首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Santibañez JF  Hurtado C 《FEBS letters》2005,579(28):6459-6464
Efforts have been made to develop a chemoprevention that selectively triggers apoptosis in malignant cancer cells. Here, we demonstrated that a mutated Ha-Ras activity is required in Anisomycin-induced apoptosis in transformed keratinocytes. Anisomycin stimulates JNK activity and apoptosis in oncogenic Ha-Ras positive cells, but not in normal keratinocytes. This effect was demonstrated in stably transfected cells with dominant negative Ha-Ras, that protected transformed cells, and oncogenic Ha-Ras that sensitized non-transformed cells to Anisomycin-induced apoptosis. Lastly, the treatment of cells with inhibitors of the JNK displayed resistance to Anisomycin induced apoptosis. These data suggests that the oncogenic Ha-Ras is important for Anisomycin-induced JNK activation and apoptosis in transformed keratinocytes.  相似文献   

2.
Mao LC  Wang HM  Lin YY  Chang TK  Hsin YH  Chueh PJ 《FEBS letters》2008,582(23-24):3445-3450
Tumor-associated NADH oxidase (tNOX) is a growth-related protein expressed in transformed cells. tNOX knockdown using RNA interference leads to a significant reduction in HeLa cell proliferation and migration, indicating an important role for tNOX in growth regulation and the cancer phenotype. Here, we show that tNOX is down-regulated during apoptosis in HCT116 cells. Treatment with diverse stresses induced a dose- and time-dependent decrease in tNOX expression that was concurrent with apoptosis. Moreover, shRNA-mediated tNOX knockdown rendered cells susceptible to apoptosis, whereas re-expression of tNOX partially recovered cell proliferation. Our results indicate that tNOX is suppressed during apoptosis and demonstrate that tNOX down-regulation sensitizes cells to stress-induced growth reduction, suggesting that tNOX is required for transformed cell growth.  相似文献   

3.
Sodium 4-phenylbutyrate (PB) has been used in the therapy of urea cycle defects for many years. Recently, it has been shown to cause cellular differentiation, growth arrest, and apoptosis in certain malignancies. We have analyzed the effects of PB on human lung carcinoma cells. PB has distinct patterns of effects on different lung carcinoma cells, inducing apoptosis in NCI-H460 and NCI-H1792 cells, causing G1 arrest in A549 and SK-LU-1 cells, but having no effect on a non-transformed bronchial epithelial cell line HBE4-E6/E7. We investigated the role of MAP kinase family members, extracellular signal-regulated kinase (ERK), JNK, and p38 mitogen-activated protein kinase (MAPK), as well as other important cell survival signaling molecules in PB-induced apoptosis. We observed activation of JNK and ERK by PB in the lung cancer cells. JNK was activated only in the two apoptotic cells, whereas ERK was activated in both the apoptotic and the growth-arrested cells, demonstrating a correlation between apoptosis and activation of JNK in response to PB. Both JNK inhibitor and JNK RNA interference (RNAi) inhibited PB-induced apoptosis, whereas MEK inhibitor did not, supporting that apoptosis induced by PB is through activation of JNK. De novo protein synthesis is required for the PB-induced JNK activation and induction of apoptosis. However, the production of known upstream activators of JNK, namely Fas/Fas ligand, tumor necrosis factor (TNF)-alpha, TNF-beta, and TRAIL, are not altered by PB treatment. Therefore, PB activates JNK through an unidentified and cell type-specific mechanism. Understanding of this mechanism is of therapeutic value in treating cancer patients with PB.  相似文献   

4.
Butyrate has been shown to display anti-cancer activity through the induction of apoptosis in various cancer cells. However, the underlying mechanism involved in butyrate-induced apoptosis is still not fully understood. Here, we investigated the cytotoxicity mechanism of butyrate in human colon cancer RKO cells. The results showed that butyrate induced a strong growth inhibitory effect against RKO cells. Butyrate also effectively induced apoptosis in RKO cells, which was characterized by DNA fragmentation, nuclear staining of DAPI, and the activation of caspase-9 and caspase-3. The expression of anti-apoptotic protein Bcl-2 decreased, whereas the apoptotic protein Bax increased in a dose-dependent manner during butyrate-induced apoptosis. Moreover, treatment of RKO cells with butyrate induced a sustained activation of the phosphorylation of c-jun N-terminal kinase (JNK) in a dose- and time-dependent manner, and the pharmacological inhibition of JNK MAPK by SP600125 significantly abolished the butyrate-induced apoptosis in RKO cells. These results suggest that butyrate acts on RKO cells via the JNK but not the p38 pathway. Butyrate triggered the caspase apoptotic pathway, indicated by an enhanced Bax-to-Bcl-2 expression ratio and caspase cascade reaction, which was blocked by SP600125. Taken together, our data indicate that butyrate induces apoptosis through JNK MAPK activation in colon cancer RKO cells.  相似文献   

