首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA damage was induced in isolated human peripheral lymphocytes by exposure at 5 Gy to 60Co radiation. Cells were permitted to repair the DNA damage while exposed to 60-Hz fields or while sham-exposed. Exposed cells were subjected to magnetic (B) or electric (E) fields, alone or in combination, throughout their allotted repair time. Repair was stopped at specific times, and the cells were immediately lysed and then analyzed for the presence of DNA single-strand breaks (SSB) by the alkaline-elution technique. Fifty to 75 percent of the induced SSB were repaired 20 min after exposure, and most of the remaining damage was repaired after 180 min. Cells were exposed to a 60-Hz ac B field of 1 mT; an E field of 1 or 20 V/m; or combined E and B fields of 0.2 V/m and 0.05 mT, 6 V/m and 0.6 mT, or 20 V/m and 1 mT. None of the exposures was observed to affect significantly the repair of DNA SSB.  相似文献   

2.
Chinese hamster ovary (CHO) cells were exposed for 1 h to 60-Hz magnetic fields (0.1 or 2 mT), electric fields (1 or 38 V/m), or to combined magnetic and electric fields (2 mT and 38 V/m, respectively). Following exposure, the cells were lysed, and the DNA was analyzed for the presence of single-strand breaks (SSB), using the alkaline elution technique. No significant differences in numbers of DNA SSB were detected between exposed and sham-exposed cells. A positive control exposed to X-irradiation sustained SSB with a dose-related frequency. Cells exposed to nitrogen mustard (a known cross-linking agent) and X-irradiation demonstrated that the assay could detect cross-linked DNA under our conditions of electric and magnetic field exposures.  相似文献   

3.
An animal model for large granular lymphocytic (LGL) leukemia in male Fischer 344 rats was utilized to determine whether magnetic field exposure can be shown to influence the progression of leukemia. We previously reported that exposure to continuous 60 Hz, 1 mT magnetic fields did not significantly alter the clinical progression of LGL leukemia in young male rats following injection of spleen cells from donor leukemic rats. Results presented here extend those studies with the following objectives: (a) to replicate the previous study of continuous 60 Hz magnetic field exposures, but using fewer LGL cells in the inoculum, and (b) to determine if intermittent 60 Hz magnetic fields can alter the clinical progression of leukemia. Rats were randomly assigned to four treatment groups (18/group) as follows: (1) 1 mT (10 G) continuous field, (2) 1 mT intermittent field (off/on at 3 min intervals), (3) ambient controls ( < 0.1 microT), and (4) positive control (5 Gy whole body irradiation from cobalt-60 four days prior to initiation of exposure). All rats were injected intraperitoneally with 2.2 x 10(6) fresh, viable LGL leukemic spleen cells at the beginning of the study. The fields were activated for 20 h per day, 7 days per week, and all exposure conditions were superimposed over the natural ambient magnetic field. The rats were weighed and palpated for splenomegaly weekly. Splenomegaly developed 9-11 weeks after transplantation of the leukemia cells. Hematological evaluations were performed at 6, 8, 10, 12, 14, and 16 weeks of exposure. Peripheral blood hemoglobin concentration, red blood cells, and packed cell volume declined, and total white blood cells and LGL cells increased dramatically in all treatment groups after onset of leukemia. Although the positive control group showed different body weight curves and developed signs of leukemia earlier than other groups, differences were not detected between exposure groups and ambient controls. Furthermore, there were no overall effects of magnetic fields on splenomegaly or survival in exposed animals. In addition, no significant and/or consistent differences were detected in hematological parameters between the magnetic field exposed and the ambient control groups.  相似文献   

