首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of cyclic nucleotides in the regulation of lymphocyte growth and differentiation remains controversial, as an adequate characterization of the key enzymes, adenylate cyclase and guanylate cyclase, in the plasma membrane of lymphocytes is still lacking. In this study, calf thymus lymphocytes were disrupted by nitrogen cavitation and various cellular fractions were isolated by differential centrifugation and subsequent sucrose density ultracentrifugation. As revealed by the chemical composition and the activities of some marker enzymes, the plasma membrane fraction proved to be highly purified. Nucleotide cyclases were present in the plasma membranes in high specific activities, basal activities of adenylate cyclase being 13.7 pmol/mg protein per min and 34.0 pmol/mg protein per min for the guanylate cyclase, respectively. Adenylate cyclase could be stimulated by various effectors added directly to the enzyme assay, including NaF, GTP, 5'-guanylyl imidodiphosphate, Mn2+ and molybdate. Addition of beta-adrenergic agonists only showed small stimulating effects on the enzyme activity in isolated plasma membranes. Basal activity of adenylate cyclase as well as activities stimulated by NaF or 5'-guanylyl imidodiphosphate exhibited regular Michaelis-Menten kinetics. Activation by both agents only marginally affected the Km values, but largely increased Vmax. The activity of the plasma membrane-bound guanylate cyclase was about 10-fold enhanced by the nonionic detergent Triton X-100 and high concentrations of lysophosphatidylcholine, but was slightly decreased upon addition of the alpha-cholinergic agonist carbachol. Basal guanylate cyclase indicated to be an allosteric enzyme, as analyzed by the Hill equation with an apparent Hill coefficient close to 2. In contrast, Triton X-100 solubilized enzyme showed regular substrate kinetics with increasing Vmax but unaffected Km values. Thus the lymphocyte plasma membrane contains both adenylate cyclase and guanylate cyclase at high specific activities, with properties characteristic for hormonally stimulated enzymes.  相似文献   

2.
1. Enzyme activity, basal or dopamine-stimulated (10 microM), was linear with time to 25 min and with protein concentration to 0.8 mg protein/ml of final assay volume. Activity was maximal between pH 7.0 and 7.5. 2. Mg2+ maximally stimulated basal or dopamine-sensitive adenylate cyclase activity at about 4 mM. 3. Adenylate cyclase had a Km of 0.042 mM for ATP and maximum velocities for basal and dopamine-stimulated activity of 107 and 179 pmol cyclic AMP formed/mg protein per min, respectively. 4. Half-maximal stimulation of the enzyme occurred at about 4.2 x 10(-7) M dopamine with the threshold being less than 10(-9) M. Dopamine increased the Vmax but had no effect on the Km of ATP. 5. Eighty-five to 90% of the adenylate cyclase activity was found in the particulate fraction. 6. Calcium ion produced a marked inhibition of adenylate cyclase activity above 0.04 mM and half-maximal inhibition occurred near 0.1-0.2 mM.  相似文献   

3.
Liver plasma membranes of hypophysectomized rats were purified, treated with 0.1 m Lubrol-PX and centrifuged at 165,000g for 1 h. The detergent solubilized 50% of the membrane protein; adenylate cyclase activity was present in the supernatant fraction. Optimal substrate concentration of the soluble enzyme was 0.32 mm ATP. Basal activity of 25 preparations of the solubilized enzyme ranged from 124 to 39 pmol cyclic AMP/mg protein/10 min. The solubilized enzyme retained the same sensitivity to activation by guanyl nucleotides as was present in the membrane preparation from which it was derived. Relative sensitivity of the solubilized enzyme with 0.1 mm nucleotides or -side was GDP > GTP > GMP > guanosine; GMP-PNP = GMP-PCP > ITP > GTP. GTP, GMP-PCP, GMP-PNP and other nucleotides were hydrolyzed by phosphohydrolases present in liver membranes that were solubilized with Lubrol-PX along with adenylate cyclase. The presence of the ATP regenerating system in the adenylate cyclase assay also aided in maintaining guanyl nucleotide concentrations. The degree of adenylate cyclase activation by guanyl nucleotides was not related to the sparing effects of nucleotides on substrate ATP hydrolysis. These findings demonstrate that activation of adenylate cyclase by nucleotides is a consequence of a nucleotide-enzyme interaction that is independent of membrane integrity.  相似文献   

