共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Flerchinger Gerald N. Fellows Aaron W. Seyfried Mark S. Clark Patrick E. Lohse Kathleen A. 《Ecosystems》2020,23(2):246-263
Ecosystems - Differences in water and carbon fluxes along a climate/elevation gradient within a sagebrush ecosystem are quantified, and inferences are made about climate warming using a network of... 相似文献
3.
Global warming and land-use change could have profound impacts on ecosystem carbon (C) fluxes, with consequent changes in C sequestration and its feedback to climate change. However, it is not well understood how net ecosystem C exchange (NEE) and its components respond to warming and mowing in tallgrass prairie. We conducted two warming experiments, one long term with a 1.7°C increase in a C4-dominated grassland (Experiment 1), and one short term with a 2.8°C increase in a C3-dominated grassland (Experiment 2), to investigate main and interactive effects of warming and clipping on ecosystem C fluxes in the Great Plains of North America during 2009–2011. An infrared radiator was used to simulate climate warming and clipping once a year mimicked mowing in both experiments. The results showed that warming significantly increased ecosystem respiration (ER), slightly increased GPP, with the net outcome (NEE) being little changed in Experiment 1. In contrast, warming significantly suppressed GPP and ER in both years, with the net outcome being enhanced in NEE (more C sequestration) in 2009–2010 in Experiment 2. The C4-dominated grassland showed a much higher optimum temperature for C fluxes than the C3-dominated grassland, which may partly contribute to the different warming effects in the two experiments. Clipping significantly enhanced GPP, ER, and NEE in both experiments but did not significantly interact with warming in impacting C fluxes in either experiment. The warming-induced changes in ecosystem C fluxes correlated significantly with C4 biomass proportion but not with warming-induced changes in either soil temperature or soil moisture across the plots in the experiments. Our results demonstrate that carbon fluxes in the tallgrass prairie are highly sensitive to climate warming and clipping, and C3/C4 plant functional types may be important factor in determining ecosystem response to climate change. 相似文献
4.
1981—2000年中国陆地生态系统碳通量的年际变化 总被引:26,自引:0,他引:26
应用一个生物地球化学模型(CEVSA)估算了中国陆地净初级生产力(NPP)、土壤异养呼吸(HR)和净生态系统生产力(NEP)在1981—1998年期间对气候和大气CO2浓度变化的动态响应。结果显示,全国NPP总量波动于2.89—3.37Gt/a之间,平均值为3.09Gt C/a,年平均增长趋势约为0.32%。HR总量变化范围为2.89—3.21Gt C/a,平均值为3.02Gt C/a,年均增长0.40%。NEP总量变动于-0.32和0.25Gt C/a之间,在统计上没有明显的年际变化趋势。在研究时段内,年平均NEP约为0.07Gt C/a,表明中国陆地生态系统在气候与大气CO2浓度变化的条件下吸收了碳,为碳汇,总的吸收量为1.22Gt C,约占全球碳吸收总量的10%,与同期内美国由大气CO2和气候变化所产生的碳吸收量大致相当。尽管由于较高的年际变率,NEP在统计上没有明显的变化趋势,但NPP的增长率低于HR的增长率,说明在研究时段内,中国陆地生态系统的吸碳能力由于气候变化降低了。全国大多数地区年平均NEP接近零,明显的NEP正值区(即碳汇)出现在东北平原、西藏东南部和黄淮平原等地区,而大小兴安岭、黄土高原和云贵高原等地区NEP为负值(即碳源)。研究认为,1981~1998年期间中国气候温暖、干旱,因此估算的NEP可能低于其他时段。如果气候进入一个比较湿润的时期,碳吸收量可显著增加,但若当前干旱和暖化趋势以此为继,中国的NEP可能会变成一个负值。 相似文献
5.