4.
Rats, given the choice, avoid exposure to alternating current (ac) 60-Hz electric fields at intensities ? 75 kV/m. This study investigated the generality of this behavior by studying the response of rats when exposed to high voltage direct current (HV dc) electric fields. Three hundred eighty male Long Evans rats were studied in 9 experiments with 40 rats per experiment and in one experiment with 20 rats to determine 1) if rats avoid exposure to HVdc electric fields of varying field strengths, and 2) if avoidance did occur, what role, if any, the concentration of air ions would have on the avoidance behavior. In all experiments a three-compartment glass shuttlebox was used; either the left or right compartment could be exposed to a combination of HVdc electric fields and air ions while the other compartment remained sham-exposed. The third, center compartment was a transition zone between exposure and sham-exposure. In each experiment, the rats were individually assessed in 1-h sessions where half of the rats (n = 20) had the choice to locomote between the two sides being exposed or sham-exposed, while the other half of the rats'(n = 20) were sham-exposed regardless of their location, except in one experiment where there was no sham-exposed group. The exposure levels for the first six experiments were 80, 55, 42.5, 30, ?36, and ?55 kV/m, respectively. The air ion concentration was constant at 1.4 × 106 ions/cc for the four positive exposure levels and ?1.4 × 106 ions/cc for the two negative exposure levels. Rats having a choice between exposure and non-exposure relative to always sham-exposed control animals significantly reduced the amount of time spent on the exposed side at 80kV/m (P < .002) as they did at both 55 and ?55 kV/m (P < .005). No significant differences between groups were observed at 42.5, 30, or -36 kV/m. To determine what role the air ion concentration might have had on the avoidance behavior at field strengths of 55 kV/m or greater, four additional experiments were conducted. The HVdc exposure level was held constant at either ?55 kV/m (for three experiments) or -55 kV/m (for 1 experiment) while the air ion concentration was varied between experiments at 2.5 × 105 ions/cc, 1.0 × 104 for two of the experiments and was below the measurement limit (< ± 2 × 103 ions/cc) for the other two experiments at 55 and ?55 kV/m. The exposed rats significantly reduced the amount of time spent on the exposed side at 55 and ?55 kV/m, relative to the sham-exposed rats regardless of air ion concentration (all at P < .005). Thus, HVdc electric fields of ? + or ?55 kV/m are sufficient to produce avoidance behavior in rats. Positive or negative air ion concentrations were not significant factors in these avoidance outcomes. © 1993 Wiley-Liss, Inc.  相似文献   

5.
Male and female reproductive functions have been proposed as possibly sensitive targets for the biological effects of 60-Hz (power frequency) magnetic fields (MF). However, experimental data relevant to this hypothesized association are very limited. In the present study, the "reproductive assessment by continuous breeding" design was used to identify possible effects of MF exposure on reproductive performance, fetal development, and early postnatal growth in rats. Groups of age-matched Sprague-Dawley rats (40 breeding pairs/group) were exposed continuously (18.5 hr per day) to linearly polarized, transient-free 60-Hz MF at field strengths of 0 Gauss (G; sham control), 0.02 G, 2.0 G, or 10.0 G. An additional group of 40 breeding pairs received intermittent (1 hr on/1 hr off) exposure to 10.0 G fields. F0 breeding pairs were exposed to MF or sham fields for 1 week prior to mating, during a 14-week period of cohabitation, and during a 3-week holding period after cohabitation. The duration of the cohabitation period was selected to be sufficient for the delivery of five litters in the sham control group. Pups from the final F1 litter from each breeding pair were exposed to MF or sham fields until sexual maturity, were cohabitated in MF or sham fields for 7 days with nonsiblings from the same exposure group, and were held in the MF or sham fields for 22 days to permit delivery of F2 pups for evaluation. No evidence of exposure-related toxicity was identified in any rat in the F0, F1, or F2 generations. Fetal viability and body weights in all litters of groups exposed to MF were comparable to those of sham controls. No significant differences between sham controls and MF-exposed groups were seen in any measure of reproductive performance (litters/breeding pair, percent fertile pairs, latency to parturition, litter size, or sex ratio) in either the F0 or F1 generation. Exposure of Sprague-Dawley rats to 60-Hz MF strengths of up to 10.0 G either during their peak reproductive period (F0) or during gestation and throughout their life span (F1) has no biologically significant effects on reproductive performance. These results do not support the hypothesis that exposure to pure, linearly polarized 60-Hz MF is a significant reproductive or developmental toxicant.  相似文献   