4.
Partially purified rat liver plasma membranes were enriched to yield a more glucagon-sensitive membrane fraction which was solubilized with Lubrol-PX. The supernate obtained after centrifugation at 165,000g was subjected to O-diethylaminoethyl anion exchange chromatography. An adenylate cyclase fraction was eluted and purified further by chromatography on agarose-hexane-GTP. The enzyme adsorbed to the affinity resin and was eluted with 0.5 m Tris-HCl. The protein isolated by chromatography on the affinity resin was homogenous by conventional acrylamide gel electrophoresis; one band was observed in sodium dodecyl sulfate. The purified enzyme was free of nucleotide phosphohydrolases found in the parent solubilized membrane preparation. The anion exchange product was not sensitive to glucagon; Lubrol-PX and 5′-guanylylimidodiphosphate [Gpp(NH)p] decreased the activity of this fraction. In the presence of detergent or guanyl nucleotide, glucagon, at 10?6m, increased enzyme activity by 30 and 21%, respectively, to a statistically significant degree, but not above basal levels. Adenylate cyclase was also purified by subjecting the 165,000g supernate directly to agarose-hexane-GTP; agarose-hexane-ATP or agarose-hexane was not effective. The affinity-derived material was associated with 85 nmol of Lubrol-PX/mg of protein. When calculated on the basis of a molecular weight of 150,000 for detergent-free protein after gel filtration on Bio-Gel A-0.5 m, there was 13 mol of detergent/mol of the enzyme obtained by chromatography on the affinity resin. The direct affinity product was insensitive to glucagon and Gpp(NH)p; enzyme activity varied as a function of Lubrol concentration.  相似文献   

5.
A preparation of cardiac sarcolemmal membranes is described. These membranes exhibit 9-24-fold purification of (Na+ + K+)-ATPase, potassium-stimulated nitrophenolphosphatase, 5'-nucleotidase, adenylate cyclase, sialic acid content, and beta-receptor number. Sarcolemmal membranes have two classes of binding sites for the calcium entry blocker, bepridil, 70 X 10(12) high-affinity sites/mg, Kd 25-40 nM; and 30 X 10(15) low-affinity sites/mg, Kd 54-70 microM. Binding of bepridil to these sites appears responsible for inhibition of isoprenaline-stimulated and activation of fluoride-stimulated adenylate cyclase. Since basal adenylate cyclase activity is not influenced, bepridil must act not at the catalytic site, but by altering the interactions between beta-receptor and catalytic and regulatory components of adenylate cyclase.  相似文献   

6.
The involvement of calmodulin as an activator of adenylate cyclase activity was examined in isolated guinea-pig enterocytes and in a membrane preparation. In enterocytes, which responded to prostaglandin E1, vasoactive intestinal peptide and cholera toxin with a significant increase in the rate of cAMP formation trifluoperazine, a calmodulin antagonist, completely inhibited cAMP formation. In a membrane preparation adenylate cyclase activity was stimulated 10-20-fold by the GTP analog, guanosine 5'-[beta-imido]5'-triphosphate (Gpp[NH]p). Prostaglandin E1 and vasoactive intestinal peptide enhanced cAMP formation in this system by 2-3- and 1.2-1.6-fold. respectively. Addition of 200 nM calmodulin to membranes, in which endogenous calmodulin was decreased from 1.4 microgram/mg protein to 0.5 microgram/mg protein by washing with buffer containing EGTA and EDTA, resulted in a 3-4-fold increase of adenylate cyclase activity. The absolute increment in adenylate cyclase activity caused by calmodulin (10-15 pmol cAMP/min per mg protein) was approximately the same in the absence or presence of Gpp[NH]p. The apparent Ka for Gpp[NH]p (6 . 10-7 M) was not significantly changed by the addition of calmodulin. Although endogenous calcium (approx. 10 microM) in the enzyme assay was adequate to affect stimulation by calmodulin, a maximal effect was observed at a calcium concentration of 100 microM. These findings indicate that a calmodulin-sensitive form of adenylate cyclase is present in guinea-pig enterocytes, and that stimulation of cAMP formation in the intestinal mucosa may involve a calmodulin-mediated mechanism.  相似文献   