5.
C3H/10T1/2 mouse fibroblasts showed a pronounced inhibition of growth when reaching a critical cell density. The situation of high cell density could be mimicked by the addition of glutaraldehyde-fixed cells to sparsely seeded proliferating cells. Treatment of the C3H/10T1/2 cells with 3-methylcholanthrene led to a high frequency of piled up foci (118 type II and type III foci in 78 cultures). Cells of a type III focus of a treated culture were cloned. These cells grew in soft-agar and reached 10 times higher cell densities when grown in culture dishes, than did their non-transformed counterparts. Glutaraldehyde-fixed transformed cells did not differ from fixed non-transformed cells in the ability to inhibit the growth of sparsely seeded non-transformed cells. On the other hand, both the addition of fixed normal or transformed C3H/10T1/2 cells did not affect the growth rate of transformed cells. In a concept explaining the density-dependent inhibition of growth of non-transformed cells by a specific interaction of plasma membrane-localized effectors with plasma membrane-localized receptors, the present findings would indicate that the transformed cells used express active effectors but are functionally defective in the receptors or in the signal transmission.  相似文献   

6.
Gastric cancer is a common human malignancy and a major contributor to cancer-related deaths worldwide. Unfortunately, the prognosis of most gastric cancer patients is poor because they are generally diagnosed at a late stage after the cancer has already metastasized. Most current research, therefore, emphasizes selective targeting of cancer cells by apoptosis-inducing agents. One such therapeutic agent is capsaicin, a component of chili peppers that has been shown to possess anti-growth activity against various cancer cell lines. Here, we examined the effect of capsaicin on SNU-1 and TMC-1 gastric cancer cells and found differing outcomes between the two cell lines. Our results show that capsaicin induced significant cytotoxicity with increases in oxidative stress, PARP cleavage, and apoptosis in sensitive SNU-1 cells. In contrast, TMC-1 cells were much less sensitive to capsaicin, exhibiting low cytotoxicity and very little apoptosis in response to capsaicin treatment. Capsaicin-induced apoptosis in SNU-1 cells was associated with down-regulation of tumor-associated NADH oxidase (tNOX) mRNA and protein. On the contrary, tNOX expression was scarcely affected by capsaicin in TMC-1 cells. We further showed that tNOX-knockdown sensitized TMC-1 cells to capsaicin-induced apoptosis and G1 phase accumulation, and led to decreased cell growth, demonstrating that tNOX is essential for cancer cell growth. Collectively, these results indicate that capsaicin induces divergent effects of the growth of gastric cancer cells that parallel its effects on tNOX expression, and demonstrate that forced tNOX down-regulation restored capsaicin-induced growth inhibition in TMC-1 cells.  相似文献   

7.
tNOX, a tumor-associated NADH oxidase, is a growth-related protein present in transformed cells. In this study, we employed RNA interference (RNAi)-mediated down-regulation of tNOX protein expression to explore the role of tNOX in regulating cell growth in human cervical adenocarcinoma (HeLa) cells. In this first reported use of RNAi to decrease tNOX expression, we found that HeLa cell growth was significantly inhibited by shRNA-knockdown of tNOX. Furthermore, cell migration and membrane association of Rac were decreased concomitantly with the reduction in tNOX protein expression. These results indicate that shRNA targeting of tNOX inhibits the growth of cervical cancer cells, and reduces cell migration via a decrease in the membrane association of Rac. We propose that tNOX is a potential upstream mediator of Rho activation that plays a role in regulating cell proliferation, migration, and invasion.  相似文献   

