首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The possible conformations of SMS 201-995, an active analogue of somastostatin, have been studied in dimethylsulfoxide solution by 500 MHz proton n.m.r. spectroscopy. The assignments have been made by use of 2D-correlated methods to detect long-range coupling connectivities in aromatic residues and between the alpha protons of consecutive residues. NOESY experiments enabled us to correlate amide and alpha protons of neighbouring amino acid residues, which indicate a less flexible situation than in water. Measurements of temperature coefficients of the amide protons, of NH-C alpha H coupling constants and NOE effects are in favour of one predominant conformation with a beta turn, of type II', involving amino acids Phe3 to Thr6.  相似文献   

2.
The conformations of a cyclic analogue of somatostatin, SMS 201-995, have been studied by n.m.r. spectroscopy at 500 MHz in aqueous solution. Assignments were made by use of 2D-correlated methods, especially by detecting long-range connectivities in order to identify the aromic amino-acid and long-range couplings between alpha protons of consecutive residues. Measurements of temperature coefficients of amide protons and of NH-C alpha H coupling constants enabled us to conclude that in water the molecule is rather flexible, with no evidence for a beta turn structure involving Thr6. An equilibrium involving two gamma turn conformations stabilized respectively by Cys2-D-Trp4 and Phe3-Lys5 hydrogen bonds, is responsible for the large upfield shift observed for the Lys5 gamma protons and is compatible with the measured JNH-C alpha H coupling constants.  相似文献   

3.
Dermatan sulphates, in which iduronate was the predominant uronate constituent, were partially digested by chondroitinase ABC to produce oligosaccharides of the following structure: delta UA-[GalNAc(4SO3)-IdoA]mGalNAc(4SO3) [where m = 0-5, delta UA represents beta-D-gluco-4-enepyranosyluronate, IdoA represents alpha-L-iduronate and GalNAc(4SO3) represents 2-acetamido-2-deoxy-beta-D-galactose 4-O-sulphate], which were fractionated by gel-permeation chromatography and examined by 100 MHz 13C-n.m.r. and 400/500 MHz 1H-n.m.r. spectroscopy. Experimental conditions were established for the removal of non-reducing terminal unsaturated uronate residues by treatment with HgCL2, and reducing terminal N-acetylgalactosamine residues of the oligosaccharides were reduced with alkaline borohydride. These modifications were shown by 13C-n.m.r. spectroscopy to have proceeded to completion. Assignments of both 13C-n.m.r. and 1H-n.m.r. resonances are reported for the GalNAc(4SO3)-IdoA repeat sequence in the oligosaccharides as well as for the terminal residues resulting from enzyme digestion and subsequent modifications. A full analysis of a trisaccharide derived from dermatan sulphate led to the amendment of published 13C-n.m.r. chemical-shift assignments for the polymer.  相似文献   

4.
Two isomeric, acyclic tetrapeptides containing a Z-dehydrophenylalanine residue (delta Z-Phe) at position 2 or 3, Boc-Leu-Ala-delta Z-Phe-Leu-OMe (1) and Boc-Leu-delta Z-Phe-Ala-Leu-OMe (2), have been synthesized and their solution conformations investigated by 270 MHz 1H n.m.r. spectroscopy. In peptide 1 the Leu(4) NH group appears to be partially shielded from solvent, while in peptide 2 both Ala(3) and Leu(4) NH groups show limited solvent accessibility. Extensive difference nuclear Overhauser effect (n.O.e.) studies establish the occurrence of several diagnostic inter-residue n.O.e.s (Ci alpha H----Ni+1H and NiH----Ni+1H) between backbone protons. The simultaneous observation of "mutually exclusive" n.O.e.s suggests the presence of multiple solution conformations for both peptides. In peptide 1 the n.O.e. data are consistent with a dynamic equilibrium between an -Ala-delta Z-Phe- Type II beta-turn structure and a second species with delta Z-Phe adopting a partially extended conformation with psi values of +/- 100 degrees to +/- 150 degrees. In peptide 2 the results are compatible with an equilibrium between a highly folded consecutive beta-turn structure for the -Leu-delta Z-Phe-Ala- segment and an almost completely extended conformation.  相似文献   

