fold increase in extracellular calcium (4.8 mM) was the response to pregnenolone diminished. The data are interpreted as a further indication that, in intact cells, intracellular calcium plays a role in the steroidogenic pathway.  相似文献   

10.
A role for calmodulin in the regulation of steroidogenesis   总被引:2,自引:1,他引:1       下载免费PDF全文
Two approaches were used to study the possible role of calmodulin in the regulation of steroid synthesis by mouse adrenal tumor cells: trifluoperazine was used as an inhibitor of calmodulin and liposomes were used to deliver calmodulin into the cells. Trifluoperazine inhibits three steroidogenic responses to both ACTH and dibutyryl cyclic AMP: (a) increase in steroid production, (b) increased transport of cholesterol to mitochondria, and (c) increased side-chain cleavage by mitochondria isolated from cells incubated with ACTH or dibutyryl cyclic AMP. When calmodulin is introduced into the cells via liposomes, steroid synthesis is slightly stimulated. When calmodulin extensively dialyzed against EGTA, this stimulation is abolished. Ca(2+) introduced via liposomes was also without effect. However, when both calmodulin and Ca(2+) are introduced via liposomes (either in separate liposomes or in the same liposomes), steroid synthesis is stimulated. This stimulation does not occur when either anticalmodulin antibodies or EGTA is also present in the liposomes or when trifluoperazine is present in the incubation medium. Calmodulin and Ca(2+) presented together in liposomes to the cells stimulate transport of cholesterol to mitochondria, and side-chain cleavage activity is greater in mitochondria isolated from cells previously fused with liposomes containing calmodulin and Ca(2+) than in mitochondria from cells fused with liposomes containing buffer only. These observations suggest that calmodulin may be involved in regulating the transport of cholesterol to mitochondria, a process which is stimulated by ACTH and dibutyryl cyclic AMP and which may account, at least in part, for the increase in steroid synthesis produced by these agents.  相似文献   

11.
The effects of taxol on steroid production and microtubule polymerization were examined using Y-1 adrenocortical tumor cells, MLTC-1 Leydig tumor cells, and primary cultures of bovine adrenocortical cells. Taxol inhibited the following steroidogenic processes within the Y-1 and MLTC-1 cells: (1) hormonal increase of steroid production, (2) dibutyryl cyclic AMP-increased steroid production, and (3) hormone-stimulated pregnenolone production. The inhibitory action of taxol was concentration dependent and also resulted in an increase in cytoplasmic microtubules. In addition, the inhibitory action of taxol on hormone-stimulated steroid production was reversible. Taxol appeared to inhibit cholesterol movement to the mitochondrial site of cholesterol side-chain cleavage enzyme but did not affect overall protein synthesis. Interestingly, taxol did not affect hormone-stimulated steroid production in bovine adrenocortical cells. This lack of inhibition may correspond to the ultrastructural observation that microtubule bundling after taxol treatment was observed in the tumor cells but not in similarly treated bovine adrenal cells. With this conflicting information between cell types, a direct relationship between taxol treatment and inhibition of steroid production has not been established. However, these results suggest that taxol alters the rate of transport of cholesterol to the cholesterol side-chain cleavage enzyme within the steroidogenic tumor cells.  相似文献   

12.
A significant proportion of the steroidogenic response of isolated rat adrenocortical cells to dibutyryl cyclic AMP does not require extracellular calcium, and this component is profoundly depressed by low concentrations of the putative calcium antagonist, TMB-8. The inhibition is reversed by either the readdition of calcium or the calcium ionophore A23187. The steroidogenic response to pregnenolone, whose mode of action does not require calcium, was not depressed by TMB-8. Corticotropin (ACTH)-induced steroidogenesis, which requires extracellular calcium, was markedly depressed by TMB-8, although enhanced cyclic AMP formation is only slightly depressed by this drug. Adrenal cortical microsomes possess an ATP-dependent 45calcium (45Ca2+) uptake system which responded to EGTA with a rapid efflux of 45Ca2+; EGTA-induced calcium efflux from this microsomal fraction was markedly reduced by a concentration of TMB-8 that blocked dibutyryl cyclic AMP-evoked steroidogenesis. TMB-8 produced a smaller but significant reduction of EGTA-facilitated 45Ca2+ efflux from a mitochondrial-enriched fraction. We interpret these results to mean that TMB-8 blocks the steroidogenic effect of dibutyryl cyclic AMP by interfering with the mobilization of a cellular pool of calcium that is probably localized to the endoplasmic reticulum. The physiological implications of these findings in relation to the complex interactions between calcium and cyclic AMP in adrenal steroidogenesis are discussed.  相似文献   

