首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In order to investigate the Conformational change of the α-aminoisobutyric acid (Aib) containing peptide by the D /L replacement of an amino acid residue, single crystals of two diastereomers, Dnp-L -Val-Aib-Gly-L -Leu-pNA (L -L isomer) and Dnp-D -Val-Aib-Gly-L -Leu-pNA (D -L isomer), were prepared from aqueous methanol solutions as CH3OH and CH3OH · H2O solvates, respectively, and were analyzed by the x-ray diffraction method. Molecular conformation of L -L isomer adopts consecutive two different types of β-turns, a type II′ β-turn bent at Aib-Gly, and a type III β-turn bent at Gly-Leu, stabilized by two intramolecular (Leu) NH …? O?C (Val) and (pNA) NH …? O?C(Aib) hydrogen bonds. In contrast, these two intramolecular hydrogen bonds lead the D -L isomer to a distorted 310-helix conformation consisting of consecutive two type-III β-turn of Aib-Gly-Leu sequence. The most significant structural difference between these diastereomers is the mutual orientation between the Dnp and pNA chromophores. While the extensive stacking of both the chromophores is intramolecularly formed for the folded conformation of L -L isomer, they are oriented toward an opposite direction in the open conformation of D -L isomer and are intermolecularly stacked with each other. The large separation between these diastereomers observed in the chromatography is discussed in the relation with their Conformational differences. © 1993 John Wiley & Sons, Inc.  相似文献   

2.
A total of 16 pyrrolysine conformers in their zwitterionic forms are studied in gas and simulated aqueous phase using a polarizable continuum model (PCM). These conformers are selected on the basis of our study on the intrinsic conformational properties of non-ionic pyrrolysine molecule in gas phase [Das and Mandal (2013) J Mol Model 19:1695?1704]. In aqueous phase, the stable zwitterionic pyrrolysine conformers are characterized by full geometry optimization and vibrational frequency calculations using B3LYP/6-311++G(d,p) level of theory. Single point calculations are also carried out at MP2/6-311++G(d,p) level. Characteristic intramolecular hydrogen bonds present in each conformer, their relative energies, theoretically predicted vibrational spectra, rotational constants and dipole moments are systematically reported. The calculated relative energy range of the conformers at B3LYP/6-311++G(d,p) level is 5.19 kcal mol?1 whereas the same obtained by single point calculations at MP2/6-311++G(d,p) level is 4.58 kcal mol?1. A thorough analysis reveals that four types of intramolecular H-bonds are present in the conformers; all of which play key roles in determining the energetics and in imparting the observed conformations to the conformers. The vibrational frequencies are found to shift invariably toward the lower side of frequency scale corresponding to the presence of the H-bonds. This study also points out that conformers with diverse structural motifs may differ in their thermodynamical stability by a narrow range of relative energy. The effects of metal coordination on the relative stability order and structural features of the conformers are examined by complexing five zwitterionic conformers of pyrrolysine with Cu+2 through their carboxylate groups. The interaction enthalpies and Gibbs energies, rotational constants, vibrational frequencies and dipole moments of the metal complexes calculated at B3LYP level are also reported. The zwitterionic conformers of pyrrolysine are not stable in gas phase; after geometry optimization they are converted to the non-ionic forms.  相似文献   

