首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Introduced pumpkinseed Lepomis gibbosus sampled from four habitat zones (fluvial pelagic, fluvial littoral, lacustrine pelagic and lacustrine littoral) in three Portuguese reservoirs were used to test the hypotheses that habitats with the least similar characteristics will show the most differentiation, and that morphological differences will relate to functional adaptations to flow and trophic habitats. Results from discriminant function analysis and ANCOVA showed that there were significant differences in external morphology in pumpkinseed captured from the four habitat zones in all three reservoirs. Littoral and pelagic differentiation was stronger than fluvial and lacustrine differentiation in all of the reservoirs, and the most significant variable that differentiated pumpkinseed from the littoral and pelagic habitats was body depth. The illustration of external morphological differentiation in pumpkinseed along both habitat dimensions demonstrates the high degree of morphological plasticity of this introduced species.  相似文献   

2.
The content of total lipids, total phospholipids, and fatty acids of total lipids in muscles and liver of juvenile Lake Baikal sympatric coregonid fishes have been analyzed for the first time under a common garden experiment. Baikal omul, Coregonus migratorius Georgi, is an active migrant of the pelagic zones of the lake. Baikal (lacustrine) whitefish, C. baicalensis Dybowski, is a colonizer of the bottom habitats, which are relevant to the pelagic zones of the littoral and underwater slope. Structural lipids (phospholipids and cholesterol) dominated in total lipids of the tissues of all fish under study. Spare lipids significantly prevailed in omul muscles when compared to whitefish. The highest variability of fatty acid composition was reported in muscles of coregonid fishes. Statistically significant differences were revealed in the content of the ω3 polyunsaturated fatty acids in muscles of lacustrine whitefish and omul. Associations of lipid compositions revealed in tissues of the whitefishes under the study with their respective ecotypes have been discussed.  相似文献   

3.
Phylogenetic hierarchies are often composed of younger diverging lineages nested within older diverging lineages. Comparing phenotypic variation among several hierarchical levels can be used to test hypotheses about selection, phenotypic evolution and speciation. Such hierarchical comparisons have only been performed in threespine stickleback, and so here we use a hierarchical pattern of divergences between near-shore littoral and off-shore pelagic habitats to test for selection on the evolution of body form in Lepomis sunfish in lakes. We compare variation in external body form between fish from littoral and pelagic habitats at three levels: among ecomorphs within individual lake populations (intrapopulation), among populations of the same species in different lakes (interpopulation), and between bluegill and pumpkinseed sunfish species (interspecifically). Using geometric morphometric methods, we first demonstrate that interpopulation variation in mean body form of pumpkinseed sunfish varies with the presence of pelagic habitat. We then incorporate these results with existing data in order to test the similarity of phenotypic divergence between littoral and pelagic habitats at different hierarchical levels. Parallel relationships between certain body form traits (head length, caudal length and pectoral length) and habitat occur at all three levels suggesting that selection persistently acts at all levels to diversify these traits and so may contribute to species formation. For other traits (caudal depth and pectoral altitude), divergence between habitats is inconsistent at different hierarchical levels. Thus, nested biological variation in Lepomid body form reflects a history of deterministic selection and historical contingency, and also identifies traits that likely have likely influenced fitness and so serve important functions.  相似文献   