7.
[14,15-3H] Dihydroforskolin has been used as a tracer in the study of forskolin binding to adipocyte plasma membrane and the subsequent activation of adenylate cyclase (EC 4.6.1.1) of this membrane. The specific binding of radioactivity to the membrane was rapid, temperature-dependent, saturable, and readily reversible. The equilibrium dissociation reaction constant (KD) for the binding was 13 microM, with a maximum binding (Bmax) of 61 pmol of forskolin per mg of membrane protein. The Hill coefficient was 1.0. The bound [14,15-3H] dihydroforskolin was displaced by forskolin with rate constants of 0.07 X 10(6) M-1 min-1 and 1.2 min-1 for the association and dissociation reactions, respectively (30 degrees C). The equilibrium dissociation constant (KD) was approximately the same as the concentration that produced half-maximum activation (EC50) of the adenylate cyclase of rat adipocyte plasma membrane. There was a linear correlation between forskolin binding and adenylate cyclase activation. The results are consistent with the concept of a single class of binding site which binds forskolin. [14,15-3H] Dihydroforskolin appears to be a potentially useful tracer in the study of the mechanism of activation of the catalytic unit of adipocyte adenylate cyclase.  相似文献   

8.
Ram spermatozoa adenylate cyclase is insensitive to all usual regulatory processes. The purification of its active catalytic subunit was accomplished after proteolytic solubilization of a particulate fraction by alpha-chymotrypsin. The purification (26,000-fold from the particulate fraction or 125,000-fold from the whole-sperm proteins) was achieved by conventional procedures (DEAE-Trisacryl, Ultrogel AcA 34, DEAE-Sephacel, hydroxyapatite), in the absence of detergent, and with a yield of 5-10% and a final specific activity of 19 mumol cyclic AMP formed mg protein-1 min-1 at 30 degrees C in the presence of manganese as cosubstrate. The solubilized enzyme, stable at the beginning of the purification procedure, became unstable at the later stages. After the last step (chromatography on hydroxyapatite) half-lives of 27 min, 50 min and 160 min were obtained at 30 degrees C, 20 degrees C and 4 degrees C respectively. The enzyme was stabilized by addition of bovine serum albumin and Lubrol PX, 80% of the activity remaining after 24 h at 4 degrees C. The purified enzyme exhibited a Km value similar to that of the native enzyme (Km = 1.4 mM). Unlike the native enzyme, the purified enzyme has an absolute requirement for MnATP; no significant activity was recovered in the presence of MgATP. Adenosine inhibited the activity of both the native and purified forms of the enzyme to the same extent and in a non-competitive manner. This indicates that adenosine acts on the catalytic component itself and the inhibition site and the catalytic site are different. Data obtained with adenosine analogs indicate that adenosine interacts with the cyclase catalytic subunit with a 'P-site' specificity. The purified adenylate cyclase, which had an apparent molecular mass of 38 kDa on a high-performance liquid chromatography column [Stengel, D., Guenet, L. and Hanoune, J. (1982) J. Biol. Chem. 257, 10,818-10,826], gave a doublet of 36 kDa and 34 kDa on sodium dodecyl sulfate gel electrophoresis. This represents the smallest protein entity associated with adenylate cyclase activity so far reported.  相似文献   

