首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biochemical assays for ras mutations are capable of detecting a mutant allele only if it is present in at least 5% of cells tested. Further, ras mutation assays which utilize the polymerase chain reaction (PCR) are unable to distinguish a ras mutation in a small population of cells from mutations resulting from Taq DNA polymerase base misincorporation. We used a standard restriction fragment length polymorphism assay of PCR-amplified c-Ki-ras to detect codon 12 mutations in tumor cells and found a cumulative error frequency for Taq DNA polymerase of one codon 12 mutation per 2 X 10(4) molecules of total amplification product. The Taq polymerase-induced mutations were found to be multiple base transitions and represented a constant proportion of the amplification product at each step of the PCR. The ability to detect the in vitro generated mutation was dependent on the number of thermal cycles and the sensitivity of the detection assay. With these considerations in mind, we developed a two-step RFLP assay in which the thermal cycle number was kept low and molecules containing mutations at codon 12 were selectively amplified in the second step. We were able to detect a ras mutation occurring in 1 per 1000 cells (a two log improvement over standard RFLP methods) without detecting mutations resulting from Taq DNA polymerase infidelity.  相似文献   

2.
Allele-specific competitive blocker PCR (ACB-PCR) is a sensitive allele-specific amplification method in which preferential amplification of the mutant allele occurs by using a primer that has more mismatches to the wild-type allele than to the mutant allele (mutant-specific primer, MSP). Additionally, a non-extendable primer with more mismatches to the mutant allele than to the wild-type allele (blocker primer, BP) competes with the MSP for binding to the wild-type allele, thereby reducing background amplification from the wild-type allele. ACB-PCR primer design is largely dependent upon the basepair substitution being measured, making it unclear if this method is broadly applicable. In an earlier study, an H-ras codon 61 CAA-->AAA mutation had been detected by ACB-PCR at a sensitivity of 10(-5). In this study, ACB-PCR was applied to two human K-ras codon 12 mutations: GGT-->GTT and GGT-->GAT. The method was optimized by systematically altering the concentrations of Perfect Match PCR Enhancer, MSP, BP, and dNTPs. For each mutation, mutant fractions as low as 10(-5) were detected, indicating that this assay can be used on a variety of base substitution mutations. In addition, the results suggest that the 3'-terminal mismatches between the MSP and wild-type allele may be used to predict the ACB-PCR conditions that will be appropriate for the detection of other base substitution mutations. The range of concentrations for each of these components is narrow, making this method relatively easy to apply to additional mutational targets.  相似文献   

3.
We developed a procedure to detect the 7 point mutations at Cys634 of the proto-oncogene RET, which is responsible for medullary thyroid carcinoma (MTC). Genomic DNA was prepared from blood samples obtained from normal and MTC-affected individuals belonging to a family with a history of the disease. The RET genotype for each individual was first established by performing restriction and sequencing analyses. Single-stranded target DNA was prepared by asymmetric polymerase chain reaction (PCR) amplification of a 93-bp fragment containing Cys634. The target was annealed with pairs of prelabeled stacking oligonucleotides designed to create appropriate 7-nucleotide gaps, which served as the sites of subsequent hybridization with glass-immobilized 7-mer probes. The target-stacking oligonucleotide duplexes were hybridized with DNA chips containing a set of eight 7-mer probes designed to detect the wild-type sequence and the seven point mutations described. We tested two sets of immobilized probes containing internal or 5′-terminal codon-634 single-base variations. Both groups of probes were able to discriminatively identify the mutations. The hybridization patterns indicated that the disease in this family was due to the C634Y mutation, in accord with the original sequence analysis. The hybridization-based mutation assignment was additionally supported by determination of the control homozygous and heterozygous hybridization patterns produced with synthetic targets having the normal or codon 634 mutant sequences. The effects of mismatch type and nearest-neighbor sequences on the occurrence of false-positive (mismatched) hybridizations are discussed.  相似文献   