6.
Epidemiological studies suggest that exposure to power frequency magnetic fields may be a risk factor for breast cancer in humans. To study the relationship between exposure to 60-Hz magnetic fields (MFs) and breast cancer, cell cycle distribution, apoptosis, and the expression of related proteins (p21, Bax, and Bcl-2) were determined in MCF-7 cells following exposure to magnetic fields (60 Hz, 5 mT) alone or in combination with X rays. It was found that exposure of MCF-7 cells to 60-Hz MFs for 4, 8, and 24 h had no effect on cell cycle distribution. Furthermore, 60-Hz MFs failed to affect cell growth arrest and p21 expression induced by X rays (4 Gy). Similarly, 60-Hz MFs did not induce apoptosis or the expression of Bax and Bcl-2, two proteins related to apoptosis. However, exposure of cells to 60-Hz MFs for 24 h after irradiation by X rays (12 Gy) significantly decreased apoptosis and Bax expression but increased Bcl-2 expression. The effects of exposure to 60-Hz MFs on X-ray-induced apoptosis and Bax and Bcl-2 expressions were not observed at 72 h. These data suggest that exposure to 60-Hz MFs has no effects on the growth of MCF-7 cells, but it might transiently suppress X-ray-induced apoptosis through increasing the Bcl-2/Bax ratio.  相似文献   

7.
The rationale for selection of an animal model, the experimental design, and the design and evaluation of an exposure system used in studies of 60-Hz magnetic fields are described. The studies were conceived to assay development of cancer and immune responsiveness in mice exposed to magnetic fields. The exposure system utilized a quadrupole-coil configuration to minimize stray magnetic fields. Four square-wound coil provided a uniform field within a volume occupied by 16 animal cages. The magnetic field had a mean flux density of 2 mT that varied less than +/- 10% within the volume occupied by animals' cages. The flux density decreased to less than 0.1 microT at a distance of 2 m from the coils. In each exposure system 32 animals could be housed in plastic cages.  相似文献   

8.
Fertilized eggs of Gallus domesticus were exposed continuously during their 21-day incubation period to either 50- or 60-Hz sinusoidal electric fields at an average intensity of 10 Vrms/m. The exposure apparatus was housed in an environmental room maintained at 37 degrees C and 55-60% relative humidity (RH). Within 1.5 days after hatching, the chickens were removed from the apparatus and tested. The test consisted of examining the effect of 50- or 60-Hz electromagnetic fields at 15.9 Vrms/m and 73 nTrms (in a local geomagnetic field of 38 microT, 85 degrees N) on efflux of calcium ions from the chicken brain. For eggs exposed to 60-Hz electric fields during incubation, the chicken brains demonstrated a significant response to 50-Hz fields but not to 60-Hz fields, in agreement with the results from commercially incubated eggs [Blackman et al., 1985a]. In contrast, the brains from chicks exposed during incubation to 50-Hz fields were not affected by either 50- or 60-Hz fields. These results demonstrate that exposure of a developing organism to ambient power-line-frequency electric fields at levels typically found inside buildings can alter the response of brain tissue to field-induced calcium-ion efflux. The physiological significance of this finding has yet to be established.  相似文献   