5.
The amino acid sequence G(1)-P(2)-P(3)-P(4)-H(5)-P(6)-G(7)-K(8)-P(9) occurs twice in the proline-rich glycoprotein (PRG) found in human parotid saliva. As part of our efforts to elucidate the structure-function relationships of PRG, this nonapeptide sequence (PRG9) was synthesized for the purpose of conformational analyses by high-resolution proton n.m.r. spectroscopy and computer-modeling. The empirical n.m.r. spectrum differed from the simulated spectrum in that the overall chemical shift locations were displaced from their random coil positions and the five proline residues had non-degenerate C alpha H alpha protons. Other n.m.r. data indicated that no intramolecular hydrogen-bonding was present in the PRG. In conjunction with X-ray crystallographic data on a triproline-containing model compound (Kartha, g., Ashida, T. & Kakudo, M. (1974) Acta Cryst. B30, 1861-1866), four energy-minimized PRG9 structures were obtained. Two of the structures were energetically unfavorable, while the other two conformations were reasonable. The two most likely structures gave all prolines an S-type ring pucker, the P(2)-P(3)-P(4) sequence as a poly-L-proline II helix, the H(5) phi = -90.3 degrees, P(6) and P(9) with trans peptide bond orientation, G(7) in an extended state, and the K(8) phi = -93.2 degrees or -146.8 degrees for structures #1 and #2, respectively.  相似文献   

6.
In this work, the helix-forming residues in fragments of several proteins (ribonuclease, thermolysin, tendamistat and angiogenin) were identified by NOE and the helix proton shifts were measured as delta changes associated with helix-population increments driven by trifluoroethanol addition. When estimated in this way, a regular pattern of helix conformational shifts was clearly seen in the delta delta versus sequence profiles of all the peptides studied. The helix periodicity of the H alpha and H beta resonances was especially clear, an observation that earlier statistical studies of protein delta values failed to predict. Amide protons showed the largest helix shifts, but with a less-sharply defined periodic character. Aromatic residues considerably distorted the periodicity of the helix amide shifts in some peptides, as evidenced by the delta shifts of a RNase A fragment 1-15 analog in which the two aromatic residues were replaced by Ala. The relationship between helix periodicity and peptide amphiphatic character is discussed.  相似文献   

7.
The stator in F(1)F(o)-ATP synthase resists strain generated by rotor torque. In Escherichia coli, the b(2)delta subunit complex comprises the stator, bound to subunit a in F(o) and to the alpha(3)beta(3) hexagon of F(1). Previous work has shown that N-terminal residues of alpha subunit are involved in binding delta. A synthetic peptide consisting of the first 22 residues of alpha (alphaN1-22) binds specifically to isolated wild-type delta subunit with 1:1 stoichiometry and high affinity, accounting for a major portion of the binding energy between delta and F(1). Residues alpha6-18 are predicted by secondary structure algorithms and helical wheels to be alpha-helical and amphipathic, and a potential helix capping box occurs at residues alpha3-8. We introduced truncations, deletions, and mutations into alphaN1-22 peptide and examined their effects on binding to the delta subunit. The deletions and mutations were introduced also into the N-terminal region of the uncA (alpha subunit) gene to determine effects on cell growth in vivo and membrane ATP synthase activity in vitro. Effects seen in the peptides were well correlated with those seen in the uncA gene. The results show that, with the possible exception of residues close to the initial Met, all of the alphaN1-22 sequence is required for binding of delta to alpha. Within this sequence, an amphipathic helix seems important. Hydrophobic residues on the predicted nonpolar surface are important for delta binding, namely alphaIle-8, alphaLeu-11, alphaIle-12, alphaIle-16, and alphaPhe-19. Several or all of these residues probably make direct interaction with helices 1 and 5 of delta. The potential capping box sequence per se appeared less important. Impairment of alpha/delta binding brings about functional impairment due to reduced level of assembly of ATP synthase in cells.  相似文献   