4.
The dynamics of crustacean zooplankton in the littoral and pelagic zones of four forest lakes having variable water qualities (colour range 130–340 mg Pt l−1, Secchi depth 70–160 cm) were studied. The biomass of zooplankton was higher in the littoral zone than in the pelagic zone only in the lake having the highest transparency. In the three other lakes, biomass was significantly higher in the pelagic zone than in the littoral zone. In the two lakes with highest transparency, the littoral biomass of cladocerans significantly followed the development of macrophyte vegetation, and cladoceran biomass reached the maximum value at the time of highest macrophyte coverage. In lakes with lowest transparency, littoral zooplankton biomass developed independently of macrophyte density and decreased when macrophyte beds were densest. The seasonal development of the littoral copepod biomass did not follow the development of macrophytes in any of the lakes. The mean size of cladocerans in the pelagic zone decreased with increasing Secchi depth of the lake, whereas in the littoral zone no such phenomenon was detected. Seasonally, when water transparency increased temporarily in two of the lakes, the mean size of cladocerans in the pelagic zone decreased steeply. For copepods, no relationship between water transparency and body size was observed. The results suggested that in humic lakes the importance of the littoral zone as a refuge decreases with decreasing transparency of the water and that low water transparency protects cladocerans from fish predation. All the observed between-lake differences could not be explained by fish predation, but were probably attributed to the presence of chaoborid larvae with variable densities. Feeding efficiency of chaoborids is not affected by visibility and thus they can obscure the relationship between water quality, fish density, and the structure of crustacean zooplankton assemblages. Handling editor: S. I. Dodson  相似文献   

5.
Previous studies based on analysis of amoA, 16S ribosomal RNA or accA gene sequences have established that marine Thaumarchaeota fall into two phylogenetically distinct groups corresponding to shallow- and deep-water clades, but it is not clear how water depth interacts with other environmental factors, including light, temperature and location, to affect this pattern of diversification. Earlier studies focused on single-gene distributions were not able to link phylogenetic structure to other aspects of functional adaptation. Here, we analyzed the genome content of 46 uncultivated single Thaumarchaeota cells sampled from epi- and mesopelagic waters of subtropical, temperate and polar oceans. Phylogenomic analysis showed that populations diverged by depth, as expected, and that mesopelagic populations from different locations were well mixed. Functional analysis showed that some traits, including putative DNA photolyase and catalase genes that may be related to adaptive mechanisms to reduce light-induced damage, were found exclusively in members of the epipelagic clade. Our analysis of partial genomes has thus confirmed the depth differentiation of Thaumarchaeota populations observed previously, consistent with the distribution of putative mechanisms to reduce light-induced damage in shallow- and deep-water populations.  相似文献   

6.
A generalist strategy, as an adaptation to environmental heterogeneity, is common in Arctic freshwater systems, often accompanied, however, by intraspecific divergence that promotes specialization in niche use. To better understand how resources may be partitioned in a northern system that supports intraspecific diversity of Lake Trout, trophic niches were compared among four shallow‐water morphotypes in Great Bear Lake (N65° 56′ 39″, W120° 50′ 59″). Bayesian mixing model analyses of stable isotopes of carbon and nitrogen were conducted on adult Lake Trout. Major niche overlap in resource use among four Lake Trout morphotypes was found within littoral and pelagic zones, which raises the question of how such polymorphism can be sustained among opportunistic generalist morphotypes. Covariances of our morphological datasets were tested against δ13C and δ15N values. Patterns among morphotypes were mainly observed for δ15N. This link between ecological and morphological differentiation suggested that selection pressure(s) operate at the trophic level (δ15N), independent of habitat, rather than along the habitat‐foraging opportunity axis (δ13C). The spatial and temporal variability of resources in Arctic lakes, such as Great Bear Lake, may have favored the presence of multiple generalists showing different degrees of omnivory along a weak benthic–pelagic gradient. Morphs 1–3 had more generalist feeding habits using both benthic and pelagic habitats than Morph 4, which was a top‐predator specialist in the pelagic habitat. Evidence for frequent cannibalism in Great Bear Lake was found across all four morphotypes and may also contribute to polymorphism. We suggest that the multiple generalist morphs described here from Great Bear Lake are a unique expression of diversity due to the presumed constraints on the evolution of generalists and contrast with the development of multiple specialists, the standard response to intraspecific divergence.  相似文献   

