首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 91 毫秒
1.
H C Jackson 《Peptides》1990,11(5):897-901
The behavioral effects of the TRH analogue RX77368, dimethyl proline-TRH (3, 10 and 30 mg/kg IP), in 5-, 10- and 20-day-old rat pups were investigated. The peptide induced shaking behavior and increased locomotion as early as 5 days after birth. At 20 days RX77368 also produced rearing, stereotyped mounting and grooming (mainly licking and chewing of the forepaws). Additionally, RX77368 produced hypothermia and antinociception in the infant rats. These responses, which were generally, although not always, comparable with those found in adults, agree with biochemical studies showing high levels of TRH receptors in the brain and spinal cord in the first three weeks following birth.  相似文献   

2.
Whilst the CNS effects of thyrotropin releasing hormone (TRH) may result from a direct action on neurones it is also a possibility that another cell type may mediate an indirect action. A potential candidate for such a role is the astrocyte. The ability of TRH and a stable analogue RX77368 (di-methyl proline TRH) to stimulate phosphoinositide turnover has been investigated in cultured astrocytes from a number of CNS regions. Significant increases in turnover were noted in three of the four regions studied. Percentage values were: in spinal cord, 33% TRH, 31% RX77368 (n = 15); in brain stem, 33% TRH, 37% RX77368 (n = 6); in cerebellum, 72% TRH, 73% RX77368 (n = 6); in cortex, 4% TRH, 13% RX77368 (n = 6). EC50 values for both peptides were in the picomolar range. These results indicate that some astrocytes in vitro possess functional TRH receptors linked to the phosphoinositide second messenger system and hence this cell type would potentially be capable of mediating an indirect action of the peptide. Also, because the response was limited to certain regions, heterogeneity in receptor expression is implied. Furthermore, in the light of other evidence to support astrocyte heterogeneity within a region, we suggest that certain characteristics of the response seen in our experiments may be the result of TRH receptors being restricted to a subpopulation of astrocytes within a given culture. Thus, our data show that astrocytes prepared from some CNS regions possess functionally coupled TRH receptors.  相似文献   

3.
The effects of 40 mg oral and 200 microgram intravenous TRH were studied in patients with active acromegaly. Administration of oral TRH to each of 14 acromegalics resulted in more pronounced TSH response in all patients and more pronounced response of triiodothyronine in most of them (delta max TSh after oral TRh 36.4 +/- 10.0 (SEM) mU/l vs. delta max TSH after i.v. TRH 7.7 +/- 1.5 mU/l, P less than 0.05; delta max T3 after oral TRH 0.88 +/- 0.24 nmol/vs. delta max T3 after i.v. TRH 0.23 +/- 0.06 nmol/l, P less than 0.05). Oral TRH elicited unimpaired TSH response even in those acromegalics where the TSH response to i.v. TRH was absent or blunted. In contrast to TSH stimulation, oral TRH did not elicit positive paradoxical growth hormone response in any of 8 patients with absent stimulation after i.v. TRH. In 7 growth hormone responders to TRH stimulation the oral TRH-induced growth hormone response was insignificantly lower than that after i.v. TRH (delta max GH after oral TRH 65.4 +/- 28.1 microgram/l vs. delta max GH after i.v. TRH 87.7 +/- 25.6 microgram/l, P greater than 0.05). In 7 acromegalics 200 microgram i.v. TRH represented a stronger stimulus for prolactin release than 40 mg oral TRH (delta max PRL after i.v. TRH 19.6 +/- 3.22 microgram/, delta max PRL after oral TRH 11.1 +/- 2.02 microgram/, P less than 0.05). Conclusion: In acromegalics 40 mg oral TRH stimulation is useful in the evaluation of the function of pituitary thyrotrophs because it shows more pronounced effect than 200 microgram TRH intravenously. No advantage of oral TRH stimulation was seen in the assessment of prolactin stimulation and paradoxical growth hormone responses.  相似文献   

