首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
alpha-Guanidinoglutaric acid (alpha-GGA) was first found in cobalt-induced epileptogenic focus tissue in the cerebral cortex of cats. We examined the effect of alpha-GGA on the electroencephalogram and on the brain 5-hydroxytryptamine (5-HT) level after intraventricular administration into rats. Sporadic low-voltage spikes appeared 4 min after the administration of alpha-GGA. Spikes increased in voltage 6 min after the administration. Multiple spikes appeared 10 min after the administration, and they reached maximal frequency 30 min after the administration. The epileptic discharges disappeared 100 min after the administration. The 5-HT level increased in the right and left cortices 3 min after the administration. The 5-HT level decreased in the mid-brain 5 min after the administration and subsequently in all regions of the brain 10 min after the administration. No change in the 5-HT level was found 30 min and 100 min after the administration. These results show that alpha-GGA induces epileptic seizures in rats after intraventricular administration. The results also suggest that alpha-GGA-induced seizures are associated with abnormal serotonergic function and that they are initiated by a decrease in the 5-HT level.  相似文献   

2.
Following subcutaneous injection of the tripeptide H-Pro-[3H]Leu-Gly-NH2 ([3H]PLG) in rats, the profile of intact peptide and its radioactively labeled metabolites was examined both in plasma and in brain tissue. [3H]PLG and metabolites were determined in trichloroacetic acid extracts by reverse-phase paired-ion HPLC. Maximal plasma levels of unmetabolized PLG were reached 6-8 min after administration, after which they decreased with an elimination half-life of 20 min. The uptake of [3H]PLG in the brain ranged from 0.0013% to 0.0017% of the administered dose per g tissue at 6-30 min following subcutaneous injection. After comparing these results with our previous findings with intravenous injection of [3H]PLG, it seemed likely that the subcutaneous route of administration might be more effective in eliciting CNS effects of PLG than the intravenous route of administration. The metabolite profiles in plasma and brain point to an initial cleavage of PLG at the NH2-terminal side and a very rapid degradation of the peptide intermediate H-Leu-Gly-NH2.  相似文献   

3.
The plasma disappearance, metabolism and uptake in the brain of [3H-Phe4]-DT gamma E and [3H-Lys9]-DE gamma E were investigated following systemic administration of these neuroleptic-like peptides to rats. 3H-DT gamma E, 3H-DE gamma E and their radioactive metabolites in plasma and brain extracts were determined by reversed-phase HPLC. Plasma disappearance of DT gamma E upon intravenous (IV) dosing followed a biphasic pattern with half-lives of 0.7 min (distribution phase) and 5.5 min (elimination phase). For DE gamma E the plasma disappearance curve was best characterized by a one-compartment model since a second elimination phase was hardly detectable by our methods. The corresponding half-life was 0.6 min, probably representative for the initial distribution phase of DE gamma E. Both neuropeptides distributed rapidly over the larger part of the extracellular fluid. Following the IV route of administration, brain uptake of DT gamma E and DE gamma E appeared to be low. Brain levels of DT gamma E decreased from 0.0075% to 0.0031% of the administered dose/g tissue at 2-15.5 min after injection, whereas those of DE gamma E decreased very rapidly from 0.0174% of the dose/g brain tissue to below the detection limit at 2-4.5 min after injection. As compared to the IV route of administration, subcutaneous (SC) injection of DE gamma E resulted into lower but remarkably longer-lasting peptide concentrations in plasma as well as in brain, possibly because of a sustained release from the SC site of injection.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
《Life sciences》1995,58(5):437-445
Intracerebroventricular (i.c.v.) injection of endothelin-1 (ET-1; 100 ng, i.c.v.) produced an initial pressor (24%) (peak at 3 min following ET-1 administration) and a delayed depressor (−40%) (30 and 60 min following ET-1 administration) effects in urethane anesthetized rats. The pressor effect of ET-1 was due to an increase (21%) in cardiac output, while the depressor effect of ET-1 was associated with a marked decrease (−46%) in cardiac output. Stroke volume significantly decreased at 30 and 60 min after the administration of ET-1. No change in total peripheral vascular resistance and heart rate was observed following central administration of ET-1. The effects of ET-1 on blood pressure, cardiac output and stroke volume were not observed in BQ123 (10 μg, i.c.v.) treated rats. Blood flow to the cerebral hemispheres, cerebellum, midbrain and brain stem was not affected at 3 min, but a significant decrease in blood flow to all the regions of the brain was observed at 30 and 60 min following central administration of ET-1. BQ123 pretreatment completely blocked the central ET-1 induced decrease in blood flow to the brain regions. It is concluded that the pressor effect of centrally administered ET-1 is not accompanied by a severe decrease in brain blood flow, however, a subsequent decrease in blood pressure is associated with a decrease in blood flow to the brain. The cardiovascular effects of ET-1 including decrease in brain blood flow are mediated through central ETA receptors.  相似文献   

