首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S Stambuk  M Radman 《Genetics》1998,150(2):533-542
A genetic analysis of interspecies recombination in Escherichia coli between the linear Hfr DNA from Salmonella typhimurium and the circular recipient chromosome reveals some fundamental aspects of recombination between related DNA sequences. The MutS and MutL mismatch binding proteins edit (prevent) homeologous recombination between these 16% diverged genomes by at least two distinct mechanisms. One is MutH independent and presumably acts by aborting the initiated recombination through the UvrD helicase activity. The RecBCD nuclease might contribute to this editing step, presumably by preventing reiterated initiations of recombination at a given locus. The other editing mechanism is MutH dependent, requires unmethylated GATC sequences, and probably corresponds to an incomplete long-patch mismatch repair process that does not depend on UvrD helicase activity. Insignificant effects of the Dam methylation of parental DNAs suggest that unmethylated GATC sequences involved in the MutH-dependent editing are newly synthesized in the course of recombination. This hypothetical, recombination-associated DNA synthesis involves PriA and RecF functions, which, therefore, determine the extent of MutH effect on interspecies recombination. Sequence divergence of recombining DNAs appears to limit the frequency, length, and stability of early heteroduplex intermediates, which can be stabilized, and the recombinants mature via the initiation of DNA replication.  相似文献   

2.
The goal of this study was to determine whether bypass replication occurs by translesion synthesis or template switching (copy choice) when a duplex molecule carrying a single cis,syn-cyclobutane thymine dimer is replicated in vitro by human cell extracts. Circular heteroduplex DNA molecules were constructed to contain the SV40 origin of replication and a mismatch opposite to or nearby the dimer. Control molecules with only the mismatch were also prepared. Heteroduplexes were methylated at CpG islands and replicated in vitro (30 min). Following bisulfite treatment, the nascent DNA complementary to the dimer-containing template was distinguished from the other three strands by methylation-specific polymerase chain reaction. Cloning and sequencing of polymerase chain reaction products revealed that 80-98% carried the sequence predicted for translesion synthesis, with two adenines incorporated opposite the dimer. The fraction of clones with sequence predictive of template switching was reduced when extracts deficient in mismatch repair or nucleotide excision repair activities were used to replicate the heteroduplex molecules. These results support the conclusion that lesion bypass during in vitro replication of duplex DNA containing thymine dimers occurs by translesion synthesis.  相似文献   

3.
Summary Heteroduplex DNA molecules were prepared in vitro using one strand of DNA carrying a point mutation and one strand of the corresponding wild-type DNA. The heteroduplex DNA was transfected into competent bacteria and the progeny genotypes in the resulting infective centers were determined. From the results were conclude that about 80% of all transfected DNA molecules are repaired before DNA replication starts. This fraction of repaired DNA is independent of the location of the mismatched nucleotide pair. However, mismatch correction occurs preferentially on the H strand of the heteroduplex DNA.The repair does not depend on a known phage coded function but requires the active bacterial genes mut U, mut H, mut S and probably mut L.  相似文献   

4.
Heteroduplex repair in extracts of human HeLa cells   总被引:35,自引:0,他引:35  
A general repair process for DNA heteroduplexes has been detected in HeLa cell extracts. Using a variety of M13mp2 DNA substrates containing single-base mismatches and extra nucleotides, extensive repair is observed after incubation with HeLa cell cytoplasmic extracts and subsequent transfection of bacterial cells with the treated DNA. Most, but not all, mispairs as well as two frameshift heteroduplexes are repaired efficiently. Parallel measurements of repair in HeLa extracts and in Escherichia coli suggest that repair specificities are similar for the two systems. The presence of a nick in the molecule is required for efficient repair in HeLa cell extracts, and the strand containing the nick is the predominantly repaired strand. Mismatch-dependent DNA synthesis is observed when radiolabeled restriction fragments, produced by reaction of the extract with heteroduplex and homoduplex molecules, are compared. Specific labeling of fragments, representing a region of approximately 1,000 base pairs and containing the nick and the mismatch, is detected for the heteroduplex substrate but not the homoduplex. The repair reaction is complete after 20 min and requires added Mg2+, ATP, and an ATP-regenerating system, but not dNTPs, which are present at sufficient levels in the extract. An inhibitor of DNA polymerase beta, dideoxythimidine 5'-triphosphate, does not inhibit mismatch-specific DNA synthesis. Aphidicolin, an inhibitor of DNA polymerases alpha, delta, and epsilom, inhibits both semiconservative replication and repair synthesis in the extract. Butylphenyl-dGTP also inhibits both replicative and repair synthesis but at a concentration known to inhibit DNA polymerase alpha preferentially rather than delta or epsilon. This suggests that DNA polymerase alpha may function in mismatch repair.  相似文献   