4.
The RFLP/PCR approach (restriction fragment length polymorphism/polymerase chain reaction) to genotypic mutation analysis described here measures mutations in restriction recognition sequences. Wild-type DNA is restricted before the resistant, mutated sequences are amplified by PCR and cloned. We tested the capacity of this experimental design to isolate a few copies of a mutated sequence of the human c-Ha-ras1 gene from a large excess of wild-type DNA. For this purpose we constructed a 272 bp fragment with 2 mutations in the PvuII recognition sequence 1727-1732 and studied the rescue by RFLP/PCR of a few copies of this 'PvuII mutant standard'. Following amplification with Taq-polymerase and cloning into lambda gt10, plaques containing wild-type sequence, PvuII mutant standard or Taq-polymerase induced bp changes were quantitated by hybridization with specific oligonucleotide probes. Our results indicate that 10 PvuII mutant standard copies can be rescued from 10(8) to 10(9) wild-type sequences. Taq polymerase errors originating from unrestricted, residual wild-type DNA were sequence dependent and consisted mostly of transversions originating at G.C bp. In contrast to a doubly mutated 'standard' the capacity to rescue single bp mutations by RFLP/PCR is limited by Taq-polymerase errors. Therefore, we assessed the capacity of our protocol to isolate a G to T transversion mutation at base pair 1698 of the MspI-site 1695-1698 of the c-Ha-ras1 gene from excess wild-type ras1 DNA. We found that 100 copies of the mutated ras1 fragment could be readily rescued from 10(8) copies of wild-type DNA.  相似文献   

5.
Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes   总被引:100,自引:0,他引:100  
Using in vitro gene amplification by the polymerase chain reaction (PCR) and mutation detection by the RNAase A mismatch cleavage method, we have examined c-K-ras genes in human pancreatic carcinomas. We used frozen tumor specimens and single 5 micron sections from formalin-fixed, paraffin-embedded tumor tissue surgically removed or obtained at autopsy. Twenty-one out of 22 carcinomas of the exocrine pancreas contained c-K-ras genes with mutations at codon 12. In seven cases tested, the mutation was present in both primary tumors and their corresponding metastases. No mutations were detected in normal tissue from the same cancer patients or in five gall bladder carcinomas. We conclude from these results that c-K-ras somatic mutational activation is a critical event in the oncogenesis of most, if not all, human cancers of the exocrine pancreas.  相似文献   

6.
Proof-reading PCR (PR-PCR) is designed to detect known mutations within genomic DNA. It differs from standard PCR approaches in that one of the two primers has its 3' end aligned with a putative mutation site, and has its 3'-OH replaced by a blocking group. Distinguishing a mutant gene from wild-type depends upon preferential removal of the blocked 3' terminal nucleotide by the polymerase proof-reading activity when it is mismatched with the template. Preferential removal of the blocked nucleotide allows subsequent extension and selective amplification, and provides the basis for distinguishing mutant from normal genes. This method has been used here to detect a transition mutation within the P53 gene of HaCaT cells with verification by direct sequencing of the selectively amplified DNA.  相似文献   

7.
We sought to develop a simple and sensitive method based on mutant allele-specific amplification (MASA) for the detection of point mutations in the k-ras oncogene in blood samples. We used MASA and three nested MASA methods to detect a point mutation (GGT→GAT) in rat DHD cells at codon 12 of exon 1 of the k-ras gene. MASA allowed us to detect one k-ras mutated cell on a background of 107 normal cells. The third nested-MASA (nested-MASA.c) method that we developed allowed us to detect one mutated cell among 1010 normal cells. Our methods should allow the detection of small amounts of mutant k-ras DNA in tissue, serum, and plasma, combining speed with efficiency and specificity.  相似文献   