5.
Effects of isoproterenol (3 mg kg-1, i.p. for 60 min) and salbutamol (3, 10 mg kg-1, i.p. for 60 min) on large neutral amino acid concentrations in rat plasma and brain were assessed. Phenylalanine, leucine, isoleucine, and valine were measured by gas chromatography with electron-capture detection; tyrosine and tryptophan were measured by HPLC with electrochemical detection. These drugs induced increases in brain tryptophan, tyrosine, phenylalanine, and valine and decreases in plasma tryptophan, tyrosine, leucine, isoleucine, and valine. Effects of salbutamol (3 mg kg-1, i.p. for 60 min) were assessed following chronic administration of phenelzine sulfate and desipramine.HCl (each drug 10 mg kg-1 per day, s.c. via Alzet 2ML4 osmotic minipumps for 28 days). There were no effects of these antidepressants on basal levels of large neutral amino acids in brain and plasma. In both brain and plasma, salbutamol-induced changes in large neutral amino acids were unaffected by these antidepressants. The results indicate that beta-adrenoceptor-regulated availability of plasma and brain large neutral amino acids is unaffected by chronic administration of tricyclic or monoamine oxidase inhibitor antidepressants.  相似文献   

6.
The purpose of the present study is to clarify the effects of the administration of choline on the in vivo release and biosynthesis of acetylcholine (ACh) in the brain. For this purpose, the changes in the extracellular concentration of choline and ACh in the rat striatum following intracerebroventricular administration of choline were determined using brain microdialysis. We also determined changes in the tissue content of choline and ACh. When the striatum was dialyzed with Ringer solution containing 10 microM physostigmine, ACh levels in dialysates rapidly and dose dependently increased following administration of various doses of choline and reached a maximum within 20 min. In contrast, choline levels in dialysates increased after a lag period of 20 min following the administration. When the striatum was dialyzed with physostigmine-free Ringer solution, ACh could not be detected in dialysates both before and even after choline administration. After addition of hemicholinium-3 to the perfusion fluid, the choline-induced increase in ACh levels in dialysates was abolished. Following administration of choline, the tissue content of choline and ACh increased within 20 min. These results suggest that administered choline is rapidly taken up into the intracellular compartment of the cholinergic neurons, where it enhances both the release and the biosynthesis of ACh.  相似文献   

7.
Cholinesterase activities in rat forebrain, erythrocytes, and plasma were assessed after a single oral administration of metrifonate or dichlorvos. In 3-month-old rats, the dichlorvos (10 mg/kg p.o.)-induced inhibition of cholinesterase reached its peak in brain after 15–45 min and after 10–30 min in erythrocytes and plasma. Cholinesterase activity recovered rapidly after the peak of inhibition, but did not reach control values in brain and erythrocytes within 24 h after drug administration. The recovery of plasma cholinesterase activity, in contrast, was already complete 12 h after dichlorvos treatment. Metrifonate (100 mg/kg p.o.) had qualitatively similar inhibition kinetics as dichlorvos, albeit with a slightly delayed onset. Peak values were attained 45–60 min (brain) and 20–45 min (blood), after drug administration. Apparently complete recovery of cholinesterase activity was noted in both tissues 24 h after treatment. The dose-dependence of drug-induced inhibition of cholinesterase in rat blood and brain was determined at the time of maximal inhibition, i.e., 30 min after dichlorvos treatment and 45 min after metrifonate treatment. The oral ED50 values obtained for dichlorvos were 8 mg/kg for brain and 6 mg/kg for both erythrocyte and plasma cholinesterase. The corresponding oral ED50 values for metrifonate were 10 to 15 times higher, i.e., 90 mg/kg in brain and 80 mg/kg in erythrocytes and plasma. In rats deprived of food for 18 h before drug treatment, the corresponding ED50 values for metrifonate were 60 and 45 mg/kg, respectively, indicating an about two-fold higher sensitivity of fasted rats to metrifonate-induced cholinesterase inhibition compared to non-fasted rats. Compared to 3-month-old rats, 19-month-old rats showed a higher sensitivity towards metrifonate and dichlorvos. At the time of maximal inhibition, there was a strong correlation between the degree of cholinesterase inhibition in brain and blood. These results demonstrate that single oral administration of metrifonate and dichlorvos induces an inhibition of blood and brain cholinesterase in the conscious rat in a dose-dependent and apparently fully reversible manner. While the efficiency of a given dose of inhibitor may vary with the satiety status or age of the animal, the extent of brain ChE inhibition can be estimated from the level of blood ChE activity.  相似文献   