9.
The electrophysiologic properties and the negative inotropic effect of verapamil are most likely due to the inhibition of calcium movement across the sarcolemmal membrane. A possible biochemical basis for this inhibition of calcium movement was studied in a membrane fraction rich in (Na+ + K+)-ATPase (EC 3.6.1.3) and adenylate cyclase (EC 4.6.1.1) activity and which demonstrated Ca2+-ATPase (EC 3.6.1.3) activity. Since each of these enzymes has the potential for influencing transsarcolemmal calcium movements, the effect of verapamil on their activities was studied in this membrane fraction isolated from rat and guinea pig hearts. Ca2+-ATPase activity in the rat was 37.7 mumol Pi/mg per hour compared with 13.8 +/- 2.9 in the guinea pig (p less than 0.01). Corresponding values for (Na+ + k+)-atpase activites were 7.9 +/- 0.9 mumol Pi/mg per hour versus 10.2 +/- 1.4. Adenylate cyclase activity in the rat was 240 +/- 8 pmol/mg per minute compared with 299 +/- 27. It was found that verapamil in concentrations of 0.01-100 mg/litre (2.1 X 10(-8) to 2.1 X 10(-4) M) had no effect on the activity of the above enzymes in either species and it was concluded that a biochemical basis for the effect of verapamil on calcium flux has yet to be defined.  相似文献   

10.
Angiotensin II can inhibit glucagon-stimulated cyclic AMP production in hepatocytes and adenylate cyclase activity in hepatic membranes. Pertussis toxin, an exotoxin produced by Bordetella pertussis, was used to investigate the role of the inhibitory guanine nucleotide-binding regulatory protein of adenylate cyclase (Ni) in coupling angiotensin receptors to the adenylate cyclase system. An assay was developed using [32P] NAD+ to quantitate the amount of Ni protein in the membrane and the extent of its ADP-ribosylation catalyzed by toxin. The ability of angiotensin to inhibit adenylate cyclase and interact with its receptor was compared with the degree of modification of Ni in membranes prepared from isolated hepatocytes. In control membranes angiotensin II inhibited basal adenylate cyclase by 35%. When all of the Ni molecules in the membrane were ADP-ribosylated, angiotensin did not inhibit adenylate cyclase. However, the attenuation of angiotensin's effect on cyclase was not linearly correlated with the degree of modification of Ni; ADP-ribosylation of greater than 80% of the Ni was required before a reduction of the angiotensin effect was observed. A possible explanation for this finding is an excess of Ni molecules in the membrane (approximately 3.4 pmol/mg of membrane protein) over angiotensin II receptors (approximately 1.2 pmol/mg of membrane protein). 125I-angiotensin bound to sites in the membrane with two affinities. Computer fitting of the binding isotherms yielded parameters of N1 = 279 fmol/mg protein, Kd1 = 0.2 nM; N2 = 904 fmol/mg protein, Kd2 = 1.4 nM. When all of the Ni molecules in the membrane were ADP-ribosylated, angiotensin bound to only one site with binding parameters of N = 349 fmol/mg protein, Kd = 0.4 nM. GTP-gamma-S caused a 7-fold increase in the Kd of this site to 2.7 nM. Overall, the data indicate that the Ni protein mediates the effect of angiotensin on adenylate cyclase. The observation that GTP-gamma-S can markedly decrease the affinity of angiotensin receptors when all Ni molecules are ADP-ribosylated suggests that angiotensin receptors may couple to other GTP-binding proteins which may mediate the effects of angiotensin in other signal transduction systems.  相似文献   

11.
The properties of basal and prostaglandin (PG)-stimulated adenylate cyclase of membrane preparations of P388D1 cells were investigated. Three partially purified membrane fractions were obtained by sucrose density gradient centrifugation at the final step of purification from crude homogenate. About 96% of the basal and 89% of PGE2-stimulated adenylate cyclase activity in the homogenate were recovered in three membrane fractions. Two lighter membrane fractions (I and II), which were enriched 11-fold and 8.4-fold in adenylate cyclase activity over crude homogenate, were pooled and subjected to various studies. Results suggested that the basal activity of the membrane preparations has, as in many other cell types, a relatively broad pH optimum (pH 7.5 to 8.5), requires Mg2+, which must be present in excess ATP, and is inhibited by Ca2+. Highly reactive sulfhydryl group(s), which may be present in the lipid bilayer, is required for the adenylate cyclase activity. Because both fluoride ions and GTP augment the enzymatic activity, P388D1 cell membrane adenylate cyclase must possess stimulatory guanine nucleotide-binding protein. The membrane preparations respond to exogeneously added PG by 1.5-fold to 3-fold increase in adenosine 3'-5' cyclic monophosphate (cAMP) production. The magnitude of PG-responsiveness was dependent on the types of PG and the order of potency in stimulation was PGE1 greater than PGE2 greater than PGI2. PGA1, B1, B2, F1 alpha, and F2 alpha stimulated adenylate cyclase only at the highest concentration tested.  相似文献   