3.
To investigate the structural function of the C-terminal amide group of endomorphin-2 (EM2, H-Tyr-Pro-Phe-Phe-NH(2)), an endogenous micro-opioid receptor ligand, the solution conformations of EM2 and its C-terminal free acid (EM2OH, H-Tyr-Pro-Phe-Phe-OH) in TFE (trifluoroethanol), water (pH 2.7 and 5.2), and aqueous DPC (dodecylphosphocholine) micelles (pH 3.5 and 5.2) were investigated by the combination of 2D (1)H-NMR measurement and molecular modelling calculation. Both peptides were in equilibrium between the cis and trans rotamers around the Tyr--Pro w bond with population ratios of 1 : 1 to 1 : 2 in dimethyl sulfoxide, TFE and water, whereas they predominantly took the trans rotamer in DPC micelle, except in EM2OH at pH 5.2, which had a trans/cis rotamer ratio of 2 : 1. Fifty possible 3D conformers were generated for each peptide, taking different electronic states depending on the type of solvent and pH (neutral and monocationic forms for EM2, and zwitterionic and monocation forms for EM2OH) by the dynamical simulated annealing method, under the proton-proton distance constraints derived from the ROE cross-peak intensities. These conformers were then roughly classified into four groups of two open [reverse S (rS)- and numerical 7 (n7)-type] and two folded (F1- and F2-type) conformers according to the conformational pattern of the backbone structure. Most EM2 conformers in neutral (in TFE) and monocationic (in water and DPC micelles) forms adopted the open structure (mixture of major rS-type and minor n7-type conformers) despite the trans/cis rotamer form. On the other hand, the zwitterionic EM2OH in TFE, water and DPC micelles showed an increased population of F1- and F2-type folded conformers, the population of which varied depending on their electronic state and pH. Most of these folded conformers took an F1-type structure similar to that stabilized by an intramolecular hydrogen bond of (Tyr1)NH(3) (+)...COO(-)(Phe4), observed in its crystal structure. These results show that the substitution of a carboxyl group for the C-terminal amide group makes the peptide structure more flexible and leads to the ensemble of folded and open conformers. The conformational requirement of EM2 for binding to the micro-opioid receptor and the structural function of the C-terminal amide group are discussed on the basis of the present conformational features of EM2 and EM2OH and a possible model for binding to the micro-opioid receptor, constructed from the template structure of rhodopsin.  相似文献   

4.
We synthesized all eight possible A-ring diastereomers of 2-methyl substituted analogs of 1alpha,25-dihydroxyvitamin D3 [1alpha,25(OH)2D3] and also all eight A-ring diastereomers of 2-methyl-20-epi-1alpha,25(OH)2D3. Their biological activities, especially the antagonistic effect on non-genomic pathway-mediated responses induced by 1alpha,25(OH)2D3 or its 6-s-cis-conformer analog, 1alpha,25(OH)2-lumisterol3, were assessed using an NB4 cell differentiation system. Antagonistic activity was observed for the 1beta-hydroxyl diastereomers, including 2beta-methyl-1beta,25(OH)2D3 and 2beta-methyl-3-epi-1beta,25(OH)2D3. Very interestingly, 2beta-methyl-3-epi-1alpha,25(OH)2D3 also antagonized the non-genomic pathway, despite its 1alpha-hydroxyl group. Other 1alpha-hydroxyl diastereomers did not show antagonistic activity. 20-epimerization diminished the antagonistic effect of all of these analogs on the non-genomic pathway. These findings suggested that the combination of the 2-methyl substitution of the A-ring and 20-epimerization of the side chain could alter the biological activities in terms of antagonism of non-genomic pathway-mediated biological response. Based on a previous report, 2-methyl substitution alters the equilibrium of the A-ring conformation between the alpha- and beta-chair conformers. The 2beta-methyl diastereomers, which exhibited antagonism on non-genomic pathway-mediated response, were considered to prefer the beta-conformer. Further examination to elucidate the relationship between the altered ligand shape and receptors interaction will be important for molecular level understanding of the mechanism of antagonism of the non-genomic pathway.  相似文献   

5.
This work shows that indigo's high stability can be attributed both to the large π conjugation inside the molecule and to intra- and intermolecular hydrogen bonds. The theoretical investigation of indigo's electronic structure has been performed using high-level methods. To understand the interactions in solid state, calculations of the dimer system with both molecules in the same plane was carried out. In the monomer, two intramolecular hydrogen bridges between amino and carbonyl groups occupy positions that would otherwise be the most reactive ones for nucleophilic and electrophilic attacks. In the dimer, amino and carbonyl groups on different monomers form intermolecular multicentred non-linear hydrogen bonds in six-member rings, protecting again the same reactive centres and explaining the limited solubility of indigo. The addition of the free radical OH breaks the central C = C double bond, the conjugation and the hydrogen bridges as a first step. The Gibbs energy calculation favours the addition of OH radical over C1.  相似文献   