8.
Several diseases are characterized by the presence of point mutations, which are amenable to molecular detection using a number of methods such as PCR. However, certain mutations are particularly difficult to detect due to factors such as low abundance and the presence of special (e.g., oligonucleotide repeat) sequences. The mutation 7A in the oligoA sequence of exon 7 of the gene encoding the La autoantigen is difficult to detect at the DNA level, and even at the RNA level, due to both its estimated low abundance and its differentiation from the wild-type 8A sequence. This article describes a technique in which amplification of the excess wild-type 8A La sequence is suppressed by a peptide nucleic acid (PNA) during a nested PCR step. Detection of the amplified 7A mutant form was then performed by simple electrophoresis following a final primer extension step with an infrared dye-labeled primer. This technique allowed us to detect the mutation in 3 of 7 individuals harboring serum immunoglobulin G (IgG) antibodies reactive with a neo-B cell epitope in the 7A mutant protein product. We propose that this method is a viable screening test for mutations in regions containing simple polynucleotide repeats.  相似文献   

9.
针对传统电泳检测方法存在操作复杂、费时等缺点,提出一种用于检测K-ras癌基因点突变的实时荧光等位基因特异性扩增(Allele specific amplification,ASA)方法。该法采用突变型引物对结肠癌基因组中的K-ras基因进行等位基因特异性扩增,只有突变型样品能被顺利扩增出双链DNA产物,该产物能与双链DNA染料SYBR GreenⅠ结合,产生荧光信号从而被检测到。通过对荧光域值和溶解曲线分析来区分不同的基因突变类型。该法可以检测到野生型DNA中含量为1/1 000的突变型DNA,整个检测时间小于1 h。我们用该法检测31例结肠癌样品中K-ras基因密码子12发生的点突变,其中有15例检出为阳性。此外,还采用等位基因特异性扩增结合电泳分析对样品进行了检测,并对两种方法进行了比较。结果显示:实时荧光等位基因特异性扩增方法具有操作简便、快速、检测成本低等优点,为临床诊断基因突变引起的疾病提供了一种可行的手段。  相似文献   

10.
The objective of this study is to compare two EGFR testing methodologies (a commercial real-time PCR kit and a specific EGFR mutant immunohistochemistry), with direct sequencing and to investigate the limit of detection (LOD) of both PCR-based methods. We identified EGFR mutations in 21 (16%) of the 136 tumours analyzed by direct sequencing. Interestingly, the Therascreen EGFR Mutation Test kit was able to characterize as wild-type one tumour that could not be analyzed by direct sequencing of the PCR product. We then compared the LOD of the kit and that of direct sequencing using the available mutant tumours. The kit was able to detect the presence of a mutation in a 1% dilution of the total DNA in nine of the 18 tumours (50%), which tested positive with the real-time quantitative PCR method. In all cases, EGFR mutation was identified at a dilution of 5%. Where the mutant DNA represented 30% of the total DNA, sequencing was able to detect mutations in 12 out of 19 cases (63%). Additional experiments with genetically defined standards (EGFR ΔE746-A750/+ and EGFR L858R/+) yielded similar results. Immunohistochemistry (IHC) staining with exon 19-specific antibody was seen in eight out of nine cases with E746-A750del detected by direct sequencing. Neither of the two tumours with complex deletions were positive. Of the five L858R-mutated tumours detected by the PCR methods, only two were positive for the exon 21-specific antibody. The specificity was 100% for both antibodies. The LOD of the real-time PCR method was lower than that of direct sequencing. The mutation specific IHC produced excellent specificity.  相似文献   

11.
Summary Two previously unidentified mutations at the phenylalanine hydroxylase locus were found during a study of the relationship between genotype and phenotype in phenylketonuria and hyperphenylalaninemia. One mutation eliminates the BamHI site in exon 7 and the other eliminates the HindIII site in exon 11 of the phenylalanine hydroxylase gene. They were suspected because of deviating restriction fragment patterns and confirmed by amplification, via the polymerase chain reaction, of exon 7 and exon 11, respectively, followed by digestion with the appropriate restriction enzyme. Direct sequencing of amplified mutant exon 7 revealed a G/C to T/A transversion at the first base of codon 272, substituting a GGA glycine codon for a UGA stop codon. Direct sequencing of amplified mutant exon 11 revealed a deletion of codon 364, a CTT leucine codon. The exon 7 mutation can be expected to result in a truncated protein and the exon 11 mutation in the elimination of an amino acid in the catalytic region of the enzyme. A patient who is a compound heterozygote for these two mutations has classical phenylketonuria. It is concluded that each of the two mutations leads to a profound loss of enzymatic activity. The segregation of these mutations with disease alleles in 4 and 2 families, respectively, supports the hypothesis that multiple mutations at the phenylalanine hydroxylase locus explain the variable phenylalanine tolerance in patients with phenylalanine hydroxylase deficiency.  相似文献   