8.
Glutathione content and glutamyl transpeptidase activity in different regions of adult female rat brain were determined at 10 and 30 min following intraventricular injection of LHRH and somatostatin. Hypothalamic glutathione levels were significantly elevated at 10 and 30 min after a single injection of a 0.1 micrograms dose of LHRH. On the contrary, glutathione levels significantly decreased in the hypothalamus, cerebral cortex and cerebellum at 10 and 30 min after 0.5 or 1 microgram dose. However, significant decrease in brain stem glutathione was evident at 30 min after 0.5 microgram and 10 min after the 1 microgram dose. Somatostatin at doses of 0.5 microgram and 1 microgram significantly decreased glutathione levels in all four brain regions both at 10 and 30 min following injection into the 3rd ventricle. Gamma-glutamyl transpeptidase activity in the hypothalamus and cerebral cortex was significantly elevated after intraventricular injection of LHRH. However, a significant increase in gamma-glutamyl transpeptidase activity in cerebellum and brain stem was seen only with 0.5 and 1 micrograms doses of LHRH. Somatostatin also significantly increased gamma-glutamyl transpeptidase activity in hypothalamus, cerebral cortex, brain stem and cerebellum. The decrease in glutathione levels with corresponding increase in gamma-glutamyl transpeptidase activity after intraventricular administration of LHRH and somatostatin suggests a possible interaction between glutathione and hypothalamic peptides.  相似文献   

9.
After glucose ingestion, arterial lactate concentrations increase. Although it is presumed that this is due to an increase in lactate production, rates of lactate appearance have not been measured after oral glucose nor has the major site of its production been identified. Since brain takes up a substantial portion of an oral glucose load but does not store appreciable amounts of glucose, it is possible that brain could be an important site for postprandial lactate formation. Therefore, to investigate the contribution of the brain to the increase in arterial lactate after glucose ingestion and to determine whether changes in lactate appearance or disappearance were predominantly involved, we measured lactate fluxes and brain lactate balance in dogs after intraduodenal administration of glucose (1.6 g/kg). Although systemic lactate appearance increased significantly after glucose administration (from 22 +/- 3 to 33 +/- 9 umole/kg/min, P less than 0.05), brain lactate output did not change (0.62 +/- 0.5 vs 0.74 +/- 0.5 umole/min). We conclude that after glucose ingestion, arterial lactate increases as a result of an increase in the rate of lactate appearance and that brain does not make a significant contribution to this.  相似文献   

10.
3-Amino-2-hydroxypropyl phosphorothioate (WR77913), a less toxic phosphorothioate radioprotector than WR2721, has been labeled with 35S. The biodistribution of a radioprotective dose of 800 mg/kg was determined in C3H mice bearing RIF-1 tumors as a function of time after intraperitoneal injection and was expressed as percentage injected dose/gram (% ID/g). Levels of 35S in the blood peaked 10 min after injection, and radioactivity in most tissues was highest at 15 min. Label in most tissues declined markedly between 15 and 60 min, but in gut, salivary glands, tumor, and brain, the levels of radioactivity remained quite stable over 1 hr. At 30 min after injection the highest levels of labeled drug were found in submandibular salivary glands, gut, and kidney, with the lowest level in brain. Tumors had approximately the same amount of label as blood, muscle, skin, and esophagus. Two principal differences between the distribution of label from WR77913 and WR2721 were defined. Although blood levels of 35S-WR2721 also peaked 10 min after injection, the 10-min blood levels achieved for WR77913 were more than fourfold greater than those attained by WR2721. Maximum levels of WR2721 occurred in most tissues 30 to 60 min after administration of the drug, compared to 15 min for WR77913. The basis for these differences remains to be determined, but these results suggest that the optimum interval between administration of WR77913 and irradiation may be shorter than for WR2721.  相似文献   