1981~2000年中国陆地生态系统碳通量的年际变化 总被引:1,自引:0,他引:1
应用一个生物地球化学模型(CEVSA)估算了中国陆地净初级生产力 (NPP)、土壤异养呼吸(HR)和净生态系统生产力 (NEP) 在1981~1998年期间对气候和大气CO2浓度变化的动态响应.结果显示,全国NPP总量波动于2.89~3.37 Gt C/a之间,平均值为3.09 Gt C/a,年平均增长趋势约为0.32%.HR总量变化范围为2.89~3.21 Gt C/a,平均值为3.02 Gt C/a, 年均增长0.40%.NEP总量变动于 -0.32和0.25 Gt C/a之间,在统计上没有明显的年际变化趋势.在研究时段内,年平均NEP约为0.07 Gt C/a,表明中国陆地生态系统在气候与大气CO2浓度变化的条件下吸收了碳,为碳汇,总的吸收量为1.22 Gt C,约占全球碳吸收总量的10%,与同期内美国由大气CO2和气候变化所产生的碳吸收量大致相当.尽管由于较高的年际变率,NEP在统计上没有明显的变化趋势,但NPP的增长率低于HR的增长率,说明在研究时段内,中国陆地生态系统的吸碳能力由于气候变化降低了.全国大多数地区年平均NEP接近零,明显的NEP正值区(即碳汇)出现在东北平原、西藏东南部和黄淮平原等地区,而大小兴安岭、黄土高原和云贵高原等地区NEP为负值(即碳源).研究认为,1981~1998年期间中国气候温暖、干旱,因此估算的NEP可能低于其他时段.如果气候进入一个比较湿润的时期,碳吸收量可显著增加,但若当前干旱和暖化趋势以此为继,中国的NEP可能会变成一个负值. 相似文献
6.
Lauren E. Bortolotti Vincent L. St. Louis Rolf D. Vinebrooke Alexander P. Wolfe 《Ecosystems》2016,19(3):411-425
In central North America, prairie wetlands provide many important ecosystem services including attenuating floods, improving water quality, and supporting biodiversity. However, over half of these wetlands have been drained for agriculture. Relatively little is known about the functioning of these ecosystems either in their natural state or restored after drainage. We characterized net ecosystem production and carbon greenhouse gas (GHG) fluxes (carbon dioxide [CO2] and methane) in the open-water zones of three prairie wetlands over two ice-free seasons. These wetlands included a natural site and sites restored 3 and 14 years prior to study (hereafter “recently restored” and “older restored”). We also assessed how two techniques for estimating metabolic status, the diel oxygen method (used to measure NEP) and net CO2 fluxes, compared. The diel oxygen method suggested that the restored wetlands were net heterotrophic across years, whereas the natural wetland was net heterotrophic in 1 year and net autotrophic in the other. Similar conclusions arose from quantifying net CO2 fluxes, although this technique proved to be relatively insensitive for understanding metabolic status at a daily temporal scale owing to the influence of geochemical processes on CO2 concentrations. GHG efflux was greatest from the recently restored wetland, followed by the older restored and natural wetlands. Overall, GHG flux rates were high and variable compared with other inland aquatic ecosystems. Although restoration may progressively return wetland functioning to near-natural states, our results highlight the necessity of preventing wetland drainage in the first place to preserve ecosystem functions and services. 相似文献
7.