7.
All sampling methods give selective or biased estimates of fish species abundance, distribution and size structure. This creates problems, e.g. in regard to the Water Framework Directive of the European Union, which demands evaluation of the quality and status of fish stocks in lakes. We compared fish sampling by means of Nordic multimesh gillnets, seining, trawling and hydroacoustics in two Finnish lakes in summer 2007 and 2008. Sampling methods were used ‘as such’, i.e. no special design was implemented for method comparison. In the shallow eutrophicated lake the species’ composition of gillnet sampling and seining were very different. The biomass-% of percids dropped from gillnet (61%) to seining (9%) and that of cyprinids grew from 39 to 90%, respectively. In the deep pelagic area of the oligotrophic lake, vendace and smelt predominated in trawl catches. The number of fish caught by gillnetting in that area was too small to make any conclusions about the species composition. In the eutrophicated lake, the combined length distribution for all fish species differed significantly between gillnetting and seining. In the oligotrophic lake, the gillnet catches were too small for any comparison of fish size. The difference in the length distribution of fish between trawl and echosounding was significant in most analysed depth layers. In upper depth layers acoustics sampled larger fish than trawling, and in deeper layers smaller fish. Using a combined acoustic-trawl method, the pelagic fish biomass was estimated to be approx. 17 kg ha−1 in the deep and oligotrophic lake. We conclude that in large and deep-water areas, the use of active gear is enough in fish sampling to evaluate the quality and status of fish stocks. Gillnetting together with seining is an appropriate method to work out the quality and status of fish stocks in shallow and littoral areas of large lakes. Variation in the catch selectivity of fish sampling gear requires a discrete ecological classification for each type of gear.  相似文献   

8.
Genetic data suggest that the littoral and pelagic forms of brook charr Salvelinus fontinalis in Lake Bondi are two populations with partial reproductive isolation and non-random mating. Genetic differentiation between the two groups was supported by differences in allele frequencies and by deviation from Hardy-Weinberg equilibrium when the two groups were pooled; no such deviation was observed when fish were divided into littoral and pelagic groups. In contrast to Lake Bondi, no clear evidence of genetic differentiation was observed in Lake Ledoux. Discriminant function analyses of morphological characters support the existence of littoral and pelagic groups in Bondi and Ledoux Lakes. In Lake Bondi, the two groups differed significantly in two shape variables (pelagic fish had shorter dorsal fins, and longer body length posterior to the dorsal fin than littoral ones) whereas in Lake Ledoux, the groups differed in four shape variables (pelagic fish had shorter pectoral fins, shorter dorsal fins, and a shorter and higher caudal peduncle than littoral ones). Discriminant analyses of these characters were effective in reclassifying fish into their appropriate groups in both populations, with an efficiency of 78% for juveniles in Lake Bondi and 69% for adults in Lake Ledoux. Differences in morphology between the two forms are consistent with adaptations required to forage in each zone, i.e. benthic form in the littoral zone and planktivorous form in the pelagic zone.  相似文献   

9.
The Indian oil sardine, Sardinella longiceps, is an important pelagic species in Indian waters, and shows divergent morphology while in sympatry. The reasons behind this divergent morphology were investigated using morphometric, genetic and nutritional analyses. Twenty‐one morphometric characters (as percentage of standard length) and eight meristic characters were studied in the three variants to assess whether they are significantly diverged. Distinct clustering of morphotypes was evident in the principal component analysis on log‐transformed ratios of morphological characters with PC1 and PC2, explaining 50.7% and 17.6% of the total morphological variation, respectively. PC1 was highly correlated with the distance from snout to anal origin, depth at dorsal, distance from snout to pelvic and distance from snout to first dorsal. PC2 was highly correlated with head length, caudal width and anal depth. Analysis of similarities (ANOSIM) was conducted using log‐transformed morphometric ratios, with the results showing the clusters to be well differentiated (R = 0.511; P < 0.01). Similarity of percentage analysis (SIMPER) analysis showed that the differences in depth at the dorsal, anal base length, caudal width, distance from pelvic to anal origin, anal depth and eye diameter accounted for 52% of variations between variant 1 and 2. Differences in caudal width, distance from pelvic to anal origin, anal base length, depth at dorsal and anal depth accounted for 56% of the variation between variant 2 and 3. Differences in caudal width, eye diameter, anal base length, anal depth, distance from pelvic to anal origin accounted for 50% of the variation between variant 1 and 3. Genetic divergence was not significantly based on mitochondrial cytochrome c oxidase I (COI) or control region sequences. Proximate composition analyses showed significantly high fat content in variants 1&3 and significantly high protein content in variant 2, probably due to dissimilar dietary preferences. The study shows that morphotypes of the Indian oil sardine may be the result of divergent selection and adaptive variations, which need further investigation using a long‐term sampling design.  相似文献   