4.
5.
EEG topography by a microcomputer system (ATAC-3700 Nihon-Kohden) was performed in the rabbit in order to investigate the mechanism of TRH action on the brain wave. Power spectral analysis was carried out using a fast Fourier transform algorithm. The square root of the power spectra was defined as the equivalent potential over each frequency band by Ueno & Matsuoka's method. Potential fields of EEG frequency band were printed out on the topographic maps. The potentials of the electrocortical delta and theta waves were high, while the potentials of the alpha, beta 1 and beta 2 waves were low. Stimulation of the nucleus ventralis anterior (VA) by 3 Hz and 8 Hz resulted in a decrease in these potentials, especially, those of the alpha, beta 1 and beta 2 waves. The potentials of the alpha and fast waves were increased following unilateral destruction of VA. In the rabbit, in which TRH 0.5 mg/kg had been administered beforehand, there was no decrease in the potential of each wave induced by stimulation of VA with frequencies of 3 Hz and 8 Hz. The findings suggest involvement of the diffuse thalamocortical projection system in the activation of EEG by TRH.  相似文献   

6.
JTP-2942 competed with [3H]-Me-TRH for the binding sites in rat brain in vitro, and its inhibitory effect was approximately 17 times less potent than TRH, as shown by Ki values of 673 and 39.7 nM, respectively. Both JTP-2942 and TRH significantly increased apparent dissociation constant (Kd values) for brain [3H]-Me-TRH binding. Intravenous injection of JTP-2942 (0.3-3 mg/kg) and TRH (3 and 10 mg/kg) produced a significant reduction of [3H]-Me-TRH binding sites (Bmax values) in rat brain. Although the decrease by TRH was maximal 10 min after the injection and declined rapidly with time, the decrease by JTP-2942 (1 and 3 mg/kg) tended to be maximal at 30 min later and it lasted until 120 min. The intravenous injection of JTP-2942 was at least 3 times more potent than that of TRH in decreasing Bmax values for brain [3H]-Me-TRH binding. Plasma concentration of JTP-2942 (0.3-3 mg/kg) after intravenous injection in rats rose with the increase of dose, and it peaked immediately after the injection, thereafter decreasing with t1/2 of 19.3-29.9 min. It is concluded that JTP-2942, compared to TRH, may exert fairly potent and sustained occupation of brain TRH receptors under in vivo condition. Thus, JTP-2942 could be clinically useful for the treatment of CNS disorders.  相似文献   

7.
《Peptides》1997,18(2):213-219
O-Lee, T. J., J. Y. Wei and Y. TachÉ. Intracisternal Trh and Rx 77368 potently activate gastric vagal efferent discharge in rats. Peptides 18(2) 213–219, 1997.—The influence of intracisternal (ic) TRH and the stable TRH analog, RX 77368, on gastric vagal efferent discharge (GVED) was investigated in urethane-anesthetized rats. Consecutive IC injections of TRH (3, 30, and 300 ng) at 60 min intervals stimulated dose dependently multi-unit GVED with a peak increase of 90 ± 21%, 127 ± 18% and 145 ± 16% respectively. In two separate studies, IC injection of RX 77368 at 1.5 or 15 ng stimulated multi-unit GVED by 142 ± 24% and 244 ± 95% respectively. Saline injection IC had no effect on GVED. RX 77368 (1.5 ng, ic) action was long lasting (84 ± 13 min) compared with TRH (3 ng: 44 ± 7 min). Single-unit analysis also showed that 13 of 13 units responded to ic RX 77368 (1.5 ng) by an increase in activity. These data indicate that low doses of TRH injected ic stimulate vagal efferent outflow to the rat stomach and that RX 77368 action is more potent than TRH.  相似文献   

8.
9.
A E Pekary  J R Reeve  V P Smith 《Life sciences》1986,39(26):2565-2570
TRH occurs in very high concentration in rat prostate. A species specific protein with repetitive -Gln-His-Pro-Gly- sequences, which are flanked on the N- and C-terminus by paired basic residues, has been shown to be the source of TRH in frog skin and rat hypothalamus. Following cleavage by trypsin-like enzymes, the peptide fragments with N-terminal Gln spontaneously cyclize to pGlu while Gly within the C-terminally extended peptides serves as the -NH2 donor for the alpha-amidation of the proline residue. Because this last step in the biosynthesis of TRH is rate limiting for pGlu-His-Pro-Gly, we have combined several chromatographic and radioimmunoassay techniques to identify this TRH precursor in rat prostate.  相似文献   