Precipitation Pattern Determines the Inter-annual Variation of Herbaceous Layer and Carbon Fluxes in a Phreatophyte-Dominated Desert Ecosystem 总被引:1,自引:0,他引:1
Arid and semi-arid ecosystems dominated by shrubby species are an important component in the global carbon cycle but are largely under-represented in studies of the effect of climate change on carbon flux. This study synthesizes data from long-term eddy covariance measurements and experiments to assess how changes in ecosystem composition, driven by precipitation patterns, affect inter-annual variability of carbon flux and their components in a halophyte desert community dominated by deep-rooted shrubs (phreatophytes, which depend on groundwater as their primary water source). Our results demonstrated that the carbon balance of this community responded strongly to precipitation variations. Both pre-growing season precipitation and growing season precipitation frequency significantly affected inter-annual variations in ecosystem carbon flux. Heavy pre-growing season precipitation (November–April, mostly as snow) increased annual net ecosystem carbon exchange, by facilitating the growth and carbon assimilation of shallow-rooted annual plants, which used spring and summer precipitation to increase community productivity. Sufficient pre-growing season precipitation led to more germination and growth of shallow-rooted annual plants. When followed by high-frequency growing season precipitation, community productivity of this desert ecosystem was lifted to the level of grassland or forest ecosystems. The long-term observations and experimental results confirmed that precipitation patterns and the herbaceous component were dominant drivers of the carbon dynamics in this phreatophyte-dominated desert ecosystem. This study illustrates the importance of inter-annual variations in climate and ecosystem composition for the carbon flux in arid and semi-arid ecosystems. It also highlights the important effect of changing frequency and seasonal pattern of precipitation on the regional and global carbon cycle in the coming decades. 相似文献
8.
9.
10.
Susanne Wiesner Christina L. Staudhammer Henry W. Loescher Andres Baron-Lopez Lindsay R. Boring Robert J. Mitchell Gregory Starr 《Ecosystems》2018,21(8):1639-1658
Globally, soil CO2 efflux rates (Fs) have been linked to changes in soil water content (SWC), rainfall and temperature and/or productivity. However, within an ecosystem, Fs can vary based on site structure and function, which can be affected by a combination of abiotic and biotic factors. This becomes particularly important when an ecosystem is faced with disturbances, such as drought or fire. Site-specific compensatory responses to disturbances may therefore alter C mineralization, as well as root respiration. Hence, single location Fs estimates may not be a representative for ecosystems across their distributional ranges. We conducted a 6-year study along an edaphic moisture gradient of longleaf pine ecosystems that were maintained with prescribed fire, using eddy covariance and soil respiration measurements to address how Fs varies with changes in ecosystem structure and function, as well as disturbances. Lower air temperatures (Tair) decreased Fs at all sites, but that response was also affected by productivity and SWC. Productivity significantly altered Fs rates at all sites, especially when we accounted for changes in temperature and SWC. Plant regrowth post-fire temporarily increased Fs (10–40%), whereas drought reduced Fs at all sites. Our results show that site productivity, Fs and the degree to which ecosystems adapt to climate variations and disturbance can be site specific. Hence, model forecasting of carbon dynamics would strongly benefit from multi-location measurements of Fs across the distributional range of an ecosystem. 相似文献
11.
When a Tree Dies in the Forest: Scaling Climate-Driven Tree Mortality to Ecosystem Water and Carbon Fluxes 总被引:1,自引:0,他引:1
William R. L. Anderegg Jordi Martinez-Vilalta Maxime Cailleret Jesus Julio Camarero Brent E. Ewers David Galbraith Arthur Gessler Rüdiger Grote Cho-ying Huang Shaun R. Levick Thomas L. Powell Lucy Rowland Raúl Sánchez-Salguero Volodymyr Trotsiuk 《Ecosystems》2016,19(6):1133-1147
Drought- and heat-driven tree mortality, along with associated insect outbreaks, have been observed globally in recent decades and are expected to increase in future climates. Despite its potential to profoundly alter ecosystem carbon and water cycles, how tree mortality scales up to ecosystem functions and fluxes is uncertain. We describe a framework for this scaling where the effects of mortality are a function of the mortality attributes, such as spatial clustering and functional role of the trees killed, and ecosystem properties, such as productivity and diversity. We draw upon remote-sensing data and ecosystem flux data to illustrate this framework and place climate-driven tree mortality in the context of other major disturbances. We find that emerging evidence suggests that climate-driven tree mortality impacts may be relatively small and recovery times are remarkably fast (~4 years for net ecosystem production). We review the key processes in ecosystem models necessary to simulate the effects of mortality on ecosystem fluxes and highlight key research gaps in modeling. Overall, our results highlight the key axes of variation needed for better monitoring and modeling of the impacts of tree mortality and provide a foundation for including climate-driven tree mortality in a disturbance framework. 相似文献
12.