8.
The trichothecene family of mycotoxins inhibit protein synthesis by binding to the ribosomal peptidyltransferase site. Inhibitors of the peptidyltransferase reaction (e.g. anisomycin) can trigger a ribotoxic stress response that activates c-Jun N-terminal kinase (JNK)/p38 mitogen-activated protein kinases, components of a signaling cascade that regulates cell survival in response to stress. We have found that selected trichothecenes strongly activate JNK/p38 kinases and induce rapid apoptosis in Jurkat T cells. Although the ability of individual trichothecenes to inhibit protein synthesis and activate JNK/p38 kinases are dissociable, both effects contribute to the induction of apoptosis. Among trichothecenes that strongly activate JNK/p38 kinases, induction of apoptosis increases linearly with inhibition of protein synthesis. Among trichothecenes that strongly inhibit protein synthesis, induction of apoptosis increases linearly with activation of JNK/p38 kinases. Trichothecenes that inhibit protein synthesis without activating JNK/p38 kinases inhibit the function (i.e. activation of JNK/p38 kinases and induction of apoptosis) of apoptotic trichothecenes and anisomycin. Harringtonine, a structurally unrelated protein synthesis inhibitor that competes with trichothecenes (and anisomycin) for ribosome binding, also inhibits the activation of JNK/p38 kinases and induction of apoptosis by trichothecenes and anisomycin. Taken together, these results implicate the peptidyltransferase site as a regulator of both JNK/p38 kinase activation and apoptosis.  相似文献   

9.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can induce both caspase-dependent apoptosis and kinase activation in tumor cells. Here, we examined the consequences and mechanisms of TRAIL-induced MAPKs p38 and JNK in non-small cell lung cancer (NSCLC) cells. In apoptosis sensitive H460 cells, these kinases were phosphorylated, but not in resistant A549 cells. Time course experiments in H460 cells showed that induction of p38 phosphorylation preceded that of JNK. To explore the function of these kinases in apoptosis activation by TRAIL, chemical inhibitors or siRNAs were employed to impair JNK or p38 functioning. JNK activation counteracted TRAIL-induced apoptosis whereas activation of p38 stimulated apoptosis. Notably, the serine/threonine kinase RIP1 was cleaved following TRAIL treatment, concomitant with detectable JNK phosphorylation. Further examination of the role of RIP1 by short hairpin (sh)RNA-dependent knockdown or inhibition by necrostatin-1 showed that p38 can be phosphorylated in both RIP1-dependent and -independent manner, whereas JNK phosphorylation occurred independent of RIP1. On the other hand JNK appeared to suppress RIP1 cleavage via an unknown mechanism. In addition, only the activation of JNK by TRAIL was caspase-8-dependent. Finally, we identified Mcl-1, a known substrate for p38 and JNK, as a downstream modulator of JNK or p38 activity. Collectively, our data suggest in a subset of NSCLC cells a model in which TRAIL-induced activation of p38 and JNK have counteracting effects on Mcl-1 expression leading to pro- or anti-apoptotic effects, respectively. Strategies aiming to stimulate p38 and inhibit JNK may have benefit for TRAIL-based therapies in NSCLC.  相似文献   

10.
11.
The RAI gene is also known as iASPP and PPP1R13L. Recent investigations have shown that the region encompassing RAI is important for the development of cancer in young and middle-aged persons. It has been speculated that the RAI product induces apoptosis by blocking NF-kappaB or inhibits apoptosis by blocking p53. Either way the gene could influence the survival of precancerous lesions. Here we report that the expression of RAI mRNA was increased in non-transformed lymphocytes and fibroblasts induced to undergo apoptosis by various means, such as treatment with etoposide, calcium ions, or interleukin-2 and/or serum deprivation. Treatment with etoposide increased the content of RAI protein, too, and caused it to translocate to the nucleus. Inhibition of RAI expression in lymphocytes and fibroblasts with siRNA reduced apoptosis, but treatment with the NF-kappaB-inhibiting substance sulfasalazine relieved this dependence. In the transformed cell line HEK-293 the association between RAI induction and apoptosis seemed broken. Thus, we hypothesize that RAI induction is necessary but not sufficient for apoptosis induction in non-transformed cells. Our results could be explained by a NF-kappaB mediated mechanism.  相似文献   

12.
The aqueous extract of Anemarrhena asphodeloides (BN108) induces apoptosis in various cancer cell lines but is significantly less cytotoxic in non-transformed cells. Chemical fractionation of BN108 showed that its cytotoxicity is associated with timosaponins, steroidal saponins of coprostane type. Timosaponin BII (TBII) is a major saponin in BN108, but it shows little cytotoxicity. A much less abundant TAIII induces cell death in tumor cells but not in normal cells, reproducing the selectivity of the total extract BN108. Glycosidase treatment, by removing the extra sugar moiety in TBII, converts it to TAIII and confers cytotoxic activity. Analysis of the mechanisms of death induced by TAIII revealed activation of two distinct pro-apoptotic pathways: first, inhibition of mTORC1 manifested in much reduced phosphorylation of mTORC1 targets; second, induction of endoplasmic reticulum stress culminating in phosphorylation of eIF2α and activation of caspase 4. These pro-apoptotic pathways are activated by TAIII selectively in tumor cells but not in normal cells. Both pathways play a causative role in TAIII cytotoxicity, as restoration of either mTOR activity or relief of ER stress alone offer only partial protection from TAIII. Inhibition of mTORC1 and induction of ER stress apparently contribute to the induction of the previously reported autophagic response in TAIII-treated cells. TAIII induced autophagy plays a protective role in TAIII induced death signaling, and failure to mount autophagic response is associated with heightened sensitivity to TAIII induced apoptosis. The multiple death-promoting and apparently tumor-selective responses to TAIII, its ability to inhibit mTORC1, and the possibility of further enhancing its cytotoxicity by pharmacological inhibition of autophagy, make TAIII an attractive candidate for development as a cancer therapeutic agent.  相似文献   