9.
This investigation was undertaken because biological studies to evaluate the effects of intermediate frequency magnetic fields are insufficient. White Leghorn fertile eggs (60/group) were either exposed to a 20 kHz, 1.1 mT(rms) sinusoidal magnetic field or sham‐exposed during the first 2, 7, or 11 days of embryogenesis. Lower dose exposures at 0.011 and 0.11 mT(rms) for 2 days were also conducted to elucidate possible dose–response relationships. Additional eggs given all‐trans‐retinoic acid, a teratogen, were exposed to the 1.1 mT(rms) magnetic field for the same periods to investigate the modification of embryotoxicity. After exposure, embryos were examined for mortality and developmental abnormalities. Developmental stage, number of somite pairs, and other developmental endpoints were also evaluated. Experiments were triplicated and conducted in a blind fashion. No exposure‐related changes were found in any of the endpoints in intact embryos exposed to1.1 mT(rms) or to the lower doses of 0.11 and 0.011 mT(rms) magnetic fields. Retinoic acid administration produced embryotoxic responses, which were embryonic death and developmental abnormalities, in 40–60% of embryos in the sham‐exposed groups. The magnitude of these responses was not changed significantly by the magnetic field exposures. Under the present experimental conditions, exposure to 20 kHz magnetic field up to 1.1 mT(rms) was not embryotoxic in the chick and did not potentiate the embryotoxic action of retinoic acid. Bioelectromagnetics 30:573–582, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
The purpose of this study was to determine if 60 Hz magnetic fields can alter the clinical progression of leukemia in an animal model. Large granular lymphocytic (LGL) leukemia cells from spleens of leukemic rats were transplanted into young male Fischer 344 rats, producing signs of leukemia in approximately 2–3 months. The animals were randomly assigned to 4 treatment groups (108/group) as follows: 1) 10 G (1.0 mT) linearly polarized 60 Hz magnetic fields, 2) sham exposed [null energized unit with residual 20 mG (2 μT) fields], 3) ambient controls [<1 mG (0.1 μT)], and 4) positive controls (a single 5 Gy whole body exposure to 60Co 4 days prior to initiation of exposure). All rats were injected intraperitoneally (ip) with 2.2 × 107 LGL leukemic cells at the initiation of exposure or sham exposure. The magnetic fields were activated for 20 h/day, 7 days/week, allowing time for animal care. The experimental fields were in addition to natural ambient magnetic fields. Eighteen rats from each treatment group were bled, killed, and evaluated at 5, 6, 7, 8, 9, and 11 weeks of exposure. Peripheral blood hematological endpoints, changes in spleen growth, and LGL cell infiltration into the spleen and liver were measured to evaluate the leukemia progression. No significant or consistent differences were detected between the magnetic field exposed groups and the ambient control group, although the clinical progress of leukemia was enhanced in the positive control animals. These data indicate that exposure to sinusoidal, linearly polarized 60 Hz, 10 G magnetic fields did not significantly alter the clinical progression of LGL leukemia. Furthermore, the data are in general agreement with previous results of a companion repeated‐bleeding study in which animals were exposed for 18 weeks. Bioelectromagnetics 20:48–56, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

11.
We studied effects of alternating magnetic fields on the embryonic and fetal development of rats. Mated females of the Han:Wistar-strain were sham exposed or exposed continuously to a 50-Hz field or to a 20,000 pulse-per-second (pps) sawtooth magnetic field from day 0 to day 20 of pregnancy for 24 h/day until necropsied on day 20. The respective peak-to-peak intensities of the fields were 35.6 μT (sinewave) and 15.0 μT (sawtooth). Each treatment group contained 72 bred females. Control animals were kept under the same conditions without the magnetic field. No adverse effects were seen in the dams. The mean numbers of implantations and living fetuses per litter were statistically significantly increased in the 50-Hz group. There were, however, three total resorptions of litters in dams of the control group, which contributed to the difference in the number of living fetuses. The corrected body-mass gains (gains without uterine content) of dams were similar in all groups. Pregnancy rates, incidences of resorptions. late fetal deaths, and fetal body masses were similar in all groups. The incidence of fetuses with minor skeletal anomalies was statistically significantly increased in both exposed groups. Only one serious malformation (anophthalmia, sawtooth-exposed group) and a few minor visceral malformations were found. In conclusion, the magnetic fields used in this study did not increase the incidence of major malformations or resorptions in Wistar rats. The increased number of skeletal anomalies and implantations we observed indicates, however, that some developmental effects in rats may attend exposure to time-varying magnetic fields. © 1993 Wiley-Liss. Inc.  相似文献   

12.
Adult male rats were exposed or sham-exposed to 60-Hz electric fields without spark discharges, ozone, or significant levels of other secondary variables. No effects were observed on body weights or plasma hormone levels after 30 days of exposure at an effective field strength of 68 kV/m. After 120 days of exposure (effective field strength = 64 kV/m), effects were inconsistent, with significant reductions in body weight and plasma levels of follicle-stimulating hormone and corticosterone occurring in one replicate experiment but not in the other. Plasma testosterone levels were significantly reduced after 120 days of exposure in one experiment, with a similar but not statistically significant reduction in a replicate experiment. Weanling rats, exposed or sham-exposed in electric fields with an effective field strength of 80 kV/m from 20 to 56 days of age, exhibited identical or closely similar growth trends in body and organ weights. Hormone levels in exposed and sham-exposed groups were also similar. However, there was an apparent phase shift between the two groups in the cyclic variations of concentrations of hormones at different stages of development, particularly with respect to follicle-stimulating hormone and corticosterone. We concluded that 60-Hz electric fields may bring about subtle changes in the endocrine system of rats, and that these changes may be related to alterations in episodic rhythms.  相似文献   