Impact of Atmospheric Nitrogen Deposition on Carbon Dynamics in Two Scots Pine Forest Soils of Northern Germany 总被引:1,自引:0,他引:1
The impact of atmospheric N deposition on the dynamics of various carbon fractions was investigated in two Scots pine forest
soils (cambisol, podzol) of Northern Germany in microcosm experiments. Total organic carbon (TOC), CO2 emission, microbial carbon (Cmic) as well as organic hot- and coldwater extractable carbon fractions (Chwe, Ccwe) were analyzed before, during, and after soil incubation in microcosms, run in three treatments: 0, +45, and +90 kg N ha−1a−1. On both sites, the N treatment showed no response to total organic carbon (TOC) contents in most of the investigated soil
layers. Microbial carbon (Cmic) was significantly increased in the organic layer of both soil types by the N application. Subsequent to the N application,
the CO2 emission increased in all mineral soil layers of the cambisol but remained almost unaffected in the podzol. After the N application,
a remarkable increase of hotwater extractable C (Chwe) was detected for the organic layer of the cambisol but not for the podzol, whereas coldwater extractable C (Ccwe) concentrations decreased at both sites. The N application did not have a significant impact on the leachate concentrations
of total organic carbon (TOC), dissolved organic carbon (DOC), and particulate organic carbon (POC) in the podzol, whereas
the concentrations of these C fractions were decreased in the organic layer and the 35–70~cm mineral soil layer of the cambisol.
The N treatment changed the contents of most of the investigated C fractions in both soil types and resulted in a considerable
C~mobilization. But the processes of the C~mobilization between the cambisol and the podzol were completely different. According
to the presented data, the cambisol obtaining moderate atmospheric N loads is much more sensitive to additional N inputs than
the podzol that already received high amounts of atmospheric N. 相似文献
13.
We used five analytical approaches to compare net ecosystem exchange (NEE) of carbon dioxide (CO2) from automated and manual static chambers in a peatland, and found the methods comparable. Once per week we sampled manually from 10 collars with a closed chamber system using a LiCor 6200 portable photosynthesis system, and simulated four photosynthetically active radiation (PAR) levels using shrouds. Ten automated chambers sampled CO2 flux every 3 h with a LiCor 6252 infrared gas analyzer. Results of the five comparisons showed (1) NEE measurements made from May to August, 2001 by the manual and automated chambers had similar ranges: −10.8 to 12.7 μmol CO2 m−2 s−1 and −17.2 to 13.1 μmol CO2 m−2 s−1, respectively. (2) When sorted into four PAR regimes and adjusted for temperature (respiration was measured under different temperature regimes), mean NEE did not differ significantly between the chambers (p < 0.05). (3) Chambers were not significantly different in regression of ln( − respiration) on temperature. (4) But differences were found in the PAR vs. NEE relationship with manual chambers providing higher maximum gross photosynthesis estimates (GPmax), and slower uptake of CO2 at low PAR (α) even after temperature adjustment. (5) Due to the high variability in chamber characteristics, we developed an equation that includes foliar biomass, water table, temperature, and PAR, to more directly compare automated and manual NEE. Comparing fitted parameters did not identify new differences between the chambers. These complementary chamber techniques offer a unique opportunity to assess the variability and uncertainty in CO2 flux measurements. 相似文献
14.