13.
Membrane-presented CD40 agonists can induce apoptosis in carcinoma, but not normal homologous epithelial cells, whereas soluble agonists are growth inhibitory but not proapoptotic unless protein synthesis is blocked. Here we demonstrate that membrane-presented CD40 ligand (CD154) (mCD40L), but not soluble agonists, triggers cell death in malignant human urothelial cells via a direct mechanism involving rapid upregulation of TNFR-associated factor (TRAF)3 protein, without concomitant upregulation of TRAF3 mRNA, followed by activation of the c-Jun N-terminal kinase (JNK)/activator protein-1 (AP-1) pathway and induction of the caspase-9/caspase-3-associated intrinsic apoptotic machinery. TRAF3 knockdown abrogated JNK/AP-1 activation and prevented CD40-mediated apoptosis, whereas restoration of CD40 expression in CD40-negative carcinoma cells restored apoptotic susceptibility via the TRAF3/AP-1-dependent mechanism. In normal human urothelial cells, mCD40L did not trigger apoptosis, but induced rapid downregulation of TRAF2 and 3, thereby paralleling the situation in B-lymphocytes. Thus, TRAF3 stabilization, JNK activation and caspase-9 induction define a novel pathway of CD40-mediated apoptosis in carcinoma cells.  相似文献   

14.
The objective of this study was to investigate, whether the naturally occurring polyphenol resveratrol (Res) enhances the anti-tumor activities of the chemotherapeutic agent oxaliplatin (Ox) in a cell culture model of colorectal cancer, also with regard to a possible inflammatory response and cytotoxic side-effects. Res and Ox in combination synergistically inhibit cell growth of Caco-2 cells, which seems to be due to the induction of different modes of cell death and further leads to an altered cytokine profile of cocultured macrophages. Moreover, combinatorial treatment does not affect non-transformed cells as severe cytotoxicity is not detected in human foreskin fibroblasts and platelets.  相似文献   

15.
Panaxydol, a polyacetylenic compound derived from Panax ginseng roots, has been shown to inhibit the growth of cancer cells. In this study, we demonstrated that panaxydol induced apoptosis preferentially in transformed cells with a minimal effect on non-transformed cells. Furthermore, panaxydol was shown to induce apoptosis through an increase in intracellular Ca2+ concentration ([Ca2+]i), activation of JNK and p38 MAPK, and generation of reactive oxygen species (ROS) initially by NADPH oxidase and then by mitochondria. Panaxydol-induced apoptosis was caspase-dependent and occurred through a mitochondrial pathway. ROS generation by NADPH oxidase was critical for panaxydol-induced apoptosis. Mitochondrial ROS production was also required, however, it appeared to be secondary to the ROS generation by NADPH oxidase. Activation of NADPH oxidase was demonstrated by the membrane translocation of regulatory p47phox and p67phox subunits and shown to be necessary for ROS generation by panaxydol treatment. Panaxydol triggered a rapid and sustained increase of [Ca2+]i, which resulted in activation of JNK and p38 MAPK. JNK and p38 MAPK play a key role in activation of NADPH oxidase, since inhibition of their expression or activity abrogated membrane translocation of p47phox and p67phox subunits and ROS generation. In summary, these data indicate that panaxydol induces apoptosis preferentially in cancer cells, and the signaling mechanisms involve a [Ca2+]i increase, JNK and p38 MAPK activation, and ROS generation through NADPH oxidase and mitochondria.  相似文献   