10.
No significant differences were found in the time budget (time spent in feeding, moving and stationary), attack rate (number of feeding bouts min−1), and microhabitat use of juvenile (1+ years) littoral and pelagic brook charr Salvelinus fontinalis at 2 and 4 m depth, when restricted to feeding in pelagic enclosures. In contrast, fish of the littoral form allocated significantly more time than pelagic ones to feeding, moving and in total activity at 3 m depth. No significant differences were found in attack rate between the two forms at any given depth. Based on the mean for the water column (all depths pooled), however, fish of the littoral form executed a significantly higher attack rate than fish of the pelagic one. In multiple regressions analyses, the best predictors of time allocated to feeding and attack rate were the dummy variable 'form' (littoral individuals spend significantly more time in feeding than pelagic ones), light intensity at the surface (negative) and water temperature (positive), and explained 48 and 55% of these variations, respectively. Time allocated to moving was only explained by water temperature (negative) and explained 43% of the variation. Time in a stationary position was best explained by water temperature (negative) and light intensity at the surface (positive), explaining 52% of the variation. The results of this study support the hypothesis that littoral brook charr spend more energy in foraging than pelagic ones when restricted to feeding in the pelagic habitat, and thus that trophic diversification is adaptive in this species.  相似文献   

11.
Prey preference of top predators and energy flow across habitat boundaries are of fundamental importance for structure and function of aquatic and terrestrial ecosystems, as they may have strong effects on production, species diversity, and food‐web stability. In lakes, littoral and pelagic food‐web compartments are typically coupled and controlled by generalist fish top predators. However, the extent and determinants of such coupling remains a topical area of ecological research and is largely unknown in oligotrophic high‐latitude lakes. We analyzed food‐web structure and resource use by a generalist top predator, the Arctic charr Salvelinus alpinus (L.), in 17 oligotrophic subarctic lakes covering a marked gradient in size (0.5–1084 km2) and fish species richness (2–13 species). We expected top predators to shift from littoral to pelagic energy sources with increasing lake size, as the availability of pelagic prey resources and the competition for littoral prey are both likely to be higher in large lakes with multispecies fish communities. We also expected top predators to occupy a higher trophic position in lakes with greater fish species richness due to potential substitution of intermediate consumers (prey fish) and increased piscivory by top predators. Based on stable carbon and nitrogen isotope analyses, the mean reliance of Arctic charr on littoral energy sources showed a significant negative relationship with lake surface area, whereas the mean trophic position of Arctic charr, reflecting the lake food‐chain length, increased with fish species richness. These results were supported by stomach contents data demonstrating a shift of Arctic charr from an invertebrate‐dominated diet to piscivory on pelagic fish. Our study highlights that, because they determine the main energy source (littoral vs. pelagic) and the trophic position of generalist top predators, ecosystem size and fish diversity are particularly important factors influencing function and structure of food webs in high‐latitude lakes.  相似文献   