11.
The role of the blood-brain barrier (BBB) in the transport of thyroxine was examined in mice. Radioiodinated ("hot") thyroxine (hT4) administered icv had a half-time disappearance from the brain of 30 min. This increased to 60 min (p less than 0.001) when administered with 211 pmole/mouse of unlabeled ("cold") thyroxine (cT4). The Km for this inhibition of hT4 transport out of the brain by cT4 was 9.66 pmole/brain. Unlabeled 3,3',5 triiodothyronine (cT3) was unable to inhibit transport of hT4 out of the brain, although both cT3 (p less than 0.05) and cT4 (p less than 0.05) did inhibit transport of radioiodinated 3,3',5 triiodothyronine (hT3) to a small degree. Entry of hT4 into the brain after peripheral administration was negligible and was not affected by either cT4 nor cT3. By contrast, the entry of hT3 into the brain after peripheral administration was inhibited by cT3 (p less than 0.001) and was increased by cT4 (p less than 0.01). The levels of the unlabeled thyroid hormones administered centrally in these studies did not affect bulk flow, as assessed by labeled red blood cells (99mTc-RBC), or the carrier-mediated transport of iodide out of the brain. Likewise, the vascular space of the brain and body, as assessed by 99mTc-RBC, was unchanged by the levels of peripherally administered unlabeled thyroid hormones. Therefore, the results of these studies are not due to generalized effects of thyroid hormones on BBB transport. The results indicate that in the mouse the major carrier-mediated system for thyroxine in the BBB transports thyroxine out of the brain, while the major system for triiodothyronine transports hormone into the brain.  相似文献   

12.
Levels of 5-hydroxytryptophan (5-HTP) in brain regions (hypopthalamus and medulla) of rainbow trout were analysed by HPLC-EC 0, 10, 30, and 40 min after intraperitoneal administration of different doses of L-tryptophan (Trp) (0, 12.5, and 25 mg. kg(-1) body weight) in fish treated with 3-hydroxybenzylhydrazine (NSD1015; 75 mg. kg(-1)). The results show that, in control fish, 5-HTP levels in hypothalamus (58.03 +/- 6.36 pg. mg(-1) brain tissue) were significantly higher than those observed in medulla (28.04 +/- 4.32 pg. mg(-1) brain tissue). Basal tryptophan hydroxylation rates (after 0 mg. kg(-1) Trp administration) were 0.42 +/- 0.07 pg 5-HTP. mg(-1). min(-1), and 0.63 +/- 0.24 pg 5HTP. mg(-1). min(-1), for hypothalamus and medulla respectively. On the other hand, the results demonstrate that L-tryptophan administration induced significant increases in the rate of tryptophan hydroxylation, both in hypothalamus and medulla. These findings indicate that, in a way similar to that observed in mammals, brain tryptophan hydroxylase is unsaturated by its substrate (tryptophan) under normal physiological conditions. J. Exp. Zool. 286:131-135, 2000.  相似文献   

13.
Whereas antibipolar drug administration to rats reduces brain arachidonic acid turnover, excessive N-methyl-d-aspartate (NMDA) signaling is thought to contribute to bipolar disorder symptoms and may increase arachidonic acid turnover in rat brain phospholipids. To determine whether chronic NMDA would increase brain arachidonic acid turnover, rats were daily administered NMDA (25 mg/kg, ip) or vehicle for 21 days. In unanesthetized rats, on day 21, [1-(14)C]arachidonic acid was infused intravenously and arterial blood plasma was sampled until the animal was euthanized at 5 min and its microwaved brain was subjected to chemical and radiotracer analysis. Using equations from our in vivo fatty acid model, we found that compared with controls, chronic NMDA increased the net rate of incorporation of plasma unesterified arachidonic acid into brain phospholipids (25-34%) as well as the turnover of arachidonic acid within brain phospholipids (35-58%). These changes were absent at 3 h after a single NMDA injection. The changes, opposite to those after chronic administration of antimanic drugs to rats, suggest that excessive NMDA signaling via arachidonic acid may be a model of upregulated arachidonic acid turnover in brain phospholipids.  相似文献   