12.
Detection of somatic mutations for targeted therapy is increasingly used in clinical settings. However, due to the difficulties of detecting rare mutations in excess of wild-type DNA, current methods often lack high sensitivity, require multiple procedural steps, or fail to be quantitative. We developed real-time bidirectional pyrophosphorolysis-activated polymerization (real-time Bi-PAP) that allows quantitative detection of somatic mutations. We applied the method to quantify seven mutations at codons 12 and 13 in KRAS, and 2 mutations (L858R, and T790M) in EGFR in clinical samples. The real-time Bi-PAP could detect 0.01% mutation in the presence of 100 ng template DNA. Of the 34 samples from the colon cancer patients, real-time Bi-PAP detected 14 KRAS mutant samples whereas the traditional real-time allele-specific PCR missed two samples with mutation abundance <1% and DNA sequencing missed nine samples with mutation abundance <10%. The detection results of the two EGFR mutations in 45 non-small cell lung cancer samples further supported the applicability of the real-time Bi-PAP. The real-time Bi-PAP also proved to be more efficient than the real-time allele-specific PCR in the detection of templates prepared from formalin-fixed paraffin-embedded samples. Thus, real-time Bi-PAP can be used for rapid and accurate quantification of somatic mutations. This flexible approach could be widely used for somatic mutation detection in clinical settings.  相似文献   

13.
Recently much attention has been focused on single nucleotide polymorphisms (SNPs) within fundamentally important genes, such as those involved in metabolism, cell growth regulation, and other disease-associated genes. Methodologies for discriminating different alleles need to be specific (robust detection of an altered sequence in the presence of wild-type DNA) and preferably, amenable to high throughput screening. We have combined the fluorogenic 5' nuclease polymerase chain reaction (TaqMan) and the mismatch amplification mutation assay (MAMA) to form a novel assay, TaqMAMA, that can quickly and specifically detect single base changes in genomic DNA. TaqMan chemistry utilizes fluorescence detection during PCR to precisely measure the starting template concentration, while the MAMA assay exploits mismatched bases between the PCR primers and the wild-type template to selectively amplify specific mutant or polymorphic sequences. By combining these assays, the amplification of the mutant DNA can be readily detected by fluorescence in a single PCR reaction in 2 hours. Using the human TK6 cell line and specific HPRT-mutant clones as a model system, we have optimized the TaqMAMA technique to discriminate between mutant and wild-type DNA. Here we demonstrate that appropriately designed MAMA primer pairs preferentially amplify mutant genomic DNA even in the presence of a 1,000-fold excess of wild-type DNA. The ability to selectively amplify DNAs with single nucleotide changes, or the specific amplification of a low copy number mutant DNA in a 1,000-fold excess of wild-type DNA, is certain to be a valuable technique for applications such as allelic discrimination, detection of single nucleotide polymorphisms or gene isoforms, and for assessing hotspot mutations in tumor-associated genes from biopsies contaminated with normal tissue.  相似文献   

14.
It has been shown recently that autosomal dominant retinitis pigmentosa may be caused by point mutations of the rhodopsin gene in a portion of families. In this communication, a large six-generation family with autosomal dominant RP is described. Molecular analysis by PCR amplification followed by restriction digestion or heteroduplex analysis suggested a point mutation in codon 347, in which two different mutations (Pro-347-Ser and Pro-347-Leu) have already been reported. Direct sequencing of the patients' DNA revealed a previously undescribed CCG----CGG transversion in codon 347 predicting a Pro----Arg substitution. Ophthalmological data of the patients are summarized and compared to those of patients with other mutations in the rhodopsin gene.  相似文献   