13.
In repeated short-term tests (four sessions, each of 45-minute duration), and one longer test (a 23.5-hour session), behavior of rats was evaluated in a long, narrow shuttlebox. One side of the box was exposed to an electric field at various strengths, while a visually identical opposite side was shielded from exposure. In the short-term tests, rats generally remained shielded from electric fields of 90 kV/m and greater during the first session, and maintained this response in subsequent sessions. In the longer test, this same preference response was demonstrated at field strengths of 75 kV/m and greater; however, at 25 and 50 kV/m, rats exhibited a statistically significant preference for the exposed region of the shuttlebox, but only during the light portion of a 12-hour light: 12-hour dark cycle. Exposed animals made more traverses than sham-exposed controls between the two ends of the shuttlebox during the first hour of the test. The experimental data support the hypothesis that the observed behavioral effects are the result of direct interaction of the electric field with the animal, and not the result of secondary factors such as electric shock, corona discharge, audible noise, ozone, or vibration of the experimental apparatus.  相似文献   

14.
This paper describes preliminary findings on the influence of 60-Hz (2-mT) magnetic fields on tumor promotion and co-promotion in the skins of mice. The effect of magnetic fields on natural killer (NK) cell activity in spleen and blood was also examined. Groups of 32 juvenile female mice were exposed to the magnetic field as described in part I. The dorsal skin of all animals was treated with a subthreshold dose of the carcinogen 7,12-dimethyl-benz(a)anthracene (DMBA). One week after the treatment, two groups were sham exposed (group A) or field exposed at 2 mT (group B) 6 h/day for 21 weeks, to test whether the field would act as a tumor promoter. No tumors developed in these two groups of mice. To test whether the magnetic field would modify tumor development by directly affecting tumor growth or by suppressing immune surveillance, two additional groups of mice were treated weekly with the tumor promoter 12-0-tetradecanoylphorbol-13-acetate (TPA) and then either sham exposed (group C) or field exposed (group D). The time to appearance of tumors was shorter (but not statistically so) in the group exposed to magnetic fields and TPA. Some differences in NK cell activity and spleen size were observed between the sham- and field-exposed groups.  相似文献   

15.
Equipment designed for simultaneous exposure of rodents to 60-Hz electric and magnetic fields is described. Three identical systems were constructed, each capable of continuous exposure of 256 rats or 640 mice to a nominal electric field at less than 50 kV/m, and to horizontal and vertical magnetic fields at less than 1 mT. Design features, construction details, and results of various tests of the systems are described. Tests were made: of phase relations between electric and magnetic fields; of uniformity of electric and magnetic fields; of changes across time in electric-field intensity as a result of animals' soiling of cages and various washing routines; of resistance of bedding material during humid and dry conditions; and of acoustic noise due to background, to field-generation equipment, and to air conditioning equipment. The results demonstrated that fields were effectively generated but that significant and troublesome changes in electric-field intensity occurred because of cage-soiling. However, when cages were frequently cleaned, field intensities were consistent from one exposure to another.  相似文献   

16.
60 Hz magnetic field exposure induces DNA crosslinks in rat brain cells   总被引:8,自引:0,他引:8  
In previous research, we found an increase in DNA strand breaks in brain cells of rats acutely exposed to a 60 Hz magnetic field (for 2 h at an intensity of 0.5 mT). DNA strand breaks were measured with a microgel electrophoresis assay using the length of DNA migration as an index. In the present experiment, we found that most of the magnetic field-induced increase in DNA migration was observed only after proteinase-K treatment, suggesting that the field caused DNA-protein crosslinks. In addition, when brain cells from control rats were exposed to X-rays, an increase in DNA migration was observed, the extent of which was independent of proteinase-K treatment. However, the X-ray-induced increase in DNA migration was retarded in cells from animals exposed to magnetic fields even after proteinase-K treatment, suggesting that DNA-DNA crosslinks were also induced by the magnetic field. The effects of magnetic fields were also compared with those of a known DNA crosslink-inducing agent mitomycin C. The pattern of effects is similar between the two agents. These data suggest that both DNA-protein and DNA-DNA crosslinks are formed in brain cells of rats after acute exposure to a 60 Hz magnetic field.  相似文献   