Amber J. Ulseth Enrico Bertuzzo Gabriel A. Singer Jakob Schelker Tom J. Battin 《Ecosystems》2018,21(2):373-390
Although stream ecosystems are recognized as an important component of the global carbon cycle, the impacts of climate-induced hydrological extremes on carbon fluxes in stream networks remain unclear. Using continuous measurements of ecosystem metabolism, we report on the effects of changes in snowmelt hydrology during the anomalously warm winter 2013/2014 on gross primary production (GPP), ecosystem respiration (ER), and net ecosystem production (NEP) in an Alpine stream network. We estimated ecosystem metabolism across 12 study reaches of the 254 km2 subalpine Ybbs River Network (YRN), Austria, for 18 months. During spring snowmelt, GPP peaked in 10 of our 12 study reaches, which appeared to be driven by PAR and catchment area. In contrast, the winter precipitation shift from snow to rain following the low-snow winter in 2013/2014 increased spring ER in upper elevation catchments, causing spring NEP to shift from autotrophy to heterotrophy. Our findings suggest that the YRN transitioned from a transient sink to a source of carbon dioxide (CO2) in spring as snowmelt hydrology differed following the high-snow versus low-snow winter. This shift toward increased heterotrophy during spring snowmelt following a warm winter has potential consequences for annual ecosystem metabolism, as spring GPP contributed on average 33% to annual GPP fluxes compared to spring ER, which averaged 21% of annual ER fluxes. We propose that Alpine headwaters will emit more within-stream respiratory CO2 to the atmosphere while providing less autochthonous organic energy to downstream ecosystems as the climate gets warmer. 相似文献
15.
Half of the world''s forest is in boreal and sub-boreal ecozones, containing large carbon stores and fluxes. Carbon lost from headwater streams in these forests is underestimated. We apply a simple stable carbon isotope idea for quantifying the CO2 loss from these small streams; it is based only on in-stream samples and integrates over a significant distance upstream. We demonstrate that conventional methods of determining CO2 loss from streams necessarily underestimate the CO2 loss with results from two catchments. Dissolved carbon export from headwater catchments is similar to CO2 loss from stream surfaces. Most of the CO2 originating in high CO2 groundwaters has been lost before typical in-stream sampling occurs. In the Harp Lake catchment in Canada, headwater streams account for 10% of catchment net CO2 uptake. In the Krycklan catchment in Sweden, this more than doubles the CO2 loss from the catchment. Thus, even when corrected for aquatic CO2 loss measured by conventional methods, boreal and sub-boreal forest carbon budgets currently overestimate carbon sequestration on the landscape. 相似文献
16.
In all terrestrial ecosystems, testate amoebae (TA) encounter fungi. There are strong indications that both groups engage
in multiple interactions, including mycophagy and decomposition of TA shells, processes which might be fundamental in nutrient
cycling in certain ecosystems. Here, we present the results of an experiment focusing on interactions between TA and saprotrophic
microfungi colonizing Scots pine (Pinus sylvestris L.) litter needles. The needles were collected from a temperate pine forest and cultivated in damp chambers. Over a few weeks,
melanized mycelium of Anavirga laxa Sutton started to grow out of some needles; simultaneously, the common forest-soil TA Phryganella acropodia (Hertwig and Lesser) Hopkinson reproduced and spread around the mycelium. We investigated whether a potential relationship
between TA and saprotrophic microfungi exists by comparing the composition of TA communities on and around the needles and
testing the spatial relationship between the A. laxa mycelium and P. acropodia shells in the experimental microcosm. Additionally, we asked whether P. acropodia utilized the A. laxa mycelium as a nutrient source and screened whether P. acropodia shells were colonized by the microfungi inhabiting the experimental microcosm. Our results indicate that saprotrophic microfungi
may affect the composition of TA communities and their mycelium may affect distribution of TA individuals in pine litter.
Our observations suggest that P. acropodia did not graze directly on A. laxa mycelium, but rather fed on its exudates or bacteria associated with the exudates. The fungus Pochonia bulbillosa (Gams & Malla) Zare & Gams was often found parasitising encysted shells or decomposing already dead individuals of P. acropodia. TA and pine litter microfungi engage in various direct and indirect interactions which are still poorly understood and deserve
further investigation. Their elucidation will improve our knowledge on fundamental processes influencing coexistence of soil
microflora and microfauna. 相似文献
17.