8.
F Ni  Y Konishi  H A Scheraga 《Biochemistry》1990,29(18):4479-4489
The interaction of the C-terminal fragments (residues 52-65 and 55-65) of the thrombin-specific inhibitor hirudin with bovine thrombin was studied by use of one- and two-dimensional NMR techniques in aqueous solution. Thrombin induces specific line broadening of the proton resonances of residues Asp(55) to Gln(65) of the synthetic hirudin fragments H-Asn-Asp-Gly-Asp(55)-Phe-Glu-Glu-Ile-Pro-Glu-Glu-Tyr(63)-Leu-Gln-COOH and acetyl-Asp(55)-Phe-Glu-Glu-Ile-Pro-Glu-Glu-Tyr(63)-Leu-Gln-COOH. This demonstrates that residues 55-65 are the predominant binding site of hirudin fragments with thrombin. Hirudin fragments take on a well-defined structure when bound to thrombin as indicated by several long-range transferred NOEs between the backbone and side-chain protons of the peptides, but they are not structured when free in solution. Particularly, transferred NOEs exist between the alpha CH proton of Glu(61) and the NH proton of Leu(64) [d alpha N(i,i+3)], between the alpha CH proton of Glu(61) and the beta CH2 protons of Leu(64) [d alpha beta(i,i+3)], and between the alpha CH proton of Glu(62) and the gamma CH2 protons of Gln(65) [d alpha gamma(i,i+3)]. These NOEs are characteristic of an alpha-helical structure involving residues Glu(61) to Gln(65). There are also NOEs between the side-chain protons of residues Phe(56), Ile(59), Pro(60), Tyr(63), and Leu(64). Distance geometry calculations suggest that in the structure of the thrombin-bound hirudin peptides all the charged residues lie on the opposite side of a hydrophobic cluster formed by the nonpolar side chains of residues Phe(56), Ile(59), Pro(60), Tyr(63), and Leu(64).  相似文献   

9.
2D 1H-NMR spectra of des-Gly9-[Arg8]vasopressin in dimethylsulfoxide have been taken and the 1H resonances have been assigned. The coupling constants and amide proton temperature coefficients (delta delta/delta T) have been measured and the NOE cross-peaks in the NOESY spectrum have been analyzed. The most essential information on the spatial structure of des-Gly9-[Arg8]vasopressin is extracted from the low delta delta/delta T value for Asn5 amide proton and from the NOE between the Cys1 and Cys6 alpha-protons. A diminished accessibility of the Asn5 NH proton for the solvent is ascribed to the presence of a beta-turn in the fragment 2-5. The distance between the Cys1 and Cys6 C alpha H protons seems to be less than 4 A. These constraints were taken into account in the conformational analysis of the title peptide. The derived set of the low-energy backbone conformations was analyzed against the background of the all available NMR data. The most probable conformation of the cyclic moiety in des-Gly9-[Arg8]vasopressin was found to be the type III beta-turn. The corner positions are occupied by the residues 3, 4, while the residues 1-2 and 5-6 are at the extended sites. Some NMR data indicate that this structure is in a dynamic equilibrium with other minor conformers.  相似文献   

10.
The 1H-NMR spectra of eight unsaturated disaccharides obtained by bacterial eliminase digestion of chondroitin sulfate and of heparan sulfate/heparin were recorded in order to construct an NMR data base of sulfated oligosaccharides and to investigate the effects of sulfation on the proton chemical shifts. These shifts were assigned by two-dimensional HOHAHA (homonuclear Hartmann-Hahn) and COSY (correlation spectroscopy) methods. The results indicated the following. (1) Two sets of proton signals were observed, corresponding to the alpha and beta anomers of these disaccharides, except those containing N-sulfated GlcN (2-deoxy-2-amino-D-glucose), in which only one set of signals appeared, corresponding to the alpha anomer. (2) Signals of protons bound to an O-sulfated carbon atom and those bound to the immediately neighboring carbon atoms were shifted downfield by 0.4-0.7 and 0.07-0.3 ppm, respectively. (3) For the disaccharides containing the N-sulfated GlcN, the signals of the protons bound to C-2 and C-3 were shifted upfield by 0.6 and 0.15 ppm, respectively, but that of C-1 was shifted downfield by 0.25 ppm when compared with those of the corresponding N-acetylated disaccharides. (4) For the chondroitin sulfate disaccharides sulfated on the C-4 position of GalNAc (2-deoxy-2-N-acetylamino-D-galactose) or the C-2 position of delta GlcA (D-gluco-4-ene-pyranosyluronic acid), the signal of the H-3 proton of delta GlcA or the H-4 proton of GalNAc was shifted upfield by 0.1-0.15 ppm, indicating the steric interaction of the two sugar components. (5) These effects of sulfation on chemical shifts are additive.  相似文献   