16.
Expression of the influenza A virus (IAV) nonstructural protein (NS1) results in the activation of c‐Jun N‐terminal kinase (JNK). Both NS1 and JNK are involved in apoptosis induction. To investigate their interrelationship, we stably expressed a tamoxifen inducible NS1 oestrogen receptor fusion‐protein (NS1ERT) in mammalian cells. Upon tamoxifen stimulation, NS1ERT‐expressing cells partially rescued the attenuated replication of NS1‐deficient IAVs and also inhibited interferon up‐regulation, confirming the functional competence of NS1ERT. Tamoxifen‐induced NS1ERT created a cytopathic phenotype and led to the activation of JNK and apoptosis. Induction of NS1F103SERT mutant failed to activate JNK, but induced apoptosis, whereas the induction of NS1M106IERT led to JNK phosphorylation, but not apoptosis, indicating that JNK activation and apoptosis induction are not functionally linked. Further mutational analysis highlighted that apoptosis induction is a function of the C‐terminal effector domain of NS1. Finally, IAVs encoding mutant NS1 revealed a modulating effect of NS1 on apoptosis induction in a genuine infection. With respect to apoptogenicity, an NS1 mutant virus that results in a super activation of JNK behaves similarly to the JNK nonactivating virus expressing NS1F103S, thus confirming that NS1‐mediated JNK activation and apoptosis induction are also functionally independent from each other in vivo.  相似文献   

17.
A variety of environmental stresses, as well as inflammatory cytokines, induce activation of c-Jun N-terminal kinases. We describe here that IL-2 deprivation-induced apoptosis in TS1alphabeta cells does not modify c-Jun protein levels and correlates Bcl-2 downregulation and an increase in JNK1, but not JNK2, activity directly related to the induction of apoptosis. Indeed, downregulation of JNK1 expression using antisense oligonucleotides inhibits apoptosis induced by IL-2 withdrawal. Overexpression of Bcl-2 promotes cell survival and blocks JNK1 activation as well as apoptosis caused by IL-2 deprivation. This suggests that inhibition of the JNK1 signaling pathway may be a mechanism through which Bcl-2 promotes cell survival and prevents apoptosis triggered by growth factor withdrawal.  相似文献   

18.
The JNK pathway modulates AP-1 activity. While in some cells it may have proliferative and protective roles, in neuronal cells it is involved in apoptosis in response to stress or withdrawal of survival signals. To understand how JNK activation leads to apoptosis, we used PC12 cells and primary neuronal cultures. In PC12 cells, deliberate JNK activation is followed by induction of Fas ligand (FasL) expression and apoptosis. JNK activation detected by c-Jun phosphorylation and FasL induction are also observed after removal of either nerve growth factor from differentiated PC12 cells or KCl from primary cerebellar granule neurons (CGCs). Sequestation of FasL by incubation with a Fas-Fc decoy inhibits apoptosis in all three cases. CGCs derived from gld mice (defective in FasL) are less sensitive to apoptosis caused by KCl removal than wild-type neurons. In PC12 cells, protection is also conferred by a c-Jun mutant lacking JNK phosphoacceptor sites and a small molecule inhibitor of p38 mitogen-activated protein kinase and JNK, which inhibits FasL induction. Hence, the JNK-to-c-Jun-to-FasL pathway is an important mediator of stress-induced neuronal apoptosis.  相似文献   

19.
20.
Caspases and c-Jun N-terminal kinase (JNK) are activated in tumor cells during induction of apoptosis. We investigated the signaling cascade and function of these enzymes in cisplatin-induced apoptosis. Treatment of Jurkat T-cells with cisplatin induced cell death with DNA fragmentation and activation of caspase and JNK. Bcl-2 overexpression suppressed activation of both enzymes, whereas p35 and CrmA inhibited only the DEVDase (caspase-3-like) activity, indicating that the activation of these enzymes may be differentially regulated. Cisplatin induced apoptosis with the cytochrome c release and caspase-3 activation in both wild-type and caspase-8-deficient JB-6 cells, while the Fas antibody induced these apoptotic events only in wild-type cells. This indicates that caspase-8 activation is required for Fas-mediated apoptosis, but not cisplatin-induced cell death. On the other hand, cisplatin induced the JNK activation in both the wild-type and JB-6 cells, and the caspase-3 inhibitor Z-DEVD-fmk did not inhibit this activation. The JNK overexpression resulted in a higher JNK activity, AP-1 DNA binding activity, and metallothionein expression than the empty vector-transfected cells following cisplatin treatment. It also partially protected the cells from cisplatin-induced apoptosis by decreasing DEVDase activity. These data suggest that the cisplatin-induced apoptotic signal is initiated by the caspase-8-independent cytochrome c release, and the JNK activation protects cells from cisplatin-induced apoptosis via the metallothionein expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号