12.
The beta 1-adrenergic receptors of turkey erythrocyte membranes have been identified by binding of the radioactively labeled antagonist (--)-[3H]dihydroalprenolol, solubilized by treatment of the membranes with the detergent digitonin, and purified by affinity chromatography. Binding of (--)-[3H]dihydroalprenolol to the membranes occurred to a single class of non-cooperative binding sites (0.2--0.3 pmol/mg protein) with a equilibrium dissociation constant (Kd) of 8 (+/- 2) nM. These sites were identified as the functional, adenylate-cyclase-linked beta 1-adrenergic receptors on the basis of: firstly, the fast association and dissociation binding kinetics at 30 degrees C; secondly, the stereospecific displacement of bound (--)-[3H]dihydroalprenolol by beta-adrenergic agonists and antagonists; and thirdly, the order of potencies for agonists to displace bound tracer (isoproterenol congruent to protokylol greater than norepinephrine congruent to epinephrine) similar to the one found for adenylate cyclase activation, and typical for beta 1-adrenergic receptors. Treatment of the membranes with the detergent digitonin solubilized 30% of the receptors in an active form. Digitonin solubilized also adenylate cyclase activity with a yield of 20 to 30%, provided the membranes were first treated with an effector known to produce a persistent active state of the enzyme: e.g. sodium fluoride. Binding sites for guanine nucleotides ([3H]p[NH]ppG) were solubilized as well. Their concentration (24 pmol/mg protein) was in large excess over the concentration of solubilized receptors (0.30--0.45 pmol/mg protein). Solubilized receptors were purified 500--2000-fold by affinity chromatography with a 25 to 35% yield, using an alprenolol-agarose affinity matrix. Affinity purified receptors were devoid of measurable adenylate cyclase activity and guanine nucleotide binding sites, thus showing that receptors and adenylate cyclase are distinct membrane constituents, and that guanine nucleotides apparently do not bind directly to the receptor molecules. Membrane-bound, solubilized and purified receptors were sensitive to inactivation by dithiothreitol, but not by N-ethylmaleimide, suggesting that receptors are at least partly constituted of protein molecules, with essential disulfide bonds.  相似文献   

13.
Basal adenylate cyclase values for corpora lutea (CL) removed from cyclic gilts on Days 3, 8, 13 and 18 were 178 +/- 61, 450 +/- 46, 220 +/- 25 and 208 +/- 18 pmol cAMP formed/min/mg protein, respectively. Basal activity was significantly elevated on Day 8 (P less than 0.001). LH-stimulatable adenylate cyclase values for CL from Days 3, 8, 13 and 18 were 242 +/- 83, 598 +/- 84, 261 +/- 27 and 205 +/- 17 pmol cAMP formed/min/mg protein respectively. Serum progesterone concentrations of 12 gilts bled every 2 days through one complete oestrous cycle ranged from 1.1 to 26.9 ng/ml with highest values between Days 8 and 12. The decline in serum progesterone concentrations was coincident with the decrease in basal adenylate cyclase activity. There was no LH-stimulatable adenylate cyclase activity present in the CL at the specific times of the oestrous cycle examined. We conclude that progesterone secretion by the pig CL is apparently dependent on basal activity of adenylate cyclase.  相似文献   