11.
Treatment of Tamm-Horsfall urinary glycoprotein with Bacteroides fragilis endo-beta-galactosidase over a range of enzyme concentrations, pH and temperature resulted in the release of a small but constant proportion of the terminal sugars, which indicates the presence in the glycoprotein of relatively few enzyme-susceptible -GlcNAc beta 1-3Gal beta 1-4GlcNAc- units. Three oligosaccharides were isolated from the enzyme digest and characterized as Gal beta 1-4GlcNAc beta 1-3Gal, NeuAc alpha 2-3Gal beta 1-4 GlcNAc beta 1-3Gal and GalNAc beta 1-4(NeuAc alpha 2-3)Gal beta 1-4GlcNAc beta 1-3Gal by methylation analysis and exo-glycosidase digestion. The alditols of these oligosaccharides and related structures were examined by 500 MHz 1H-n.m.r. spectroscopy aided by spin-spin decoupling and two-dimensional correlated spectroscopy. An almost complete assignment of proton shifts was possible, and significant differences between the signals of some of the protons in the blood-group-Sda-active oligosaccharide III and literature values for the corresponding signals in the structurally related Cad-blood-group determinant are noted.  相似文献   

12.
The aromatic region of the NMR spectrum of bovine pancreatic ribonuclease A was analyzed in order to clarify the nature of the microenvironments surrounding the individual histidine, tyrosine, and phenylalanine residues and the interactions with inhibitors. The NMR titration curves of ring protons of six tyrosine and three phenylalanine residues as well as four histidine residues were determined at 37 degrees C between pH 1.5 and pH 11.5 under various conditions. The titration curves were analyzed on the basis of a scheme of a simple proton dissociation sequence and the most probable values were obtained for the macroscopic pK values and intrinsic chemical shifts. The microenvironments surrounding the residues and the effects of inhibitors are discussed on the basis of these results. Based on the titration curves of ring protons, the six tyrosine residues were classified into the following four groups: (1) titratable and different chemical shifts for C(delta) and C(epsilon) protons (two tyrosine residues), (2) titratable but similar chemical shifts for C(delta) and C(epsilon) protons (two tyrosine residues), (3) not titratable and different chemical shifts for C(delta) and C(epsilon) protons (one tyrosine residues), and (4) not titratable and similar chemical shifts for C(delta) and C(epsilon) protons (one tyrosine residue). The resonance signals of ring protons were tentatively assigned to tyrosine and phenylalanine residues. The NMR titration curves of His-48 ring protons were continuous in solution containing 0.2 M sodium acetate but were discontinuous in solution containing 0.3 M NaCl because the NMR signals disappeared at pH values between 5 and 6.5. The effects of addition of formate, acetate, propionate, and ethanol were investigated in order to elucidate the mechanism of the continuity of the titration curves of His-48 in the presence of acetate ion. The NMR signal of His-48 C(2) protons was observed at pH 6 in the presence of acetate and propionate ions but was not observed in the presence of formate ion or ethanol. This indicated that both the alkyl chain and the anionic carboxylate group are necessary for the continuity of the titration curves of His-48 ring protons. Based on the results, the mechanism of the effects of acetate ion is discussed.  相似文献   