10.
We report synthesis and biological activities of several thyrotropin-releasing hormone (TRH) analogues in which the N-terminal pyroglutamic acid residue has been replaced with various carboxylic acids and the central histidine is modified with substituted-imidazole derivatives.  相似文献   

11.
Binding of TRH to specific cell surface receptors on clonal GH4C1 cells is followed within 10 min by receptor sequestration and over 24 h by receptor down-regulation. These experiments were designed to determine if TRH-activated second messenger systems are responsible for changes in receptor localization or number. BAY K8644 and A23187, which increase intracellular calcium, alone or together with 12-O-tetradecanoyl phorbol acetate (TPA), which activates protein kinase C, did not appear to internalize TRH receptors. Drug treatment did not alter the rate of [3H]MeTRH association or internalization, determined by resistance to an acid/salt wash, or the amount of [3H]MeTRH able to bind at 0 C, where only surface receptors are accessible. TPA (0-100 nM) alone or in combination with BAY K8644 or A23187, also failed to change receptor number or affinity after 48 h when TRH caused a 75% decrease in the density of specific binding sites. Chlordiazepoxide has been reported antagonize TRH binding and TRH-induced phospholipid breakdown. Chlordiazepoxide shifted the dose-response curves for TRH stimulation of PRL release and synthesis to the right, and did not change PRL release alone. The affinity of receptors for chlordiazepoxide was not affected by a nonhydrolyzable analog of GTP whereas affinity for TRH was decreased; these properties are consistent with the classification of chlordiazepoxide as a competitive antagonist. Several experiments tested whether chlordiazepoxide would cause receptor internalization and down-regulation. Chlordiazepoxide did not appear to internalize TRH receptors, because TRH-binding sites became available rapidly and at the same rate after they had been saturated with chlordiazepoxide at 0 or 37 C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
13.
Y Goto  Y Tache 《Peptides》1985,6(1):153-156
Intracisternal injection of TRH (1 microgram) under light ether anesthesia induced within 4 hr gastric lesions in 24-hr fasted rats maintained unrestrained at room temperature. Saline, ovine corticotropin-releasing factor (oCRF, 10 micrograms), or human pancreatic growth hormone-releasing factor [hpGRF(1-40), 10 micrograms] tested under the same conditions did not modify the integrity of the gastric mucosa. TRH injected intravenously (100 micrograms/kg) proved to be ineffective. The production of gastric erosions elicited by intracisternal TRH (0.1-1 microgram) or by a stabilized TRH analog, RX 77368 [pGlu-His-(3,3'-dimethyl)-ProNH2, (0.01-0.1 microgram)] was dose-dependent. RX 77368 shows an enhanced potency over TRH. TRH action on gastric mucosa was reversed by atropine, omeprazole and cimetidine. These results demonstrate that TRH, unlike the other hypothalamic releasing factors CRF or GRF, is able to act within the brain to cause the formation of gastric erosions probably through mechanisms involving changes in gastric acid secretion. Intracisternal injection of TRH or its potent analog RX 77368 appears also as a new, simple method to produce centrally mediated experimental gastric erosions in 24 hr-fasted rats.  相似文献   

14.
Spectroscopy (UV-Vis, 1H NMR, ESR) and electrochemistry revealed details of the structure of the Cu(II)-TRH (pyroglutamyl-histidyl-prolyl amide) complex. The 1H NMR spectrum of TRH has been assigned. NMR spectra of TRH in the presence of Cu(II) showed that Cu(II) initially binds TRH through the imidazole. TRH analogs, pGlu-His-Pro-OH, pGlu-(1-Me)His-Pro-amide, pGlu-His-(3,4-dehydro)Pro-amide, pGlu-His-OH, pGlu-Glu-Pro-amide, and pGlu-Phe-Pro-amide provided comparison data. The stoichiometry of the major Cu(II)-TRH complex at pH 7.45 and greater is 1:1. The conditional formation constant (in pH 9.84 borate with 12.0 mM tartrate) for the formation of the complex is above 105 M−1. The coordination starts from the 1-N of the histidyl imidazole, and then proceeds along the backbone involving the deprotonated pGlu-His amide and the lactam nitrogen of the pGlu residue. The fourth equatorial donor is an oxygen donor from water. Hydroxide begins to replace the water before the pH reaches 11. Minority species with stoichiometry of Cu-(TRH)x (x = 2-4) probably exist at pH lower than 8.0. In non-buffered aqueous solutions, TRH acts as a monodentate ligand and forms a Cu(II)-(TRH)4 complex through imidazole nitrogens. All the His-containing analogs behave like TRH in terms of the above properties.  相似文献   