15.
C S Du  X Ren  L Chen  W Jiang  Y He  M Yang 《Human heredity》1999,49(3):133-138
Glucose-6-phosphate dehydrogenase (G6PD) is the most common human enzymopathy. To date more than 122 mutations in the G6PD gene have been discovered, among which 12 point mutations are found in the Chinese. The 2 most common mutations, G1388A and G1376T, account for more than 50% of mutations representing various regions and ethnic groups in China. Setting up a simple and accurate method for detecting these mutations is not only useful for studying the frequency of the G6PD genotypes, but also for finding new mutations. The purpose of this study was to find a simple, inexpensive and accurate method for detecting these common mutations. The amplification refractory mutation system (ARMS) method was used in this study. Samples from 28 G6PD-deficient males were investigated. The natural and mismatched amplification and restriction enzyme digestion method was used as a standard method to evaluate the nature of the point mutations. Sixteen cases were found carrying the G1388A mutation and 12 the G1376T mutation. Fourteen cases of G1388A and 10 cases of G1376T were confirmed by ARMS. Four cases were not in concordance with the results obtained by the mismatched amplification-restriction enzyme digestion. These 4 cases were then judged by direct PCR sequencing at exon 12. The DNA sequencing data supported the results obtained by ARMS. Thus we concluded that the ARMS is a rapid, simple, inexpensive and accurate method for detecting the most common G6PD gene mutations among the Chinese.  相似文献   

16.
Ligase-based detection of mononucleotide repeat sequences   总被引:5,自引:1,他引:4       下载免费PDF全文
Up to 15% of all colorectal cancers are considered to be replication error positive (RER(+)) and contain mutations at hundreds of thousands of microsatellite repeat sequences. Recently, a number of intragenic mononucleotide repeat sequences have been demonstrated to be targets for inactivating genes in RER(+)colorectal tumors. In this study, thermostable DNA ligases were tested for the ability to detect alterations in microsatellite sequences in colon tumor samples. Ligation profiles on mononucleotide repeat sequences were determined for four related thermostable DNA ligases, Thermus thermophilus ( Tth ) ligase, Thermus sp. AK16D ligase, Aquifex aeolicus ligase and the K294R mutant of the Tth ligase. While the limit of detection for point mutations was one mutation in 1000 wild-type sequences, the ability to detect a single base deletion in a 10 base mononucleotide repeat was one mutation in 100 wild-type sequences. Furthermore, the misligation error increased exponentially as the length of the mono-nucleotide repeat increased, and was 10% of the correct signal for a 19 base mononucleotide repeat. A fluorescent ligase-based assay [polymerase chain reaction/ligase detection reaction (PCR/LDR)] correlated with results obtained using a radioactive assay to detect instability within the TGF-beta Type II receptor gene. PCR/LDR was also used to detect the APCI1307K mononucleotide repeat allele which has a carrier frequency of 6.1% in Ashkenazi Jewish individuals. In a blind study, 30 samples that had been typed for the presence of the APCI1307K allele were tested. The PCR/LDR results correlated with those obtained using sequencing and allele-specific oligonucleotide hybridization for 16 samples carrying the mutation and 13 wild-type samples. Ligation assays that characterize mononucleotide repeats can be used to rapidly detect somatic mutations in tumors, and to screen for individuals who have a hereditary predisposition to develop colon cancer.  相似文献   

17.
肾上腺脑白质营养不良分子诊断中假基因干扰的排除   总被引:5,自引:0,他引:5  
在基因组DNA水平,应用基因突变分析的方法对肾上腺脑白质营养不良进行分子诊断十分重要.由于人体内存在多个肾上腺脑白质营养不良假基因的拷贝,应用PCR-RFLP和PCR产物直接测序等常规方法难以检测一部分的基因突变.为了排除基因组DNA中假基因的干扰,利用扩增阻滞突变系统,成功地分析了一个肾上腺脑白质营养不良(R617G突变)家系成员的基因型.结果表明,扩增阻滞突变系统是排除假基因干扰的有效方法之一.  相似文献   