5.
Primary products of bacteriophage lambda recombination that display heterozygosity as a consequence of the presence of regions of heteroduplex DNA are rare in standard lambda crosses. Phage manifesting heterozygosity at a given allele are evident when recombinants, emerging from a cross, are selected for an exchange in a neighboring interval. We show that the abundance of such heterozygotes can be increased 10- to 20-fold by selection on an E. coli indicator that is defective in methyl-directed mismatch repair (mutL). Thus, the activity of the methyl-directed mismatch repair system is, at least in part, responsible for the low frequency of detectably heterozygous phage emerging from a standard cross. In a mutL indicator, many primary products of recombination are replicated without the intervention of mismatch repair.--The products of a six-factor phage cross have been plated on a mutL indicator allowing visual detection of those phage products heterozygous for one of the allelic pairs, cI. By genetic analysis, we show that the heteroduplex regions of these primary products of recombination are on the average about 4 kb in length and can include as much as half of the lambda genome.  相似文献   

6.
The generalized mismatch repair system of Streptococcus pneumoniae (the Hex system) can eliminate base pair mismatches arising in heteroduplex DNA during transformation or by DNA polymerase errors during replication. Mismatch repair is most likely initiated at nicks or gaps. The present work was started to examine the hypothesis that strand discontinuities arising after removal of uracil by uracil DNA-glycosylase (Ung) can be utilised as strand discrimination signals. We show that mismatch repair efficiency is enhanced 3- to 6-fold when using uracil-containing DNA as donor in transformation. In order to assess the contribution of Ung to nascent strand discrimination for postreplication mismatch repair, we developed a positive selection procedure to isolate S. pneumoniae Ung- mutants. We succeeded in isolating Ung- mutants using this procedure based on chromosomal integration of uracil-containing hybrid DNA molecules. Cloning and characterization of the ung gene was achieved. Comparison of spontaneous mutation rates in strains either proficient or deficient in mismatch and/or uracil repair gave no support to the hypothesis that Ung plays a major role in targeting the Hex system to neosynthesized DNA strands. However Ung activity is responsible for the increased efficiency of mismatch repair observed in transformation with uracil-containing DNA. In addition Ung is involved in repair of bisulfite-treated transforming DNA.  相似文献   

7.
In yeast meiotic recombination, alleles used as genetic markers fall into two classes as regards their fate when incorporated into heteroduplex DNA. Normal alleles are those that form heteroduplexes that are nearly always recognized and corrected by the mismatch repair system operating in meiosis. High PMS (postmeiotic segregation) alleles form heteroduplexes that are inefficiently mismatch repaired. We report that placing any of several high PMS alleles very close to normal alleles causes hyperrecombination between these markers. We propose that this hyperrecombination is caused by the high PMS allele blocking a mismatch repair tract initiated from the normal allele, thus preventing corepair of the two alleles, which would prevent formation of recombinants. The results of three point crosses involving two PMS alleles and a normal allele suggest that high PMS alleles placed between two alleles that are normally corepaired block that corepair.  相似文献   