13.
In previous studies we demonstrated that peripheral-type benzodiazepine receptors (PBR) were coupled to steroidogenesis in several adrenocortical and Leydig cell systems (Mukhin, A.G., Papadopoulos, V., Costa, E., and Krueger, K.E. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 9813-9816; Papadopoulos, V., Mukhin, A.G., Costa, E., and Krueger, K.E. (1990) J. Biol. Chem. 265, 3772-3779). The current study elucidates the specific step in the steroid biosynthetic pathway by which PBR mediate the stimulation in steroid hormone production. The adrenocorticotropin (ACTH)-responsive Y-1 mouse adrenocortical cell line was used to compare the mechanisms by which ACTH and PK 11195 (a PBR ligand) stimulate steroidogenesis. The effects of these agents were studied at three stages along the steroid biosynthetic pathway: 1) secretion of 20 alpha OH-progesterone by Y-1 cell cultures; 2) pregnenolone production by isolated mitochondrial fractions; 3) quantities of cholesterol resident in outer and inner mitochondrial membrane fractions. Steroid synthesis stimulated by ACTH was blocked by cycloheximide, an effect documented by other laboratories characterized by an accumulation of mitochondrial cholesterol specifically in the outer membrane. In contrast, PK 11195-stimulated steroidogenesis was not inhibited by cycloheximide, and the magnitude of the stimulation was markedly enhanced when the cells were pretreated with cycloheximide and ACTH. When isolated mitochondria were used, stimulation of pregnenolone production by PK 11195 was largely independent of exogenously supplied cholesterol, indicating that PBR act on cholesterol already situated within the mitochondrial membranes. This phenomenon was found to be the result of a translocation of cholesterol from outer to inner mitochondrial membranes induced by the PBR ligand. These studies therefore suggest that mitochondrial intermembrane cholesterol transport in steroidogenic cells is mediated by a mechanism coupled to PBR.  相似文献   

14.
Addition of the ionophore A123187 to Y-1 mouse adrenal tumor cells in monolayer culture inhibits steroidogenesis and the steroidogenic response to corticotropin (50% inhibition at 1 · 10?7 M). inhibition is rapid in onset and is not overcome by addition of external Ca2+. The ionophore also inhibits stimulation of steroid synthesis by cyclic AMP. A23187 inhibits incorporation of the amino acid lysine into protein by Y-1 cells and the dose dependence of this inhibition closely resembles that of the inhibition of the steroidogenic response to corticotropin. Addition of A23187 to a subcellular system for protein synthesis prepared from Y-1 cells, inhibits incorporation of the amino acid phenylalanine into protein and this effects and this effect is not overcome by high concentrations of Ca2+. The inhibitory effect of A23187 on the response to corticotropin, like that response itself, takes place at some part of steriod synthesis after entry of cholesteriol into the cells and before the side-chain cleavage of cholesterol. These studies confirm the importance of protein synthesis in the response to corticotropin and demonstrate that the effect of protein synthesized under the influence of corticotropin is exerted at some point in the events which bring substrate (cholesterol) to the mitochondrial side-chain cleavage enzyme system. It is also shown that A23187 inhibits protein synthesis, and hence the response to corticotropin, by a mechanism which is independent of the concentration of available Ca2+.  相似文献   