18.
ras proto-oncogenes are activated by point mutation in a wide variety of human and animal tumors, making ras gene analysis a major area of clinical and basic cancer research. Activating point mutations, in each of the three ras genes (Ha-, Ki-, or N-ras), usually occur in one of three specific codons (12, 13, or 61). Thus, an adequate assessment of activating ras gene mutations should include the analysis of at least nine codons. We have developed a rapid method for point mutation analysis of the ras genes, which involves simultaneous (multiplex) PCR amplification of all three homologous ras genes (in the regions surrounding codons 12-13 and codon 61) in a single reaction starting with only 1 microgram of genomic DNA. Although multiplex PCR has been previously used for unrelated sequences, we demonstrate here that multiplex PCR can also be used for highly homologous sequences. Importantly, after coamplification, each of the homologous ras genes can be individually and specifically sequenced even though the other two closely related genes are present in the same template mixture, by using high-stringency conditions permitted by Taq DNA polymerase. An automated multicycle DNA sequencing procedure is used to allow the double-stranded PCR products to be sequenced directly without the need to generate single-stranded templates, further simplifying the protocol. Our multiplex PCR amplification and direct DNA sequencing procedures should greatly facilitate more complete analyses of activating ras gene point mutations, particularly in studies involving many tumor samples.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
We determined frequency/types of K-ras mutations in colorectal/lung cancer. ADx-K-ras kit (real-time/double-loop probe PCR) was used to detect somatic tumor gene mutations compared with Sanger DNA sequencing using 583 colorectal and 244 lung cancer paraffin-embedded clinical samples. Genomic DNA was used in both methods; mutation rates at codons 12/13 and frequency of each mutation were detected and compared. The data show that 91.4% colorectal and 59.0% lung carcinoma samples were detected conclusively by DNA sequencing, whereas 100% colorectal and lung samples were detected by ADx-K-ras kit. K-ras gene mutations were detected in 32.9–27.4% colorectal samples using kit and sequencing methods, respectively. Whereas 10.6–8.3% lung cancer samples were positively detected by kit and sequencing methods, respectively. Notably, 172/677 showed mutations and 467/677 showed wild type by both methods; 38 samples showed mutations with kit but wild type with sequencing. Mutations in colorectal samples were as follows: GGT → GAT/codon-12 (35.1%); GGC → GAC/codon-13 (26.6%); GGT → GTT/codon-12 (18.2%); and GGT → GCT/codon-12 (1.6%). Mutations in lung samples were as follows: GGT > GTT/codon-12 (40.9%) and GGT > GCT/codon-12 (4.5%). In conclusion, K-ras mutations involved 32.2% colorectal and 10.6% lung samples among this cohort. ADx-K-ras real-time PCR showed higher detection rates (P < 0.05). The kit method has good clinical applicability as it is simple, fast, less prone to contamination and hence can be used effectively and reliably for clinical screening of somatic tumor gene mutations.  相似文献   

20.
DNA from 40 unrelated familial hypercholesterolemia (FH) heterozygotes were subjected to analyses of single-strand conformation polymorphisms (SSCPs) of exon 10 of the low density lipoprotein receptor (LDLR) gene. Four different SSCP patterns were observed. The underlying mutations were characterized by DNA sequencing. Three of the patterns represented the three genotypes of a recently described sense mutation in codon 450. A method based upon the polymerase chain reaction (PCR) was developed to analyze this mutation. The frequencies of the wild-type (G at nucleotide 1413) and mutant (A at nucleotide 1413) alleles were 0.56 and 0.44, respectively. The fourth pattern was found in only one FH heterozygote and was caused by heterozygosity at nucleotide 1469 (G/A). Nucleotide 1469 is the second base of codon 469Trp(TGG). The GA mutation changes this codon into the amber stop codon, and is referred to as FH469Stop. The mutant receptor consists of the amino terminal 468 amino acids. Because the truncated receptor has lost the membrane-spanning domain, it will not be anchored in the cell membrane. FH469Stop destroys an AvaII restriction site, and this characteristic was used to develop a PCR method to establish its frequency in Norwegian FH subjects. Two out of 204 (1%) unrelated FH heterozygotes possessed the mutation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号