12.
Significant concentrations of oxalate (dissolved plus particulate) were present in sediments taken from a diversity of aquatic environments, ranging from 0.1 to 0.7 mmol/liter of sediment. These included pelagic and littoral sediments from two freshwater lakes (Searsville Lake, Calif., and Lake Tahoe, Calif.), a hypersaline, meromictic, alkaline lake (Big Soda Lake, Nev.), and a South San Francisco Bay mud flat and salt marsh. The oxalate concentration of several plant species which are potential detrital inputs to these aquatic sediments ranged from 0.1 to 5.0% (wt/wt). In experiments with litter bags, the oxalate content of Myriophyllum sp. samples buried in freshwater littoral sediments decreased to 7% of the original value in 175 days. This suggests that plant detritus is a potential source of the oxalate within these sediments. [14C]oxalic acid was anaerobically degraded to 14CO2 in all sediment types tested, with higher rates evident in littoral sediments than in the pelagic sediments of the lakes studied. The turnover time of the added [14C]oxalate was less than 1 day in Searsville Lake littoral sediments. The total sediment oxalate concentration did not vary significantly between littoral and pelagic sediments and therefore did not appear to be controlling the rate of oxalate degradation. However, depth profiles of [14C]oxalate mineralization and dissolved oxalate concentration were closely correlated in freshwater littoral sediments; both were greatest in the surface sediments (0 to 5 cm) and decreased with depth. The dissolved oxalate concentration (9.1 μmol/liter of sediment) was only 3% of the total extractable oxalate (277 μmol/liter of sediment) at the sediment surface. These results suggest that anaerobic oxalate degradation is a widespread phenomenon in aquatic sediments and may be limited by the dissolved oxalate concentration within these sediments.  相似文献   

13.
Physical, chemical and biological processes facilitate cross-habitat connections in lakes, prompting food webs to be supported by different subsidies. We tested the hypothesis that the pelagic food web is subsidized by littoral resources and fish foraging behaviour plays a major role in carbon flux and on food web structure in shallow hypereutrophic lakes. We performed a fish diet and carbon and nitrogen isotope analyses to predict the linkage between littoral and pelagic habitats in three shallow hypereutrophic lakes. Lakes differed in morphology, fetch, macrophyte composition and width of the littoral zone. δ13C signals of seston differed among lakes, but were similar to other producers. Macroinvertebrates and fish carbon signatures were more enriched in the lake co-dominated by emergent and submerged vegetation. Fish foraging behaviour indicates that more than the 80% of the carbon that sustain adult fish was channelled from the littoral. In conclusion, littoral carbon were relevant and sustain, in part, food web in these shallow lakes. Factors like the extension of the littoral zone, lake morphometry, and the dominance of multi-chain omnivorous fish facilitate the connection among lake compartments and the transference of littoral carbon to lake food web.  相似文献   

14.
The Antarctic limpet Nacella concinna (Strebel 1908) presents two ecotypes (littoral and sublittoral) differing in morphological and behavioral characteristics and more recently discovered, in physiological traits and genetic population structure. Previous works, based on traditional morphometry, used only three measurements (length, width and height of the shell) and their relationships. However, this methodology could not describe in detail the shape of the morphotypes. In the present work, Elliptic Fourier analysis (EFA) of shells was used to study the shape of the two morphotypes in six localities along the Antarctic Peninsula. The use of EFA confirmed the morphometric differences. The littoral morphotype has higher and globose shells with the apex displaced to the anterior part; the sublittoral individuals are more flat and pointed, and have the apex very well defined. Low allometric effect was detected in SL individuals, whereas L specimens did not show an allometric relationship within the examined size range. Differences in shell shape among localities were recorded. EFA analysis reflected the overall shell shape and allowed to characterize the main differences in shell shape between ecotypes that were difficult to quantify using the standard morphometric approach.  相似文献   