14.
The effect of bovine growth hormone on adenylate cyclase activity was studied in bovine and rat renal medulla. Highly purified growth hormone (lot B1003A) increased adenylate cyclase activity in plasma membranes from bovine renal medulla from 132+/-6 pmol cyclic AMP formed/mg protein per 10 min to 364+/-10 pmol cyclic AMP formed/mg protein per 10 min. Similar results were seen with homogenates of rat renal medulla. The minimum effective concentration of bovine growth hormone required to activate adenylate cyclase was 0.5 mug/ml and maximum activation was detected at 500 mug/ml. The amount of vasopressin determined by radioimmunoassay to contaminate the growth hormone caused an increase in adenylate cyclase activity comparable to that of the corresponding concentration of growth hormone that was tested. Dialysis of growth hormone and vasopressin resulted in parallel reductions in the effect of each hormone on adenylate cyclase activity. Similarly, both growth hormone and vasopressin produced increases in short circuit current in isolated toad bladders but these effects were not detectable after dialysis of the hormones. In contrast, the effect of growth hormone on the uptake of 35SO2-4 by cartilage from hypophysectomized rats was not decreased after dialysis. These results indicate that available preparations of growth hormone are contaminated by small but physiologically significant amounts of vasopressin and that the activation of adenylate cyclase activity in renal medulla in response to growth hormone can be explained by this contamination rather than by an effect of growth hormone per se.  相似文献   

15.
A simple large-scale purification of alpha 2-adrenergic receptor-enriched membranes from human platelets is described. Binding of the antagonist [3H]yohimbine is enriched 3-5-fold compared to a crude membrane fraction. Binding of low concentrations of the partial agonist 3-H-rho-aminoclonidine is increased 15-20-fold due to a higher binding affinity for the purified membranes. A soluble inhibitor of 3H-rho-aminoclonidine binding to purified membranes is found even in thrice-washed crude platelet membranes. The guanine nucleotides GDP and GTP are found to account for this inhibitory activity. Forskolin-stimulated adenylate cyclase activity is also enriched in the purified membrane fraction. Adenylate cyclase activity is inhibited by alpha 2-agonist to a comparable extent in all membrane fractions. This membrane preparation should prove useful in studies of alpha 2-adrenergic receptor mechanisms.  相似文献   

16.
Adenylate cyclase was measured in skeletal muscle plasma membranes incubated with subtilisin. Under specific conditions the protease preferentially inactivated fluoride and guanylnucleotide sensitivity. Following protease treatment, membranes were solubilized with Lubrol 12A9 and subjected to ion-exchange chromatography. Adenylate cyclase was eluted with 200 mM NaCl; the enzyme recovered was completely unresponsive to either NaF or guanylyl imidodiphosphate. Responsiveness to the two ligands was restored by adding a heart fraction in which basal activity had been destroyed by heating at 40 degrees C or by adding a soluble skeletal muscle fraction in which basal activity had been largely destroyed by N-ethylmaleimide. The solubilized subtilisin-treated skeletal muscle preparation may serve as a source of catalytic activity for the study and purification of regulatory factors for adenylate cyclase.  相似文献   

17.
The purpose of this study was to compare the adenylate cyclase of a tumour (rat osteosarcoma) growing in vivo with that of fast-growing embryonic bone. In the tumour the enzyme activity per total protein or DNA (under the same assay conditions) was 6--10-fold lower than in embryonic bone. To characterize this difference, we examined the kinetic properties of the enzyme in partially purified plasma membranes from the two tissues. A purification procedure based on differential centrifugation and discontinuous-sucrose-gradient centrifugation yielded a 10-fold increase in the specific activities of adenylate cyclase and 5'-nucleotidase in bone. The same procedure yielded an enriched membrane preparation from the tumour, but, relative to 5'-nucleotidase, a loss of 30% in adenylate cyclase occurred, which could not be recovered from another fraction. Kinetic analysis revealed that the lower adenylate cyclase activity in the tumour was due to a decrease in Vmax.. There was no significant difference in Ks (approx. 0.15 mM), and in the Km for GTP and p[NH]ppG. There were marked differences, however, in the extent of stimulation by p[NH]ppG, GTP and hormone, which was greater in tumour, and in the K1 for adenosine inhibition, which was 140 microM in bone and 500 microM in tumour. Under maximum stimulatory conditions, the enzyme activity in the tumour approached that in bone. The kinetic differences between bone and tumour enzyme were decreased by detergent solubilization, suggesting that the membrane environment plays a role in the generation of the observed differences.  相似文献   