13.
The stator in F(1)F(0)-ATP synthase resists strain generated by rotor torque. In Escherichia coli the b(2)delta subunit complex comprises the stator, bound to subunit a in F(0) and to alpha(3)beta(3) hexagon of F(1). Proteolysis and cross-linking had suggested that N-terminal residues of alpha subunit are involved in binding delta. Here we demonstrate that a synthetic peptide consisting of the first 22 residues of alpha ("alpha N1-22") binds specifically to isolated wild-type delta subunit with high affinity (K(d) = 130 nm), accounting for a major portion of the binding energy when delta-depleted F(1) and isolated delta bind together (K(d) = 1.4 nm). Stoichiometry of binding of alpha N1-22 to delta at saturation was 1/1, showing that in intact F(1)F(0)-ATP synthase only one of the three alpha subunits is involved in delta binding. When alpha N1-22 was incubated with delta subunits containing mutations in helices 1 or 5 on the F(1)-binding face of delta, peptide binding was impaired as was binding of delta-depleted F(1). Residues alpha 6-18 are predicted to be helical, and a potential helix capping box occurs at residues alpha 3-8. Circular dichroism measurements showed that alpha N1-22 had significant helical content. Hypothetically a helical region of residues alpha N1-22 packs with helices 1 and 5 on the F(1)-binding face of delta, forming the alpha/delta interface.  相似文献   

14.
The conformation of the peptide Boc-L-Met-Aib-L-Phe-OMe has been studied in the solid state and solution by X-ray diffraction and 1H n.m.r., respectively. The peptide differs only in the N-terminal protecting group from the biologically active chemotactic peptide analog formyl-L-Met-Aib-L-Phe-OMe. The molecules adopt a type-II beta-turn in the solid state with Met and Aib as the corner residues (phi Met = -51.8 degrees, psi Met = 139.5 degrees, phi Aib = 58.1 degrees, psi Aib = 37.0 degrees). A single, weak 4----1 intramolecular hydrogen bond is observed between the Boc CO and Phe NH groups (N---O 3.25 A, N-H---O 128.4 degrees). 1H n.m.r. studies, using solvent and temperature dependencies of NH chemical shifts and paramagnetic radical induced line broadening of NH resonances, suggest that the Phe NH is solvent shielded in CDCl3 and (CD3)2SO. Nuclear Overhauser effects observed between Met C alpha H and Aib NH protons provide evidence of the occurrence of Met-Aib type-II beta-turns in these solvents.  相似文献   

15.
J M Matsoukas  G Bigam  N Zhou  G J Moore 《Peptides》1990,11(2):359-366
The conformational properties of the octapeptide [Sar1]ANG II in dimethylsulfoxide-d6 were investigated by rotating frame nuclear Overhauser effect spectroscopy (ROESY). Interresidue ROESY interactions were observed between Tyr ortho and Phe ring protons, between Phe ring and Pro C gamma protons, and also between His C alpha and Pro C delta protons. A weak connectivity was also observed between the Sar N-CH3 protons and a Tyr ortho proton. Intraresidue interactions between alpha and beta protons in Tyr, His and Phe indicated restricted rotation for the side-chains of the three aromatic residues. These findings suggest that [Sar1]ANG II takes up a folded conformation in DMSO in which the three aromatic rings form a cluster. Connectivities between the His C alpha proton and the two Pro C delta protons illustrated a preferred conformation for angiotensin II in DMSO in which the His-Pro bond exists as the trans isomer. The NMR spectroscopic evidence is consistent with the presence of a Tyr charge relay system in the biologically active conformation of angiotensin II and with the postulated role of the Tyr hydroxyl group in angiotensin II for receptor activation.  相似文献   