14.
The effect of acute and chronic nicotine on the metabolism of specific brain proteins was examined by measuring incorporation of labeled valine into protein, with densitometric scanning of proteins resolved by gel electrophoresis. Acute and chronic administration of nicotine (0.4 mg/kg per 30 min for 2 hours, s.c., or 0.5 mg/kg per 30 min for 5 days (Alzet mini-pump implanted subcutaneously) reduced incorporation of [14C]valine administered by approximately 6–7%. The results with chronic nicotine administration indicated a lack of tolerance for this effect of nicotine. Mecamylamine, a nicotinic ganglionic antagonist, does not seem to block the inhibition of protein synthesis. Small increases in protein content were observed in a high- and a low-molecular-weight region of SDS-polyacrylamide gel, used to separate proteins from newborn brain. In adult brain after chronic nicotine administration, selective increases and a decrease were seen in selective bands. Results are consonant with selective effects of nicotine on the synthesis or degradation of specific brain proteins.Special Issue Dedicated to Dr. Abel Lajtha.  相似文献   

15.
Trolox, a water‐soluble vitamin E analogue has been used as a positive control in Trolox equivalent antioxidant capacity and oxygen radical antioxidant capacity assays due to its high antioxidative effect. In this study, the ex vivo antioxidative effects of Trolox and its concentration in blood and brain microdialysates from rat after administration were evaluated by newly established semi‐microflow injection analysis, chemiluminescence detection and HPLC‐UV. In the administration test, the antioxidative effect of Trolox in blood and brain microdialysates after a single administration of 200 mg/kg of Trolox to rats could be monitored. The antioxidative effects in blood (12.0 ± 2.1) and brain (8.4 ± 2.1, × 103 antioxidative effect % × min) also increased. Additionally, the areas under the curve (AUC)s0–360 (n = 3) for blood and brain calculated with quantitative data were 10.5 ± 1.2 and 9.7 ± 2.5 mg/mL × min, respectively. This result indicates that Trolox transferability through the blood–brain barrier is high. The increase in the antioxidative effects caused by Trolox in the blood and brain could be confirmed because good correlations between concentration and antioxidative effects (r ≥ 0.702) were obtained. The fact that Trolox can produce an antioxidative effect in rat brain was clarified. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
A V Sergutina 《Tsitologiia》1991,33(12):67-72
Quantitative cytochemical methods in functionally different rat brain formations (sensomotor cortex, visual cortex, nucleus caudatus, hippocampus) showed the peculiarities of the effect of tuftsin on the activity of some enzymes (the oxidative, neurotransmitter and protein metabolism enzymes) 15 min and 3 days after its single administration. No changes of activity of neurotransmitter metabolism enzymes (monoamine oxidase, acetylcholinesterase) were registered cytochemically. The specificity of the neuro-tropical effect of tuftsin on protein (activity of aminopeptidase and acid phosphatase) and oxidative (activity of glutamate dehydrogenase and glucose-6-phosphate dehydrogenase) metabolism in different functional brain systems is discussed.  相似文献   

17.
Using tritium-labelled 4,5,6,7-tetrahydroisoxazolo[4,5-c]pyridin-3-ol (THPO) its tissue distribution and metabolism were investigated in adult mice and 4-day-old chicks after systemic administration of the drug. It was found not to be significantly metabolized in the brain since metabolites of THPO corresponding to only approximately 8% of the parent compound could be detected 30 min after administration of the drug intramuscularly in mice. In the liver, however, THPO was found to be metabolized to a considerable extent. In chicks THPO metabolites were found in the brain but they accounted for less than 35% of the radioactivity. The brain concentration of THPO in mice and chicks corresponded to respectively 10 and 50% of the dose injected intramuscularly and the tissue level was essentially constant for at least 3 h after injection. Following systemic administration of THPO to mice and chicks the contents of aspartate, glutamate, glutamine, and gamma-aminobutyric acid (GABA) in whole brain and in synaptosomes was determined. It was found that only GABA contents were affected being increased in synaptosomes from mice and decreased in whole brain in chicks. Doses of THPO, which in chicks but not in mice led to brain levels that were sufficient to inhibit glial GABA uptake, were found to protect chicks but not mice against isonicotinic acid hydrazide-induced seizures. The findings are compatible with the notion that THPO exerts its anticonvulsant activity by inhibition of astrocytic GABA uptake.  相似文献   