17.
This study demonstrates that exposure to 60 Hz magnetic fields (3.4–8.8 mT) and magnetic fields over the range DC-600 kHz (2.5–6.5 mT) can alter the early embryonic development of sea urchin embryos by inducing alterations in the timing of the cell cycle. Batches of fertilized eggs were exposed to the fields produced by a coil system. Samples of the continuous cultures were taken and scored for cell division. The times of both the first and second cell divisions were advanced by ELF AC fields and by static fields. The magnitude of the 60 Hz effect appears proportional to the field strength over the range tested. The relationship to field frequency was nonlinear and complex. For certain frequencies above the ELF range, the exposure resulted in a delay of the onset of mitosis. The advance of mitosis was also dependent on the duration of exposure and on the timing of exposure relative to fertilization. © 1995 Wiley-Liss, Inc.  相似文献   

18.
Acute (2 h) exposure of rats to a 60 Hz magnetic field (flux densities 0.1, 0.25, and 0.5 mT) caused a dose-dependent increase in DNA strand breaks in brain cells of the animals (assayed by a microgel electrophoresis method at 4 h postexposure). An increase in single-strand DNA breaks was observed after exposure to magnetic fields of 0.1, 0.25, and 0.5 mT, whereas an increase in double-strand DNA breaks was observed at 0.25 and 0.5 mT. Because DNA strand breaks may affect cellular functions, lead to carcinogenesis and cell death, and be related to onset of neurodegenerative diseases, our data may have important implications for the possible health effects of exposure to 60 Hz magnetic fields. Bioelectromagnetics 18:156–165, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

19.
工频磁场是人类生活中接触最多的一类磁场,其引起的生物效应与人类健康的关系备受关注.本文选用1 mT、5 mT及10 mT工频磁场照射急性分离的小鼠皮层神经元(15 min),应用全细胞膜片钳技术离线记录通道电流,研究了工频磁场对神经元延迟整流钾通道特性的影响.结果显示,1 mT、5 mT及10 mT 3个强度的工频磁场对Ik均有抑制作用,但随着去极化电压的增加,发现1 mT和5 mT工频磁场的抑制率几乎不变,抑制率分别为(30 ± 4.2)%和(20 ± 2.2)%,而10 mT工频磁场的抑制率增加,最大抑制率为43.4%.另外,1 mT和5 mT工频磁场影响了延迟整流钾通道的激活特性,通道的半数激活电压变大,斜率因子不变.而10 mT工频磁场对通道的激活特性没有影响,半数激活电压和斜率因子均不改变.研究表明,工频磁场可能影响了细胞膜上离子通道蛋白质的结构和功能,并且不同强度工频磁场对通道的影响不同,存在强度窗口效应.  相似文献   

20.
Male infertility is often related to reproductive age couples experiencing fertility-related issues. Men may have fertility problems associated with reversible testicular damage. Considering that men have been increasingly exposed to extremely low-frequency magnetic fields generated by the production, distribution and use of electricity, this study analyzed whether 60?Hz and 1?mT magnetic field exposure may impair spermatogenesis recovery after reversible testicular damage induced by heat shock using rats as an experimental model. Adult male rats were subjected to a single testicular heat shock (HS, 43?°C for 12?min) and then exposed to the magnetic field for 15, 30 and 60?d after HS. Magnetic field exposure during the spermatogenesis recovery induced changes in testis components volume, cell ultrastructure and histomorphometrical parameters. Control animals had a reestablished and active spermatogenesis at 60?d after heat shock, while animals exposed to magnetic field still showed extensive testicular degeneration. Magnetic field exposure did not change the plasma testosterone. In conclusion, extremely low-frequency magnetic field may be harmful to fertility recovery in males affected by reversible testicular damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号