15.
Summary Using immunofluorescent techniques thyrotropin releasing hormone (TRH) is demonstrated in skin of Rana pipiens and R. catesbeiana. The immunofluorescent-TRH is localized in all cell layers of the epidermis and in the epithelium lining the various cutaneous glands, but not in the dermal layer.We wish to thank Dr. Ronald DeLellis and Ms. Mary Blount for their expert advice and guidance in the immunohistochemical techniques.This investigation was supported by NIH National Research Service Award # 1F32 AMO6018-01 from the NIAMDD to Janice L. Bolaffi and NIH Grant AM 21863 to Ivor M.D. Jackson.  相似文献   

16.
The biological activity of thyrotropin-releasing hormone (TRH) and its analogs 4(5)-I-Im-TRH and 2,4(5)-I2-Im-TRH was assessed by means of their effects on: 1) the mean arterial pressure (MAP), 2) heart rate (HR), 3) ventilation minute volume (MV), 4) contractility of the rat duodenum, and 5) concentrations of thyrotropin (TSH) or prolactin (PRL) in serum. Also their binding to TRH-receptors in brain homogenates was studied. In urethane-anesthetized rats TRH ICV increased MAP, HR and MV. 4(5)-I-Im-TRH was equally as active as TRH on HR and MV but a significant elevation in MAP was observed only at a dose 100-fold to that of TRH. However, the maximal responses of 4(5)-I-Im-TRH and TRH did not differ. In conscious rats, TRH 1A elevated MAP and HR but 4(5)-I-Im-TRH was active on MAP only. 2,4(5)-I2-Im-TRH was devoid of cardiorespiratory activity. TRH dose-dependently inhibited the contractions of the rat duodenum while the iodinated analogs lacked such an activity. To induce a significant release of TSH several hundred times more of 4(5)-I-Im-TRH and over 1000 times more of 2,4(5)-I2-Im-TRH were needed as compared to TRH. The iodoanalogs elevated PRL levels only at doses 2000-fold higher than those of TRH. The iodoanalogs displaced [3H][3-Me-His2]TRH [( 3H]MeTRH) from its binding sites at concentrations about 1000 times higher than those of TRH. Substitutions of the histidyl moiety of TRH in 4(5)-I-Im-TRH and 2,4(5)-I2-Im-TRH resulted in substantial loss of the endocrine activity. While the di-iodinated analog was practically devoid of any biological activity the monoiodinated analog exerted similar cardiorespiratory activity to that of TRH.  相似文献   

17.
Regulation of thyrotropin (TSH) release by thyrotropin releasing hormone (TRH) in the anterior pituitary gland (AP) of pregnant rats was studied. The pregnant (day 7, 14, and 21) and diestrous rats were decapitated. AP was divided into 2 halves, and then incubated with Locke's solution at 37 degrees C for 30 min following a preincubation. After replacing with media, APs were incubated with Locke's solution containing 0, or 10 nM TRH for 30 min. Both basal and TRH-stimulated media were collected at the end of incubation. Medial basal hypothalamus (MBH) was incubated with Locke's medium at 37 degrees C for 30 min. Concentrations of TSH in medium and plasma samples as well as the cyclic 3':5' adenosine monophosphate (cAMP) content in APs and the levels of TRH in MBH medium were measured by radioimmunoassay. The levels of plasma TSH were higher in pregnant rats of day 21 than in diestrous rats. The spontaneous release of TSH in vitro was unaltered by pregnancy. TRH increased the release of TSH by AP, which was higher in pregnant than in diestrous rats. Maternal serum concentration of total T3 was decreased during the pregnancy. The basal release of hypothalamic TRH in vitro was greater in late pregnant rats than in diestrous rats. After TRH stimulation, the increase of the content of pituitary cAMP was greater in late pregnant rats than in diestrus animals. These results suggest that the greater secretion of TSH in pregnant rats is in part due to an increase of spontaneous release of TRH by MBH and a decrease of plasma thyroid hormones. Moreover, the higher level of plasma TSH in rats during late pregnancy is associated with the greater response of pituitary cAMP and TSH to TRH.  相似文献   