8.
Several human genetic diseases have been associated with the genetic instability, specifically expansion, of trinucleotide repeat sequences such as (CTG)(n).(CAG)(n). Molecular models of repeat instability imply replication slippage and the formation of loops and imperfect hairpins in single strands. Subsequently, these loops or hairpins may be recognized and processed by DNA repair systems. To evaluate the potential role of nucleotide excision repair in repeat instability, we measured the rates of repeat deletion in wild type and excision repair-deficient Escherichia coli strains (using a genetic assay for deletions). The rate of triplet repeat deletion decreased in an E. coli strain deficient in the damage recognition protein UvrA. Moreover, loops containing 23 CTG repeats were less efficiently excised from heteroduplex plasmids after their transformation into the uvrA(-) strain. As a result, an increased proportion of plasmids containing the full-length repeat were recovered after the replication of heteroduplex plasmids containing unrepaired loops. In biochemical experiments, UvrA bound to heteroduplex substrates containing repeat loops of 1, 2, or 17 CAG repeats with a K(d) of about 10-20 nm, which is an affinity about 2 orders of magnitude higher than that of UvrA bound to the control substrates containing (CTG)(n).(CAG)(n) in the linear form. These results suggest that UvrA is involved in triplet repeat instability in cells. Specifically, UvrA may bind to loops formed during replication slippage or in slipped strand DNA and initiate DNA repair events that result in repeat deletion. These results imply a more comprehensive role for UvrA, in addition to the recognition of DNA damage, in maintaining the integrity of the genome.  相似文献   

9.
Jensen LE  Jauert PA  Kirkpatrick DT 《Genetics》2005,170(3):1033-1043
During meiotic recombination in the yeast Saccharomyces cerevisiae, heteroduplex DNA is formed when single-stranded DNAs from two homologs anneal as a consequence of strand invasion. If the two DNA strands differ in sequence, a mismatch will be generated. Mismatches in heteroduplex DNA are recognized and repaired efficiently by meiotic DNA mismatch repair systems. Components of two meiotic systems, mismatch repair (MMR) and large loop repair (LLR), have been identified previously, but the substrate range of these repair systems has never been defined. To determine the substrates for the MMR and LLR repair pathways, we constructed insertion mutations at HIS4 that form loops of varying sizes when complexed with wild-type HIS4 sequence during meiotic heteroduplex DNA formation. We compared the frequency of repair during meiosis in wild-type diploids and in diploids lacking components of either MMR or LLR. We find that the LLR pathway does not act on single-stranded DNA loops of <16 nucleotides in length. We also find that the MMR pathway can act on loops up to 17, but not >19, nucleotides in length, indicating that the two pathways overlap slightly in their substrate range during meiosis. Our data reveal differences in mitotic and meiotic MMR and LLR; these may be due to alterations in the functioning of each complex or result from subtle sequence context influences on repair of the various mismatches examined.  相似文献   

10.
Sequence homology is expected to influence recombination. To further understand mechanisms of recombination and the impact of reduced homology, we examined recombination during transformation between plasmid-borne DNA flanking a double-strand break (DSB) or gap and its chromosomal homolog. Previous reports have concentrated on spontaneous recombination or initiation by undefined lesions. Sequence divergence of approximately 16% reduced transformation frequencies by at least 10-fold. Gene conversion patterns associated with double-strand gap repair of episomal plasmids or with plasmid integration were analyzed by restriction endonuclease mapping and DNA sequencing. For episomal plasmids carrying homeologous DNA, at least one input end was always preserved beyond 10 bp, whereas for plasmids carrying homologous DNA, both input ends were converted beyond 80 bp in 60% of the transformants. The system allowed the recovery of transformants carrying mixtures of recombinant molecules that might arise if heteroduplex DNA--a presumed recombination intermediate--escapes mismatch repair. Gene conversion involving homologous DNAs frequently involved DNA mismatch repair, directed to a broken strand. A mutation in the PMS1 mismatch repair gene significantly increased the fraction of transformants carrying a mixture of plasmids for homologous DNAs, indicating that PMS1 can participate in DSB-initiated recombination. Since nearly all transformants involving homeologous DNAs carried a single recombinant plasmid in both Pms+ and Pms- strains, stable heteroduplex DNA appears less likely than for homologous DNAs. Regardless of homology, gene conversion does not appear to occur by nucleolytic expansion of a DSB to a gap prior to recombination. The results with homeologous DNAs are consistent with a recombinational repair model that we propose does not require the formation of stable heteroduplex DNA but instead involves other homology-dependent interactions that allow recombination-dependent DNA synthesis.  相似文献   