Albert Vilà-Cabrera Jordi Martínez-Vilalta Lucía Galiano Javier Retana 《Ecosystems》2013,16(2):323-335
To predict future changes in forest ecosystems, it is crucial to understand the complex processes involved in decline of tree species populations and to evaluate the implications for potential vegetation shifts. Here, we study patterns of decline (canopy defoliation and mortality of adults) of four Scots pine populations at the southern edge of its distribution and characterized by different combinations of climate dryness and intensity of past management. General linear and structural equation modeling were used to assess how biotic, abiotic, and management components interacted to explain the spatial variability of Scots pine decline across and within populations. Regeneration patterns of Scots pine and co-occurring oak species were analyzed to assess potential vegetation shifts. Decline trends were related to climatic dryness at the regional scale, but, ultimately, within-population forest structure, local site conditions, and past human legacies could be the main underlying drivers of Scots pine decline. Overall, Scots pine regeneration was negatively related to decline both within and between populations, whereas oak species responded to decline idiosyncratically across populations. Taken together, our results suggest that (1) patterns of decline are the result of processes acting at the plot level that modulate forest responses to local environmental stress and (2) decline of adult Scots pine trees seems not to be compensated by self-recruitment so that the future dynamics of these forest ecosystems are uncertain. 相似文献
18.
Element Fluxes and Landscape Position in a Northern Hardwood Forest Watershed Ecosystem 总被引:8,自引:3,他引:5
Chemical changes along headwater streams at the Hubbard Brook Experimental Forest in New Hampshire suggest that important
differences exist in biogeochemical cycles along an altitudinal gradient within small watershed ecosystems. Using data collected
during the period 1982–92, we have constructed element budgets [Ca, Mg, K, Na, Si, Al, dissolved organic carbon (DOC), S,
and N] for three subcatchments within watershed 6, a forested watershed last logged around 1917–20. The biogeochemistry of
the high-elevation spruce-fir–white birch subcatchment was dominated by processes involving naturally occuring organic compounds.
Stream water and soil solutions in this zone had elevated concentrations of organic acidity, DOC, and organically bound monomeric
aluminum (Alo), relative to lower-elevation sites. The middle-elevation subcatchment, dominated by hardwood vegetation, had the greatest
net production of inorganic-monomeric aluminum (Ali), and exhibited net immobilization of DOC and Alo. The low-elevation subcatchment, also characterized by deciduous vegetation, had the highest rates of net production of base
cations (Ca2+, Mg2+, K+, Na+) among the subcatchments. Living biomass of trees declined slightly in the spruce-fir–white birch subcatchment during the
study period, remained constant in the middle-elevation zone, and increased by 5% in the low-elevation subcatchment. Coupling
the corresponding changes in biomass nutrient pools with the geochemical patterns, we observed up to 15-fold differences in
the net production of Ca, Mg, K, Na, and Si in soils of the three subcatchments within this 13.2-ha watershed. Release of
Ca, Na, and dissolved Si in the highest-elevation subcatchment could be explained by the congruent dissolution of 185 mol
ha−1 y−1 of plagioclase feldspar. The rate of plagioclase weathering, based on the net output of Na, increased downslope to 189 and
435 mol ha−1 y−1 in the middle-elevation and low-elevation subcatchments, respectively. However, the dissolution of feldspar in the hardwood
subcatchments could account for only 26%–37% of the observed net Ca output. The loss of Ca from soil exchange sites and organic
matter is the most likely source of the unexplained net export. Furthermore, this depletion appears to be occurring most rapidly
in the lower half of watershed 6. The small watersheds at the Hubbard Brook Experimental Forest occupy a soil catena in which
soil depth and soil-water contact time increase downslope. By influencing hydrologic flowpaths and acid neutralization processes,
these factors exert an important influence on biogeochemical fluxes within small watersheds, but their influence on forest
vigor is less clear. Our results illustrate the sensitivity of watershed-level studies to spatial scale. However, it appears
that much of the variation in element fluxes occurs in the first 10–20 ha of drainage area.