18.
《Life sciences》1986,39(4):279-296
It is generally accepted that stress ulceration, a multifactorial or pluricausal gastrointestinal disorder, may be the result of mechanistic interrelationships between mucosal, vascular, hormonal and neurogenic factors. The relative importance of each of these independent mechanisms remains unclear. This minireview represents an attempt to interpret many recent studies on certain neurogenic mechanisms and to integrate these observations into the existing body of knowledge. A variety of in vitro techniques and animal models to manipulate actual structures, organ systems, and certain well-defined hormonal influences have been utilized. The peripheral studies have followed, for the most part, the established observation that the stomach is under reciprocal control by sympathetic inhibitory and parasympathetic excitatory autonomic fibers. As a result, several autonomic adrenergic neurotransmitter substances have been found to promote mucosal resistance. Some of these include dopamine, epinephrine, and norepinephrine. Others in contrast, appear to promote vulnerability of the mucosa, and of these, the most well-studied include acetylcholine and histamine.  相似文献   

19.
In rat pituitary GH3 cells, thyrotropin-releasing hormone (TRH) down-regulates TRH receptor (TRH-R) mRNA (Fujimoto, J., Straub, R.E., and Gershengorn, M.C. (1991) Mol. Endocrinol. 5, 1527-1532), at least in part, by stimulating its degradation (Fujimoto, J., Narayanan, C.S., Benjamin, J.E., Heinflink, M., and Gershengorn, M.C. (1992) Endocrinology 130, 1879-1884). Here we show that TRH regulates RNase activity in GH3 cells and that specific mRNA sequences are needed for in vivo regulation of TRH-R mRNA by TRH. TRH affected RNase activity in a biphasic manner with rapid stimulation (by 10 min) followed by a decrease to a rate slower than in control lysates within 6 h. This time course paralleled the effects of TRH on degradation of TRH-R mRNA in vivo. The regulated RNase activity was in a polysome-free fraction of the lysates and was not specific for TRH-R RNA. A truncated form of TRH-R RNA that was missing the entire 3'-untranslated region (TRHR-R5) was more stable than full-length TRH-R RNA (TRHR-WT). In contrast to TRHR-WT mRNA, TRHR-R5 mRNA and TRHR-D9 mRNA, which was missing the 143 nucleotides 5' of the poly(A) tail, were not down-regulated by TRH in stably transfected GH3 cells as their rates of degradation were not increased. These data show that TRH regulates RNase activity in GH3 cells, that the 3'-untranslated region bestows decreased stability on TRH-R mRNA and that the 3' end of the mRNA is necessary for regulation by TRH of TRH-R mRNA degradation. We present an hypothesis that explains specific regulation of TRH-R mRNA degradation by TRH in GH3 pituitary cells.  相似文献   

20.
Rats were given intraventricular (ivt) injections of various doses (50-400 micrograms, hydrobromide salt) of 6-hydroxydopamine (6-OHDA) and killed 1, 3 or 6 days later. Brains were removed, dissected into 11 regions, and the thyrotropin-releasing hormone (TRH) content of each region was measured by radioimmunoassay. 6-OHDA (400 micrograms) caused significant elevations in the TRH content of 6 regions: olfactory bulb, anterior cortex, brainstem, posterior cortex, hippocampus, and amygdala-piriform cortex. The magnitude of these increases ranged from 59% in olfactory bulb to 497% in hippocampus and was, in all cases, greatest at 3 days. These results suggest that the TRH content of certain brain regions may be regulated by catecholamine neurotransmitters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号