16.
Oxygenated sterols, including both autoxidation products and sterol metabolites, have many important biological activities. Identification and quantitation of oxysterols by chromatographic and spectroscopic methods is greatly facilitated by the availability of authentic standards, and deuterated and fluorinated analogs are valuable as internal standards for quantitation. We describe the preparation, purification and characterization of 43 oxygenated sterols, including the 4 beta-hydroxy, 7 alpha-hydroxy, 7 beta-hydroxy, 7-keto, and 19-hydroxy derivatives of cholesterol and their analogs with 25,26,26,26,27,27,27-heptafluoro (F7) and 26,26,26,27,27,27-hexadeuterio (d6) substitution. The 7 alpha-hydroxy, 7 beta-hydroxy, and 7-keto derivatives of (25R)-cholest-5-ene-3 beta, 26-diol (1d) and their 16,16-dideuterio analogs were also prepared. These d2-26-hydroxysterols and [16,16-2H2]-(25R)-cholest-5-ene-3 beta, 26-diol (1e) were synthesized from [16,16-2H2]-(25R)-cholest-5-ene-3 beta, 26-diol diacetate (2e), which can be prepared from diosgenin. The highly specific deuterium incorporation at C-16 in 1e and 2e should be useful in mass spectral analysis of 26-hydroxycholesterol samples by isotope dilution methods. The delta 5-3 beta, 7 alpha, 26- and delta 5-3 beta, 7 beta, 26-triols were regioselectively oxidized/isomerized to the corresponding delta 4-3-ketosteroids with cholesterol oxidase. Also described are 5,6 alpha-epoxy-5 alpha-cholestan-3 beta-ol, its 5 beta,6 beta-isomer, cholestane-3 beta, 5 alpha,6 beta-triol, their F7 and d6 derivatives, and d3-25-hydroxycholesterol, which was prepared from 3 beta-acetoxy-27-norcholest-5-en-25-one (30). The 43 oxysterols and most synthetic intermediates were isolated in high purity and characterized by chromatographic and spectroscopic methods, including mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy. Detailed mass spectral assignments are presented, and 1H NMR stereochemical assignments are derived for the C-19 protons of 19-hydroxysterols and for the side-chain protons of 30.  相似文献   

17.
A somatostatin (SRIF) receptor and its associated Gi regulatory proteins was purified from GH4C1 rat pituitary cells by: 1) saturation of the membrane-bound receptor with biotinyl-NH-[Leu8,D-Trp22,Tyr25] SRIF28 (bio-S28); 2) solubilization of receptor-ligand (R.L) complex with deoxycholate-lysophosphatidylcholine (D.L); 3) adsorption of solubilized receptor-ligand complex to immobilized streptavidin; and 4) elution of receptor and G-protein by GTP. The receptor, a glycoprotein with an average M(r) of 85,000, was then purified to substantial homogeneity on immobilized wheat germ agglutinin. The 85-kDa glycoprotein was identified as a SRIF receptor by several criteria. (a) It had the same size as the chemically cross-linked R.[125I]L complex. (b) Yield of the purified protein increased and plateaued in the same range of bio-S28 concentrations where specific high affinity binding reached saturation. (c) It was copurified with appropriate G-protein subunits. The 85-kDa receptor and two other proteins with M(r) values of 35,000 and 40,000, the sizes of G beta and G alpha, did not appear in eluates from control streptavidin columns done with SRIF receptors loaded with nonbiotinylated S14. The 40-kDa protein was identified as a Gi alpha by ADP-ribosylation from [32P]NAD catalyzed by pertussis toxin. (d) Both the chemically cross-linked R.[125I]L complex and SRIF receptor purified from [35S]methionine-labeled GH4C1 cells were reduced in size to about 38 kDa by endoglycosidase F. (e) Amino acid sequence from the purified receptor was nearly identical with that of a recently cloned SRIF receptor subtype.  相似文献   

18.
The positively charged quaternary ammonium group of agonists of the nicotinic acetylcholine (ACh) receptor binds to a negative subsite at most about 1 nm from a readily reducible disulfide. This disulfide is formed by alpha Cys192 and Cys193 (Kao and Karlin, 1986). In order to identify Asp or Glu residues that may contribute to the negative subsite, we synthesized S-(2-[3H]glycylamidoethyl)dithio-2-pyridine. Purified ACh receptor from Torpedo californica was mildly reduced and reacted with S-(2-[3H]glycylamidoethyl)dithio-2-pyridine. The predominant product was a mixed disulfide between the 3H-N-glycylcysteamine moiety and alpha Cys192 or Cys193. In the extended conformation of [3H] N-glycylcysteamine, the distance from the glycyl amino group to the cysteamine thio group is 0.9 nm. Thus, the amino group of disulfide-linked [3H]N-glycylcysteamine could react with carboxyls within 0.9 nm of Cys192/Cys193. To promote amide bond formation between the tethered amino group and receptor carboxyls, we added 1-ethyl-3-(3'-dimethylaminopropyl)-carbodiimide. The predominant sites of amide coupling were on the delta subunit, in CNBr fragment 4 (delta 164-257). This reaction was inhibited by ACh. Only the first 61 residues of delta CNBr 4 are predicted to be extracellular, and there are 11 Asp or Gly residues in this region. One or more of these residues is likely to contribute to the binding of ACh.  相似文献   