6.
The conformational preferences and self-association modes of the two diastereomeric N-acetyl, methylamides of 3-hydroxy, 4-amino, 6-methylheptanoic acid (statine) with (R, S) and (S, S) configurations at the 3-hydroxy and 4-amino carbons, respectively, have been determined in solution as well as in the solid state by infrared absorption, 1H nuclear magnetic resonance, and X-ray diffraction. Conformational energy computations have also been performed in parallel. In the crystal state, the change in chirality of the hydroxyl group induces different intermolecular H-bonding schemes in the (R, S) isomer compared to the two structurally distinct molecules in the asymmetric unit of the (S, S) isomer. Different propensities to self-aggregate are seen in solvents of low polarity. In solvents of high polarity, however, the molecules of both isomers are largely solvated, while still keeping some local conformational restriction. Conformational energy computations indicate that in vacuo the two diastereomers exhibit different flexibility, and a preferred conformation with a different type of intramolecular H-bond.  相似文献   

7.
C Wolff  C S Lai 《Biochemistry》1988,27(9):3483-3487
A fluorescence energy transfer technique has been used to study the intramolecular distance between the two amino termini of human plasma fibronectin. The glutamine-3 residue near the amino terminus of each chain was labeled enzymatically with either monodansylcadaverine or monofluoresceinylcadaverine by use of coagulation factor XIIIa. The nonradiative fluorescence energy transfer between the dansyl (donor) and fluorescein (acceptor) pair in the same protein molecule was determined from steady-state fluorescence measurements. On the basis of the transfer efficiency of 78%, the intramolecular distance between two glutamine-3 residues of fibronectin was estimated to be approximately 23 A, suggesting that the two amino termini of plasma fibronectin are in close proximity. High salt, which affects the hydrodynamic properties of the protein, has no effect on the measured distance. The results support the contention that both compact (in low salt) and expanded (in high salt) conformers of fibronectin are relatively spherical in shape.  相似文献   

8.
9.
Vibrational circular dichroism (VCD) spectroscopy was used to investigate the solution conformations of cyclosporins A, C, D, G, and H in CDCl(3), in the amide I and NH/OH-stretching regions, and their corresponding magnesium complexes in CD(3)CN, in the amide I region. VCD spectra are sensitive to the chiral arrangement of Cdbond;O and NH bonds in this cyclic undecapeptide. Calculations of molecular geometries, as well as IR and VCD intensities of model cyclosporin fragments that include the intramolecular hydrogen bonds of the crystal conformations of cyclosporins A and H (CsA and CsH), were carried out at the density functional theory (DFT; BPW91 functional/6-31G* basis set) level. The good agreement between IR and VCD spectra from experiment and DFT calculations provides evidence that the crystal conformation of CsA is dominant in CDCl(3) solution; CsH, however, assumes both an intramolecularly hydrogen-bonded crystal conformation and more open forms in solution. Comparisons of the experimental and calculated VCD spectra in the NH/OH-stretching region of the noncomplexed cyclosporins indicate that conformers with both free and hydrogen-bonded NH and OH groups are present in solution. Differences between the IR and VCD spectra for the metal-free and magnesium-complexed cyclosporins are indicative of strong interactions between cyclosporins and magnesium ions.  相似文献   

10.
The mechanism, kinetics and thermochemistry of the gas-phase reactions between CHF(2)OCHF(2) (HFE-134) and OH radical are investigated using the high level ab initio G2(MP2) and hybrid density functional model MPWB1K quantum chemical methods. Two relatively close in energy conformers are found for CHF(2)OCHF(2) molecule; both of them are likely to be important in the temperature range (250-1000?K) of our study. The hydrogen abstraction pathway for both the conformers with OH radical is studied and the rate constants are determined for the first time in a wide temperature range of 250 - 1000?K. The G2(MP2) calculated total rate constant value of 2.9?×?10(-15)?cm(3)?molecule(-1)?s(-1) at 298?K is found to be in very good agreement with the reported experimental value of 2.4?×?10(-15)?cm(3)?molecule(-1)?s(-1) at 298?K. The heats of reaction for CHF(2)OCHF(2)?+?OH reaction is computed to be -13.2?kcal?mol(-1). The atmospheric lifetime of CHF(2)OCHF(2) is expected to be around 12?years.  相似文献   