18.
HPLC coupled with electrochemical detection was used to make concurrent measurements of the rate of accumulation of 5-hydroxytryptophan and 3,4-dihydroxyphenylalanine in selected brain regions (striatum, nucleus accumbens, septum, medial periventricular hypothalamus) and thoracic spinal cords of rats treated with NSD 1015, an inhibitor of aromatic-L-amino-acid decarboxylase. 5-Hydroxytryptophan and 3,4-dihydroxyphenylalanine accumulated in all brain regions 30 min after the intravenous infusion of various doses of NSD 1015; there were no significant differences in the responses to 12.5, 25, 50, and 100 mg/kg. After the intravenous administration of 25 mg/kg NSD 1015 the concentrations of 5-hydroxytryptophan and 3,4-dihydroxyphenylalanine increased linearly with time in all brain regions for at least 30 min. Electrical stimulation of 5-hydroxytryptamine neurons in the dorsal raphe nucleus for 30 min at 5 or 10 Hz increased 5-hydroxytryptophan accumulation in all brain regions but not in the spinal cord. Unexpectedly, this stimulation also increased the accumulation of 3,4-dihydroxyphenylalanine in the hypothalamus and spinal cord. These results suggest that 5-hydroxytryptophan accumulation following the administration of NSD 1015 is a valid index of 5-hydroxytryptamine neuronal activity in the brain.  相似文献   

19.
Based on the evidence that the antinociceptive effects of acetaminophen could be mediated centrally, tissue distribution of the drug after systemic administration was determined in rat anterior and posterior cortex, striatum, hippocampus, hypothalamus, brain stem, ventral and dorsal spinal cord. In a first study, rats were treated with acetaminophen at 100, 200 or 400 mg/kg per os (p.o.), and drug levels were determined at 15, 45, 120, 240 min by high performance liquid chromatography (HPLC) coupled with electrochemical detection (ED). In a second study, 45 min after i.v. administration of [3H]acetaminophen (43 microCi/rat; 0.65 microg/kg), radioactivity was counted in the same structures, plus the septum, the anterior raphe area and the cerebellum. Both methods showed a homogeneous distribution of acetaminophen in all structures studied. Using the HPLC-ED method, maximal distribution appeared at 45 min. Tissue concentrations of acetaminophen then decreased rapidly except at the dose of 400 mg/kg where levels were still high 240 min after administration, probably because of the saturation of clearance mechanisms. Tissue levels increased with the dose up to 200 mg/kg and then leveled off up to 400 mg/kg. Using the radioactive method, it was found that the tissue/blood ratio was remarkably constant throughout the CNS, ranking from 0.39 in the dorsal spinal cord to 0.46 in the cerebellum. These results, indicative of a massive impregnation of all brain regions, are consistent with a central antinociceptive action of acetaminophen.  相似文献   

20.
It is found that serotonin content in the brain areas and heart of rats with low alcohol motivation decreases after 5 months of chronic consumption of 48% ethanol solution in a dose of 4 g/kg; in animals with high alcohol motivation serotonin content decreases only in the hypothalamus. Under chronic alcoholization for 1 and 12 months no considerable changes were found in serotonin level of the studied tissues. 60 min after intraperitoneal administration of 20% ethanol solution in a dose of 3 g/kg in intact animals there occurs an increase of serotonin content in the brain hemispheres and heart and its decrease in the hypothalamus; in rat with low alcohol motivation after taking ethanol for 5 months this administration evokes a decrease of serotonin content in the hypothalamus and truncus cerebri; in rats with high alcohol motivation--its decrease in the hypothalamus. Excretion of 5-oxyindoleacetic acid with urine decreases 10 months after alcohol intoxication. When rats were not given ethanol after its chronic taking for 3 months serotonin oxidation was intensified for the first day, which was not observed after 7-month alcoholization of animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号