11.
In this study, the mechanism of mammalian gene replacement was investigated. The system is based on detecting homologous recombination between transferred vector DNA and the haploid, chromosomal immunoglobulin mu-delta region in a murine hybridoma cell line. The backbone of the gene replacement vector (pCmuCdeltapal) consists of pSV2neo sequences bounded on one side by homology to the mu gene constant (Cmu) region and on the other side by homology to the delta gene constant (Cdelta) region. The Cmu and Cdelta flanking arms of homology were marked by insertions of an identical 30-bp palindrome which frequently escapes mismatch repair when in heteroduplex DNA (hDNA). As a result, intermediates bearing unrepaired hDNA generate mixed (sectored) recombinants following DNA replication and cell division. To monitor the presence and position of sectored sites and, hence, hDNA formation during the recombination process, the palindrome contained a unique NotI site that replaced an endogenous restriction enzyme site at each marker position in the vector-borne Cmu and Cdelta regions. Gene replacement was studied under conditions which permitted the efficient recovery of the product(s) of individual recombination events. Analysis of marker segregation patterns in independent recombinants revealed that extensive hDNA was formed within the Cmu and Cdelta regions. In several recombinants, palindrome markers in the Cmu and Cdelta regions resided on opposite DNA strands (trans configuration). These results are consistent with the mammalian gene replacement reaction involving two crossing-over events in homologous flanking DNA.  相似文献   

12.
Chromosomal double-strand breaks (DSBs) stimulate homologous recombination by several orders of magnitude in mammalian cells, including murine embryonic stem (ES) cells, but the efficiency of recombination decreases as the heterology between the repair substrates increases (B. Elliott, C. Richardson, J. Winderbaum, J. A. Nickoloff, and M. Jasin, Mol. Cell. Biol. 18:93-101, 1998). We have now examined homologous recombination in mismatch repair (MMR)-defective ES cells to investigate both the frequency of recombination and the outcome of events. Using cells with a targeted mutation in the msh2 gene, we found that the barrier to recombination between diverged substrates is relaxed for both gene targeting and intrachromosomal recombination. Thus, substrates with 1.5% divergence are 10-fold more likely to undergo DSB-promoted recombination in Msh2(-/-) cells than in wild-type cells. Although mutant cells can repair DSBs efficiently, examination of gene conversion tracts in recombinants demonstrates that they cannot efficiently correct mismatched heteroduplex DNA (hDNA) that is formed adjacent to the DSB. As a result, >20-fold more of the recombinants derived from mutant cells have uncorrected tracts compared with recombinants from wild-type cells. The results indicate that gene conversion repair of DSBs in mammalian cells frequently involves mismatch correction of hDNA rather than double-strand gap formation. In cells with MMR defects, therefore, aberrant recombinational repair may be an additional mechanism that contributes to genomic instability and possibly tumorigenesis.  相似文献   

13.
The ability of related DNAs to undergo recombination decreases with increased sequence divergence. Mismatch repair has been proposed to be a key factor in preventing homeologous recombination; however, the contribution of mismatch repair is not universal. Although mismatch repair has been proposed to act by preventing strand exchange and/or inactivating multiply mismatched heteroduplexes, there has been no systematic study to determine at what step(s) in recombination mismatch repair acts in vivo. Since heteroduplex is a commonly proposed intermediate in many models of recombination, we have investigated the consequences of mismatch repair on plasmids that are multiply mismatched in heteroduplex structures that are similar to those that might arise during recombination. Plasmids containing multiply mismatched regions were transformed into wild-type and Mut(-) Eschericia coli mutants. There was only a 30-40% reduction in transformation of Mut(+) as compared to mutS and mutL strains for DNAs containing an 18% mismatched heteroduplex. The products obtained from mutS hosts differed from those obtained from Mut(+) hosts in that there were many more colonies containing mixtures of two plasmids, due to survival of both strands of the heteroduplex. There were nearly 10 times more recombinants obtained from the mutS as compared to the wild-type host. Based on these results and those from other studies with E. coli and yeast, we propose that the prevention of recombination between highly diverged DNAs may be at step earlier than heteroduplex formation.  相似文献   