18.
The role of oxidation of SH groups in the activity of adenylate cyclase and in radiosensitivity of the enzyme was investigated. Adenylate cyclase activity was measured in purified membrane preparation of 19 day old chicken embryo brains. N-ethyl-maleimide (NEM) and lead-acetate were used as SH inhibitors. Gamma irradiation was carried out with 60-Co source. NEM inhibition of adenylate cyclase was dose dependent and 50 per cent inhibition was observed at 40-50 microM NEM. Activity of adenylate cyclase was elevated at lower concentrations of lead-acetate (10 nM-100 microM) and was inhibited at higher concentrations (above 100 microM). The presence of 40 microM NEM did not alter the shape of lead acetate saturation curve of adenylate cyclase. Gamma irradiation in the dose range of 100-800 Gy elevated the adenylate cyclase activity measured in the presence of 5 mM NaF but did not alter the basal activity. Gamma irradiation did not have significant effect on NEM saturation of adenylate cyclase, while it altered slightly the lead acetate saturation curve.  相似文献   

19.
To evaluate the functional and structural characteristics of the parathyroid hormone (PTH) receptors on different tissues and the possible heterogeneity in structure and function, PTH receptors on dog kidney membrane, human kidney membrane, chick bone cell membrane and human dermal fibroblast membrane were evaluated. The results showed that human kidney plasma membrane, canine kidney plasma membrane and chick bone cell membrane possess one single class of PTH receptor with a Kd (dissociation constant) of 1-5 nM and an IC50 also of 1-5 nM. The number of binding sites was 800 fmol per mg of protein for chick bone cell particulate membrane, 1-5 pmol per mg of protein for human kidney plasma membrane and 2.2 pmol per mg of protein for dog kidney plasma membrane. Photoaffinity labelling identified a major binding component with a molecular mass of 70 kDa in all three types of membrane. The plasma membrane fraction from human dermal fibroblast contained two different binding sites for PTH with high (Kd = 2 nM) and low (Kd = 580 nM) affinities respectively. The IC50 for the adenylate cyclase is about 2 nM, which is similar to the Kd of the high-affinity site. Photoaffinity labelling also demonstrated a major binding component with a molecular weight of 70 kDa. We conclude that structural and functional similarity exists among the PTH receptors present on chick bone cell membrane, dog kidney membrane and human kidney membrane. The human dermal fibroblast possesses two different binding sites, one of which is coupled to adenylate cyclase.  相似文献   

20.
The effect of bovine growth hormone on adenylate cyclase activity was studied in bovine and rat renal medulla. Highly purified growth hormone (lot B1003A) increased adenylate cyclase activity in plasma membranes from bovine renal medulla from 132 ± 6 pmol cyclic AMP formed/mg protein per 10 min to 364 ± 10 pmol cyclic AMP formed/mg protein per 10 min. Similar results were seen with homogenates of rat renal medulla. The minimum effective concentration of bovine growth hormone required to activate adenylate cyclase was 0.5 μg/ml and maximum activation was detected at 500 μg/ml. The amount of vasopressin determined by radioimmunoassay to contaminate the growth hormone caused an increase in adenylate cyclase activity comparable to that of the corresponding concentration of growth hormone that was tested. Dialysis of growth hormone and vasopressin resulted in parallel reductions in the effect of each hormone on adenylate cyclase activity. Similarly, both growth hormone and vasopressin produced increases in short circuit current in isolated toad bladders but these effects were not detectable after dialysis of the hormones. In contrast, the effect of growth hormone on the uptake of 35SO42− by cartilage from hypophysectomized rats was not decreased after dialysis. These results indicate that available preparations of growth hormone are contaminated by small but physiologically significant amounts of vasopressin and that the activation of adenylate cyclase activity in renal medulla in response to growth hormone can be explained by this contamination rather than by an effect of growth hormone per se.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号