15.
The action of adrenocorticotropin (ACTH) on the specific (receptor-mediated) uptake of cholesteryl linoleate . low density lipoprotein complexes was examined in Y-1 mouse adrenal tumor cells. High affinity binding (KA 4.1 X 10(8) M) was observed with ACTH; lower affinity was seen in the absence of ACTH. The effect of ACTH was observed within 10 min at physiological concentrations of low density lipoprotein (100 microgram/ml). Binding was followed by uptake (internalization) of the ester . lipoprotein complex which was transported to lysosomes. The site of action of ACTH was localized to the uptake process (internalization) since no effect of ACTH was observed on binding to the cell membrane nor on movement of internalized complex to lysosomes. ACTH increases the transport of cholesterol derived from cholesterol ester to the mitochondria. This cholesterol is converted to 20 alpha-hydroxypregn-4-en-3-one and this conversion is accelerated by ACTH. Dibutyryl cyclic AMP (but not butyrate) also stimulates uptake of cholesteryl linoleate . low density lipoprotein. The process stimulated by ACTH and dibutyryl cyclic AMP is specific for low density (as opposed to high density) lipoprotein and for ACTH as distinct from other peptide hormones. The possible physiological importance of this response is considered.  相似文献   

16.
Isolated adrenal cells were perfused in a small column by using Bio-Gel polyacrylamide beads as an inert supporting matrix, and the time-course of the response to various stimuli was observed by measuring fluorogenic 11-hydroxycorticosteroids in the effluent. A small but significant response was observed 1 min after stimulation with physiological concentrations of ACTH (adrenocorticotrophin), but the response did not start to build up rapidly for 3-4min and eventually reached a plateau after 9-10min. A similar pattern of events was observed for the decay of the steroid output on removal of ACTH. ACTH analogues, including one with a long duration of action in vivo, were found to produce responses with similar kinetics. However, cyclic AMP caused a more rapid increase in steroidogenesis and its effects were more short-lived after withdrawal. If, as present evidence suggests, cyclic AMP is produced rapidly after ACTH stimulation the delayed build-up of the steroidogenic response to ACTH would indicate that cyclic AMP may not be the intracellular mediator. When inhibitors were applied during ACTH stimulation, aminoglutethimide, which blocks mitochondrial conversion of cholesterol into pregnenolone (3beta-hydroxypregn-5-en-20-one), caused a rapid fall in steroid output (1 min), whereas cycloheximide took longer to achieve its full effect. Nevertheless, the response had fallen by 50% in 2 min, indicating a much shorter half-life than that previously reported for the labile protein implicated in steroidogenesis. In addition the rapid response to cyclic AMP makes it unlikely that steroid production is induced as a result of initiation of protein synthesis. This suggests that the labile protein plays an obligatory but permissive role in the development of the response. Column perfusion has proved to be a simple technique which can readily yield accurate data on responses of cells to stimulants and inhibitors.  相似文献   

17.
Actin pools have been evaluated in Drosophila melanogaster Kc 0% cells, through an actin assay based on differential inhibition of DNase I by globular (G) and filamentous (F) actin. Total actin represents about 4 % of total proteins and 54 % is G-actin. In ecdysterone treated cells (0.1 μM), the total actin content increases up to 9 % of total proteins after 3 days of treatment. Ecdysterone induces increase of G-actin as well as F-actin. Increase of both actins, detectable after only 24 hrs of treatment, is roughly parallel during the first two days of treatment. For longer hormonal treatment, actin polymerization is more important than accumulation of G-actin. Indirect immunofluorescence microscopy with antibodies to exogeneous DNase I suggests that actin is widely distributed in the whole cytoplasm before and after ecdysterone treatment. These results suggest that ecdysterone induces actin synthesis and polymerization in Drosophila melanogaster cells.  相似文献   