14.
A key intermediate in general genetic recombination is a structure in which two double-stranded DNA molecules are covalently linked by a single-strand crossover characteristic of a Holliday junction. When the DNA molecules are circular, the recombinant structures take the form of a figure eight. We have used purified E. coli enzymes to construct biparental figure-eight DNA molecules in vitro from the DNA of two partially homologous plasmids. When purified figure-eight structures are transfected into recA- E. coli cells, they are resolved to produce monomeric or dimeric plasmid progeny, apparently by the cutting and joining of the Holliday crossover. The maturation of figure-eight molecules in bacteria is characterized by the formation and recovery of both parental and recombinant types, cross-over at a frequency of up to 50% and the capability for mismatch repair at regions of hybrid DNA. In these three regards, the products of figure-eight maturation resemble recombinant chromosomes formed at meiosis. These observations show that biparental figure eights behave as recombination intermediates that can be resolved into mature recombinants without need for a functional recA+ gene product.  相似文献   

15.
The independent repair of mismatched nucleotides present in heteroduplex DNA has been used to explain gene conversion and map expansion after general genetic recombination. We have constructed and purified heteroduplex plasmid DNAs that contain heteroallelic 10-base-pair insertion-deletion mismatches. These DNA substrates are similar in structure to the heteroduplex DNA intermediates that have been proposed to be produced during the genetic recombination of plasmids. These DNA substrates were transformed into wild-type and mutant Escherichia coli strains, and the fate of the heteroduplex DNA was determined by both restriction mapping and genetic tests. Independent repair events that yielded a wild-type Tetr gene were observed at a frequency of approximately 1% in both wild-type and recB recC sbcB mutant E. coli strains. The independent repair of small insertion-deletion-type mismatches separated by 1,243 base pairs was found to be reduced by recF, recJ, and ssb single mutations in an otherwise wild-type genetic background and reduced by recF, recJ, and recO mutations in a recB recC sbcB genetic background (the ssb mutation was not tested in the latter background). Independent repair of small insertion-deletion-type mismatched nucleotides that were as close as 312 nucleotides apart was observed. There was no apparent bias in favor of the insertion or deletion of mutant sequences.  相似文献   

16.
Double-strand break (DSB)-induced gene conversion was investigated using plasmid x chromosome (P x C) and chromosomal direct-repeat recombination substrates with markers arranged such that functional (selected) products could not arise by longpatch mismatch repair initiated from the DSB. As seen previously with analogous substrates, these substrates yield products with discontinuous conversion tracts, albeit at low frequency. Most conversion tracts were of minimum length, suggesting that heteroduplex DNA (hDNA) is limiting, or that co-repair imposes selective pressure against products with more extensive hDNA. When functional products can arise by long-patch mismatch repair, the broken allele is converted in nearly all products. In contrast, in the absence of long-patch mismatch repair, unbroken alleles are frequently converted, and we show that such conversion depends on both marker structure (i.e., long palindromic vs. nonpalindromic insertions) and the chromosomal environment of the recombination substrate. We propose that conversion of unbroken alleles is largely a consequence of the segregation of unrepaired markers, and that differences in mismatch repair efficiency underlie the observed effects of marker structure and chromosome environment on allele conversion preference.  相似文献   

17.
Genetic analysis of 16 deletions obtained in the amiA locus of pneumococcus is described. When present on donor DNA, all deletions increased drastically the frequency of wild-type recombinants in two-point crosses. This effect was maximal for deletions longer than 200 bases. It was reduced for heterologies shorter than 76 bases and did not exist for very short deletions. In three-point crosses in which the deletion was localized between two point mutations, we demonstrated that this excess of wild-type recombinants was the result of a genetic conversion. This conversion extended over several scores of bases outside the deletion. Conversion takes place during the heteroduplex stage of recombination. Therefore, in pneumococcal transformation, long heterologies participated in this heteroduplex configuration. As this conversion did not require an active DNA polymerase A gene it is proposed that the mechanism of conversion is not a DNA repair synthesis but involves breakage and ligation between DNA molecules. Conversion of deletions did not require the Hex system of correction of mismatched bases. It differs also from localized conversion. It appears that it is a process that evolved to correct errors of replication which lead to long heterologies and which are not eliminated by other systems.  相似文献   