11.
B3LYP/6-31G(d,p) level of theory is used to carry out a detailed gas phase conformational analysis of non-ionized (neutral) pyrrolysine molecule about its nine internal back-bone torsional angles. A total of 13 minima are detected from potential energy surface exploration corresponding to the nine internal back-bone torsional angles. These minima are then subjected to full geometry optimization and vibrational frequency calculations at B3LYP/6-31++G(d,p) level. Characteristic intramolecular hydrogen bonds present in each conformer, their relative energies, theoretically predicted vibrational spectra, rotational constants and dipole moments are systematically reported. Single point calculations are carried out at B3LYP/6-311++G(d,p) and MP2/6-31++G(d,p) levels. Six types of intramolecular H-bonds, viz. O…H–O, N…H-O, O…H–N, N…H–N, O…H–C and N…H–C, are found to exist in the pyrrolysine conformers; all of which contribute to the stability of the conformers. The vibrational frequencies are found to shift invariably toward the lower side of frequency scale corresponding to the presence of intramolecular H-bond interactions in the conformers.  相似文献   

12.
In the present work, we carried out a conformational analysis of cis-3-aminoindan-1-ol and evaluated the role of the intramolecular hydrogen bond in the stabilization of various conformers using quantum mechanical DFT (B3LYP) and MP2 methods. On the basis of relative energies, we have found nine conformational minima, which can interchange through the ring-puckering and the internal rotation of the OH and NH2 groups on the five-membered ring. The intramolecular hydrogen bonds such as OH????π, NH????π, NH????OH and HN????HO are expected to be of critical importance for the conformational stabilities. The intramolecular interactions of the minima have been analyzed by calculation of electron density (ρ) and Laplacian (ρ) at the bond critical points (BCPs) using atoms-in-molecule (AIM) theory. The existence or absence of OH????π and NH????π in cis-3-aminoindan-1-ol remains unclear since the geometrical investigation has not been confirmed by topological criteria. The results of theoretical calculations demonstrate that this compound exists predominantly in one ring-puckering form stabilized by strong hydrogen bond HN????HO Interaction.  相似文献   

13.
Demir O  Doğan I 《Chirality》2003,15(3):242-250
The thermally interconvertible diastereomers of the (5S)-methyl-3-(o-aryl)-2,4-oxazolidinediones were synthesized and their conformers studied by (1)H NMR and HPLC. The barriers to rotation about the N-C(aryl) bond were found to be very much solvent dependent. For the o-fluoro oxazolidinedione, difference in barriers to rotation in deuterated methanol and deuterated chloroform amounted to 34 kJ/mol. ortho-Bromo substitution increased the barrier to rotation up to 100 kJ/mol in ethanol, which enabled the analytical separation of the diastereomers and observation of the thermodynamic enrichment of the S-P conformer by HPLC. In CDCl(3) by (1)H NMR, on the other hand, a barrier of only 89 kJ/mol was determined. The S-M and S-P conformers of the diastereomers of o-methyl, alpha-naphthyl and o-iodo derivatives have been assigned by NOESY experiments and the kinetic and thermodynamic constants for the interconversion between the S-M and S-P conformers were determined.  相似文献   

14.
Vincent Madison 《Biopolymers》1977,16(12):2671-2692
A survey of over 50 crystal structures indicates that both imino acid and peptide derivatives of proline populate ring conformers consistent with the torsional potentials about single bonds. In both cases, lower barriers for rotation about C? N bonds relative to those about C? C bonds favor smaller values for dihedral angles about the former bonds. In peptides a minimum in the torsional potential about C? N bonds occurs at zero dihedral angle, further favoring small angles. The pyrrolidine-ring dihedral angles of the proline compounds in the solid state obey a cyclopentane-type pseudorotation function. Thus the puckering of the five-membered ring can be quantitatively described by two parameters. Consistent with small dihedral angles about C? N bonds, Cβ and/or Cγ are puckered out of the mean plane of the ring in nearly all of the nonstrained compounds. Utilizing the consistent force-field method of Lifson and coworkers [see A. Warshel, M. Levitt, and S. Lifson (1970) J. Mol. Spectrosc. 33 , 84] the intramolecular energy of five proline peptides was minimized with respect to all internal coordinates. In addition, the energy surface near minima was explored by constraining a particular dihedral angle and reminimizing the energy with respect to all remaining variables. In linear peptides two types of pyrrolidine-ring conformers have identical predicted energies. In the cyclic dipeptide cyclo (Pro-Gly) one of the ring conformers is favored by about 3 kcal/mol, while the cyclic tripeptide cyclo(Pro-Gly-Gly) favors the other conformer by a comparable margin. In agreement with observations in the solid state and in solution, Cβ and/or Cγ are puckered in the predicted conformers. A correlation between proline Φ and the details of the puckered conformation was predicted and found to match precisely conformers observed in crystals. For the diamides N-acetyl-L -proline-N′-methyl-amide and N-acetyl-L -proline-N′,N′-dimethylamide (AcProMe2A) 30% and 60% cis acetyl peptide bonds were predicted in good agreement with observations in nonpolar solvents for the respective compounds. The conformational distributions with respect to proline Ψ are also in accord with experimental observations. For AcProMe2A, a model for a -Pro-Pro-sequence in a peptide chain, this study is the first to predict stable conformers for proline Ψ either ca. ?50° or 140° for both cis and trans peptides.  相似文献   