15.
Abundance and body size of zooplanktonic organisms, testate amoebae, rotifers, cladocerans and copepods from the littoral and pelagic regions of three lakes were analyzed in February and August 2000. The lakes belong to three different river systems (Baía, Ivinhema and Paraná rivers) of the upper River Paraná floodplain. It was expected that average body size was different in space (regions of the lake and limnological characteristics) and time (summer and winter) because the variation of depth, pH, oxygen dissolved, chlorophyll-a and water temperature of each lake. Zooplankton community was represented by 119 species. Sorensen's coefficient showed that the three communities were similar. Larger organisms were found in the lakes' pelagic region, and seasonally larger individuals were registered in the winter and smaller individuals in the summer. The relationship between body size and density was slight, positively significant. The body size frequency distribution was bi-modal. ANOVA results showed a significant influence of the interaction of the littoral and pelagic regions, lakes, and seasons in the body size of zooplankton organisms. Spatial and temporal changes of the community size structure of zooplanktonic assemblages were related to the food resource (microbial-loop or herbivore chain), species habitat preference and life strategies (growth and reproduction).  相似文献   

16.
1. Fish community structure and habitat distribution of the abundant species roach, perch and ruffe were studied in Lake Nordborg (Denmark) before (August 2006) and after (August 2007) aluminium treatment to reduce internal phosphorus loading. 2. Rapid changes in fish community structure, abundance and habitat distribution occurred following a decline in in‐lake phosphorus concentrations from 280 to 37 μg P L?1 and an increase in Secchi depth transparency from 1.1 to 1.9 m (August). The proportion of perch in overnight gill net catches increased, whilst roach decreased, and the average weight of all key species increased. 3. The habitat distribution of perch and roach changed from a high proportion in the upper pelagic and littoral zones in 2006, towards enhanced proportions in the deeper pelagic and profundal zone in 2007. The abundance of large‐bodied zooplankton increased and the abundance of benthic invertebrates decreased in the same period, suggesting that the habitat shift was not induced by food limitation. 4. Ruffe shifted from the littoral and upper profundal zones towards the deep profundal zone, likely reflecting an increased predation risk in the littoral zone and better oxygen conditions in the deep profundal. 5. Our results indicate that enhanced risk of predation in the upper pelagic and the littoral zones and perhaps improved oxygen concentrations in the deeper profundal zone at decreasing turbidity are responsible for the observed habitat shift. The results indicate that fish respond rapidly to changes in nutrient state, both in terms of community structure and habitat use.  相似文献   

17.
Trophically dimorphic pumpkinseed populations were investigated in five lakes in Ontario, Canada to determine: (1) whether the morphological traits that distinguish littoral from pelagic forms are consistent among populations; (2) whether the pharyngeal jaw apparatus is diminished in pelagic pumpkinseeds because of a lower proportion of hard-bodied prey in their diets; (3) whether there is life-history differentiation between littoral and pelagic forms. Pumpkinseeds captured from the littoral and pelagic zones differed significantly in morphology in four of the five lakes, but the number of external measures that differed significantly within the differentiated populations ranged from zero to six. Littoral pumpkinseeds generally had longer heads, more rearward placement of dorsal and pectoral fins, longer pectoral fins and deeper bodies than pelagic pumpkinseeds. Littoral and pelagic pumpkinseeds were more readily differentiated by internal morphometric measures, with littoral individuals having larger molars and wider spacing between gill rakers than pelagic individuals. Littoral and pelagic differences in age at maturity, size at maturity and gonado-somatic index were present only in one of three populations assessed for these traits, suggesting that morphological divergence is not necessarily accompanied by life-history differentiation.  相似文献   