18.
We have used artificially constructed heteroallelic heteroduplex molecules of bacteriophage lambda DNA to transfect Escherichia coli, and E. coli mutants deficient in various functions involved in the adenine methylation-directed mismatch repair system, MutL, MutS, MutH, and UvrD (MutU). Analysis of the allele content of single infective centers shows that this repair system often acts on several mismatches, separated by as many as 2000 bp, on one of the strands of a heteroduplex molecule. When the methyl-directed mismatch repair system is disabled by mutH or uvrD mutations, localized mismatch repair becomes prominent. This prominent localized repair that can result in separation of very closely linked markers requires the functions MutL and MutS, is independent of adenine methylation, and appears to reflect another mechanism of mismatch repair. Heterology-containing heteroduplex molecules with a deletion in one strand often escape processing. However, when the heterology includes the stem and loop structure of a transposon, Tn10, the transposon is lost.  相似文献   

19.
E. Alani  RAG. Reenan    R. D. Kolodner 《Genetics》1994,137(1):19-39
The yeast Saccharomyces cerevisiae encodes a set of genes that show strong amino acid sequence similarity to MutS and MutL, proteins required for mismatch repair in Escherichia coli. We examined the role of MSH2 and PMS1, yeast homologs of mutS and mutL, respectively, in the repair of base pair mismatches formed during meiotic recombination. By using specifically marked HIS4 and ARG4 alleles, we showed that msh2 mutants displayed a severe defect in the repair of all base pair mismatches as well as 1-, 2- and 4-bp insertion/deletion mispairs. The msh2 and pms1 phenotypes were indistinguishable, suggesting that the wild-type gene products act in the same repair pathway. A comparison of gene conversion events in wild-type and msh2 mutants indicated that mismatch repair plays an important role in genetic recombination. (1) Tetrad analysis at five different loci revealed that, in msh2 mutants, the majority of aberrant segregants displayed a sectored phenotype, consistent with a failure to repair mismatches created during heteroduplex formation. In wild type, base pair mismatches were almost exclusively repaired toward conversion rather than restoration. (2) In msh2 strains 10-19% of the aberrant tetrads were Ab4:4. (3) Polarity gradients at HIS4 and ARG4 were nearly abolished in msh2 mutants. The frequency of gene conversion at the 3' end of these genes was increased and was nearly the frequency observed at the 5' end. (4) Co-conversion studies were consistent with mismatch repair acting to regulate heteroduplex DNA tract length. We favor a model proposing that recombination events occur through the formation and resolution of heteroduplex intermediates and that mismatch repair proteins specifically interact with recombination enzymes to regulate the length of symmetric heteroduplex DNA.  相似文献   

20.
In mammalian cells, several features of the way homologous recombination occurs between transferred and chromosomal DNA are consistent with the double-strand-break repair (DSBR) model of recombination. In this study, we examined the segregation patterns of small palindrome markers, which frequently escape mismatch repair when encompassed within heteroduplex DNA formed in vivo during mammalian homologous recombination, to test predictions of the DSBR model, in particular as they relate to the mechanism of crossover resolution. According to the canonical DSBR model, crossover between the vector and chromosome results from cleavage of the joint molecule in two alternate sense modes. The two crossover modes lead to different predicted marker configurations in the recombinants, and assuming no bias in the mode of Holliday junction cleavage, the two types of recombinants are expected in equal frequency. However, we propose a revision to the canonical model, as our results suggest that the mode of crossover resolution is biased in favor of cutting the DNA strands upon which DNA synthesis is occurring during formation of the joint molecule. The bias in junction resolution permitted us to examine the potential consequences of mismatch repair acting on the DNA breaks generated by junction cutting. The combination of biased junction resolution with both early and late rounds of mismatch repair can explain the marker patterns in the recombinants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号