Received 13 August 1998; accepted 7 September 1999. 相似文献
19.
BACKGROUND AND AIMS: Distinguishing between, and quantifying, the different components of ecosystem C fluxes is critical in predicting the responses of ecosystem C cycling to climate change. The aims of this study were to quantify the photosynthetic and respiratory fluxes of a 50-year-old Scots pine (Pinus sylvestris) ecosystem, and to distinguish respiration of branches with needles from that of stems, and that of soil. METHODS: The CO2 flux of the ecosystem was continuously measured using the eddy covariance (EC) method, and its components (respiration and photosynthesis of a branch with needles, stem and soil surface) were measured with an automated chamber system, from 2001 to 2004. KEY RESULTS: All values below are chamber based. The average temperature coefficient (Q10) of respiration was 2.7, 2.2 and 4.0, respectively, for branch (Rbran), stem (Rstem) and the soil surface (Rsoil). Respiration at a reference temperature of 15 degrees C (R15) was 1.27, 0.49 and 4.02 micromol CO2 m(-2) ground s(-1) for the three components, respectively. Over 4 years, the annual Rbran, Rstem and Rsoil ranged from 196 to 256, 56 to 83 and 439 to 598 g C m(-2) ground year(-1), respectively, with a 4-year average of 227, 72 and 507 g C m(-2) ground year(-1). Annual ecosystem respiration (Reco) was 731, 783, 909 and 751 g C m(-2) ground year(-1) in years 2001-2004, respectively, gross primary production (GPP) was 922, 1030, 1138 and 1001 g C m(-2) ground year(-1), and net ecosystem production (NEP) was 191, 247, 229 and 251 g C m(-2) ground year(-1). The average contribution of Rbran, Rstem and Rsoil to Reco was 29, 9 and 62 %, respectively. Overstorey photosynthesis accounted for 96 % of GPP. The average Reco/GPP ratio was 0.78. Net primary production (NPP) in the 4 years was 469, 581, 600 and 551 g C m(-2) year(-1), respectively, with the NPP/GPP ratio 0.54 averaged over the years. CONCLUSIONS: Respiration from the soil is the dominant component of ecosystem respiration. Differences between years in Reco were due to differences in temperature during the growing season. Rsoil was more sensitive to temperature than Rbran and Rstem, and differences in Rsoil were responsible for the differences in Reco between years. 相似文献
20.
Localization and Activity of a Carboxypeptidase in Germinating Seeds of Scots Pine, Pinus sylvestris
Extracts prepared from the endosperm of germinating seeds of Scots pine, Pinus sylvestris L., hydrolysed two typical carboxypeptidase substrates, Z-Phe-Ala and Z-Phe-Phe, with pH optima at 4.2 and 5.0. The activities were completely destroyed by diisopropylfluorophosphate. Identical heat inactivation curves and elution patterns in gel chromatography on Sephadex G-200 suggest that the two activities are due to a single enzyme. In resting seeds very low carboxypeptidase activity was present in both the endosperm and the embryo. During germination on agar gel at 20°C in the dark the activities, expressed as enzyme units per seed, increased in the seedling and particularly in the endosperm up to the stage when the reserves of the endosperm were completely depleted. The time of rapid increase of activity in the endosperm did not coincide with the onset of storage protein mobilization. On the contrary, the major part of the increase occurred after the bulk of endosperm nitrogen had already been transferred to the seedling. The results suggest that the carboxypeptidase does not play a major role in the mobilization of storage proteins in germinating pine seeds. On the other hand, it probably functions in the proteolytic reactions associated with the senescence of the reserve-depleted endosperm. 相似文献