18.
Stomach contents, parasite assemblages and morphometrics were compared in brook charr Salvelinus fontinalis from the littoral and pelagic zone of two adjacent lakes on the Canadian Shield. In lac Baie des Onze Îles, fish from the littoral zone had greater abundance of benthic prey in their stomach and were more heavily infected by parasites that use intermediate hosts associated with the littoral zone than fish captured in the pelagic zone. Littoral and pelagic brook charr from this lake also differed in regard to body shape and fin length, with each group being anatomically adapted to exploit their respective habitats. The highly significant correlation between morphometric and parasite canonical scores supports the hypothesis of functional diversification of individuals within lac Baie des Onze Îles. While fish from littoral and pelagic zones of lac Caribou did not differ in terms of diet, parasite assemblages or morphometrics, they were different to fish from lac Baie des Onze Îles in that they were less frequently infected with parasites that use gastropods as intermediate hosts, and had shorter pectoral fins. The inter-lake comparisons suggested that parasite assemblages and morphometrics of brook charr reflected the dominance of the limnetic and littoral habitats in lacs Caribou and lac Baie des Onze Îles, respectively.  相似文献   

19.
Trade-offs in foraging efficiency leading to divergent natural selection between and within populations exploiting different resources are thought to be a primary cause of trophic polymorphism. In this study we focused on the trade-offs in foraging efficiency and growth in a polymorphic perch population. Specifically, we related habitat-specific growth and diet of perch to perch morphology. In a subsequent laboratory study we experimentally tested the trade-off by testing the efficiency of perch with different morphology feeding on pelagic ( Daphnia sp., Chaoborus sp.) and littoral (mayfly larvae) food resources. The feeding performance was tested in different physical environments to see if we could predict growth patterns in the field based on foraging rate and behavior of perch.
In the field study, we found that the perch from the littoral and the pelagic zones differed in both morphology and diet. Within the littoral zone the deeper-bodied individuals grew faster compared to the more streamlined individuals, whereas the opposite pattern was found in the pelagic zone. In the aquarium experiments, perch from the littoral zone had higher capture rates on the pelagic prey types in vegetation trials and on mayfly larvae in both open water and vegetation trials. The pelagic perch had higher capture rates on the pelagic prey types in open water trials. The littoral perch had lower search velocity than the pelagic perch in open water trials whereas the opposite pattern was found in vegetation trials. The attack velocity of the pelagic perch was also higher than that of the littoral perch independent of vegetation structure. Our results suggest that there is a functional trade-off between performance in alternate habitats and general body form in perch. Such trade-offs may promote divergent natural selection and could be the mechanism that give rise to and upholds the pattern in the field.  相似文献   

20.
Only recently ecologists started treating the previously separately considered benthic, littoral and pelagic zones of lake ecosystems as closely connected compartments. Here we study a link between organisms belonging to a different compartment – namely the pelagic and the littoral – through behavior in a series of laboratory experiments. Waterfleas of the genus Daphnia are inhabitants of the pelagic zone and suffer a high predation pressure from syntopic vertebrate predators (mainly fish). Presumably to escape this predation, they sometimes migrate in the day to the littoral to seek refuge within macrophytes and return to the pelagic at night. Zygopterans from the genus Ischnura do commonly co-occur in ponds with Daphnia and are known as opportunistic predators of Daphnia . In two initial experiments in microcosms in the lab we showed that Ischnura larvae are littoral predators strongly associated with macrophytes. Although we found that predation rates of individual Ischnura larvae on Daphnia are approximately 1.5 fold lower in macrophytes compared to open water, total predation from Ischnura on Daphnia per unit area is tenfold higher within macrophytes than in open water, making the open water a safer place for Daphnia with regard to Ischnura predation. In a third microcosm experiment we monitored horizontal distribution of Daphnia in the absence, presence and odor only of Ischnura larvae. After 2 hours, on average 10% less Daphnia remained within the vegetation when Ischnura larvae or only their odor were present compared to when Ischnura or their odor were absent. We interpret this as a behavioral anti-predation response of Daphnia to the presence of Ischnura larvae that seems primarily chemically mediated. The observed horizontal migration of the pelagic prey driven by the littoral predator may couple both lake compartments and may interact with the predator–prey relationships within the pelagic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号