18.
Addition of the ionophore A23187 to Y-1 mouse adrenal tumor cells in monolayer culture inhibits steroidogenesis and the steroidogenic response to corticotropin (50% inhibition at 1 . 10(-7)M). Inhibition is rapid in onset and is not overcome by addition of external Ca2+. The ionophore also inhibits stimulation of steroid synthesis by cyclic AMP. A23187 inhibits incorporation of the amino acid lysine into protein by Y-1 cells and the dose dependence of this inhibition closely resembles that of the inhibition of the steroidogenic response to corticotropin. Addition of A23187 to a subcellular system for protein synthesis prepared from Y-1 cells, inhibits incorporation of the amino acid phenylalanine into protein and this effect is not overcome by high concentrations of Ca2+. The inhibitory effect of A23187 on the response to corticotropin, like that response itself, takes place at some part of steroid synthesis after entry of cholesterol into the cells and before the side-chain cleavage of cholesterol. These studies confirm the importance of protein synthesis in the response to corticotropin and demonstrate that the effect of protein synthesized under the influence of corticotropin is exerted at some point in the events which bring substrate (cholesterol) to the mitochondrial side-chain cleavage enzyme system. It is also shown that A23187 inhibits protein synthesis, and hence the response to corticotropin, by a mechanism which is independent of the concentration of available Ca2+.  相似文献   

19.
To determine if Chinese Hamster Ovary (CHO) cells in culture are able to metabolize steroids, CHO cells were incubated in defined medium with [14C]pregnenolone. As shown, [14C]pregnenolone is metabolized to progesterone and other delta 53 beta steroids; this steroidogenic response is appreciably enhanced upon exposure of the cells to 50 nM gonadotropins (human chorionic gonadotropin and follicle-stimulation hormone). The primary metabolites that accumulate in the medium upon treatment with gonadotropins are 16 alpha-hydroxy-pregnenolone and 16 alpha-17 beta-dihydroxydehydroepiandrosterone. Exposure of the CHO cells to gonadotropins induces significant increases in the activities of 16 alpha-hydroxylase, 17 alpha-hydroxylase, and 17-20 lyase. Similar results are obtained when the CHO cells are treated with 0.1 mM 8-bromocyclic AMP, indicating that the gonadotropin enhancement of steroid metabolism is a cyclic AMP-mediated process. CHO cells apparently lack the cholesterol desmolase complex since 14C-cholesterol is not utilized by these cells to produce other steroid metabolites. These results indicate that CHO cells offer an in vitro system for the study of certain aspects of gonadotropin stimulation of steroidogenesis.  相似文献   

20.
The role of the cyclic AMP-protein kinase system in mediating the steroidogenic effect of ACTH, prostaglandin E1 and dibutyryl cyclic AMP, induced similar stimulations of protein kinase activity, cyclic AMP was studied using human adrenal cells isolated from normal and adrenocortical secreting tumors. At high concentrations of ACTH, complete activation of protein kinase of normal adrenal cells was observed within 3 min, at the time when cyclic AMP production was slightly increased and there was still no stimulation of steroidogenesis. At supramaximal concentrations, ACTH, PGE1 and dibutyryl cyclic AMP and cortisol productions in adrenal cells isolated from normal and from one adrenocortical tumor. In one tumor in which the adenylate cyclase activity was insensitive to ACTH, the hormone was unable to stimulate protein kinase or steroidogenesis, but the cells responded to both PGE1 and dibutyryl cyclic AMP. In another tumor in which the adenylate cyclase was insensitive to PGE1, this compound also did not increase protein kinase activity or steroidogenesis, but both parameters were stimulated by ACTH and dibutyryl cyclic AMP. After incubation of normal adrenal cells with increasing concentrations of ACTH (0.01-100 nM) marked differences were found between cyclic AMP formation and cortisol production. However at the lowest concentrations of ACTH exerting an effect on steroid production a close linked correlation was found between protein kinase activation and cortisol production, but half-maximal and maximal cortisol production occurs at lower concentration of ACTH than was necessary to induce the same stimulation of protein kinase. Similar findings were found after incubating the adrenal cells with dibutyryl cyclic AMP (0.01-10 mM). The results implicate an important role of the cyclic AMP-protein kinase system during activation of adrenal cell steroidogenesis by low concentrations of steroidogenic compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号