19.
S G Kim  L J Lin  B R Reid 《Biochemistry》1992,31(14):3564-3574
In DNA or RNA duplexes, the six-bond C3'-O3'-P-O5'-C5'-C4'-C3' backbone linkage connecting adjacent residues contains six torsion angles (epsilon, zeta, alpha, beta, gamma, delta) but only four protons. This seriously limits the ability to define the backbone conformation by NMR using purely 1H-1H distance geometry (DG) methods. The problem is further compounded by the inability to assign two of the four backbone protons, namely the poorly resolved H5' and H5' protons, and invariably leads to DG structures with poorly defined backbone conformations. We have developed and tested a reliable method to constrain the beta, gamma, and epsilon (and indirectly alpha and zeta) backbone torsion angles by lower-bound NOE distances to unassigned H5'/H5' resonances combined with either 1H line widths or the conservative use of sigma J measurements; the method relies only on 1H 2-D NMR data, does not involve any structural assumptions, and leads to much improved backbone convergence among DG structures. The C4'-C5' torsion angle gamma is constrained by lower-bound NOE distances from H2' and from H6/H8 to any H5'/H5', as well as by sigma JH4, coupling measurements in the 3.9-4.4 ppm region; delta is constrained by H1'-H4' NOE distances and by H3'-H4' and H3'-H2' J couplings in COSY data; epsilon is partially constrained by H3' line width and/or further constrained by subtracting the minimum possible sigma JH3'-H from the observed sigma JH3' (COSY) to arrive at the maximum possible JH3'-P, which is then converted to H3'-P distance bounds. The angle beta is partially constrained via H5'-P and H5'-P distance bounds consistent with the maximum H5'-P and H5'-P J couplings derived from the observed H5' and H5' line widths, while alpha and zeta are indirectly constrained by lower distance bounds on the observed (n)H1' to (n + 1)H5'/H5' NOEs combined with the prior partial constraints on beta, gamma, delta, and epsilon. The combined effects of these additional constraints in determining distance geometry structures have been demonstrated using a 12-base duplex, [d(GCCGTTAACGGC)]2. Coordinate RMSDs per atom between structures refined with these constraints from random-embedded DG structures, from ideal A-DNA, and from B-DNA starting structures were less than 0.4 A for the central 8 base pairs indicating good convergence. All backbone angles for the central 8 base pairs are very well constrained with less than 10 degrees variation in any of the 48 torsion angles.  相似文献   

20.
Ten methyl dithiastearate isomers, containing 0-4 methylene groups between the two sulfur atoms in each of the molecules, were synthesized using a one-pot synthesis approach. The preparation of the tetra-methylene (3,4), tri-methylene (5,6) and di-methylene (7,8) interrupted methyl dithiastearate isomers involved the asymmetric coupling of n-bromoalkanes, alkanedithiols and omega-bromoalkanoic acids. The mono-methylene interrupted isomers (9,10) were prepared from dibromethane, which was allowed to couple with n-alkanethiols and omega-mercaptoalkanoic acids. For the non-methylene interrupted isomers (11,12), n-alkanethiols were initially converted to the sulfenyl bromide and reacted with omega-mercaptoalkanoic acids. These sulfur-containing fatty ester analogues were found to be more polar and with longer retention times than methyl stearate when analyzed by TLC (silica) and GC (SE-30) respectively. In the 1H-NMR analysis the shifts of the protons of CH2 groups adjacent to the sulfur atoms in 3-6 appeared at 2.50-2.60 (t) delta, while the tri-methylene interrupted isomers (5,6) furnished an additional characteristic signal at 1.84 (quintet) delta arising from the protons of the beta-positioned CH2 between the sulfur atoms. Compounds 7-8 gave a singlet at 2.70 delta, while 9,10 also gave a singlet at 3.64-3.65 delta for the protons of the CH2 group situated between the sulfur atoms. In compounds 11,12 the shift of the protons of the CH2 adjacent to the sulfur atom appeared at 2.68 (t) delta.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号