15.
A series of covalently bound peptide-protoporphyrin-peptide compounds, also carrying naphthalene (N) to allow a photophysical investigation, were synthesized. Their general formula is P(nN)(2), where P refers to protoporphyrin IX, and n to the number of amino acids in the sequence Boc-Leu-Leu-Lys-(Ala)(x) -Leu-Leu-Lys-OtBu of each backbone chain (x = 0-3; n = x + 6). Their structural features in methanol solution were investigated by ir and CD spectra, and by steady-state and time resolved fluorescence experiments as well. The ir spectra indicate that intramolecularly H-bonded conformations form, and CD data in both methanol and water-methanol mixture suggest the presence of alpha-helix structure. Quenching of excited naphthalene takes place by electronic energy transfer from singlet N* to P ground state. Fluorescence decays coupled with molecular mechanics calculations indicate that two conformers for each dimeric peptide are the major contributors to the observed phenomena. These conformers are characterized by a globular, protein-like structure, where the protoporphyrin resides in a central pocket, while the two N groups are externally situated. Of the four N linkages in the two conformers, three of them attain a very similar steric arrangement around the central P molecule, in terms of both center-to-center distance and mutual orientation, while the fourth experiences a different steric disposition as compared to the others. Experimental photophysical parameters satisfactorily compare with those obtained by theoretical calculations, within the F?rster mechanism for long-range energy transfer, only when the mutual orientation of the chromophores was also taken into account. This implies that interconversion among conformational substates of probes linkages is slow on the time scale of the energy transfer process.  相似文献   

16.
The dynamics of the elementary electron transfer step between pheophytin and primary ubiquinone in bacterial photosynthetic reaction centers is investigated by using a discrete state approach, including only the intramolecular normal modes of vibration of the two redox partners. The whole set of normal coordinates of the acceptor and donor groups have been employed in the computations of the Hamiltonian matrix, to reliably account both for shifts and mixing of the normal coordinates, and for changes in vibrational frequencies upon ET. It is shown that intramolecular modes provide not only a discrete set of states more strongly coupled to the initial state but also a quasicontinuum of weakly coupled states, which account for the spreading of the wave packet after ET. The computed transition probabilities are sufficiently high for asserting that electron transfer from bacteriopheophytin to the primary quinone can occur via tunneling solely promoted by intramolecular modes; the transition times, computed for different values of the electronic energy difference and coupling term, are of the same order of magnitude (10(2) ps) of the observed one.  相似文献   

17.
18.
19.
The highly selective I1-PBS imidazoline analogue PMS 952 has been selected to study the incidence of intramolecular hydrogen bond and molecular flexibility on its biological activity. On one hand, the weak energy difference between three calculated conformers does not support the stabilization of one conformer by an internal hydrogen bond. The 3-D electrostatic map confirms this feature and the solvent effect does not significantly modify the relative energy of these conformers. On the other hand, the conformational spaces of the neutral and ionized forms present a great number of equilibrium structures, in a short energetic range (20 Kcal). The results are representative of an exceptional conformational flexibility due to a cooperative effect between several parts of the molecule.  相似文献   

20.
This work presents an investigation on the conformational preferences of α,α-trehalose in gas phase and aqueous solution. Eighty-one systematically selected structures were studied at the B3LYP/6-311++G(d,p)//B3LYP/6-31G(d) level, giving rise to 40 unique conformers. The 19 lower energy structures and some selected other were further re-optimized at the B3LYP/6-311++G(d,p) level. The main factors accounting for the conformer’s stability were pointed out and discussed. NBO and QTAIM analyses were performed in some selected conformers in order to address the anomeric and exo-anomeric effects as well as intramolecular hydrogen bonding. The effect of solvent water on the relative stability of the conformers was accounted for by applying the conductor-like polarizable continuum model, CPCM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号