首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cardiogenic pulmonary edema results from increased hydrostatic pressures across the pulmonary circulation. We studied active Na(+) transport and alveolar fluid reabsorption in isolated perfused rat lungs exposed to increasing levels of left atrial pressure (LAP; 0--20 cmH(2)O) for 60 min. Active Na(+) transport and fluid reabsorption did not change when LAP was increased to 5 and 10 cmH(2)O compared with that in the control group (0 cmH(2)O; 0.50 +/- 0.02 ml/h). However, alveolar fluid reabsorption decreased by approximately 50% in rat lungs in which the LAP was raised to 15 cmH(2)O (0.25 +/- 0.03 ml/h). The passive movement of small solutes ((22)Na(+) and [(3)H]mannitol) and large solutes (FITC-albumin) increased progressively in rats exposed to higher LAP. There was no significant edema in lungs with a LAP of 15 cmH(2)O when all active Na(+) transport was inhibited by hypothermia or amiloride (10(-4) M) and ouabain (5 x 10(-4) M). However, when LAP was increased to 20 cmH(2)O, there was a significant influx of fluid (-0.69 +/- 0.10 ml/h), precluding the ability to assess the rate of fluid reabsorption. In additional studies, LAP was decreased from 15 to 0 cmH(2)O in the second and third hours of the experimental protocol, which resulted in normalization of lung permeability to solutes and alveolar fluid reabsorption. These data suggest that in an increased LAP model, the changes in clearance and permeability are transient, reversible, and directly related to high pulmonary circulation pressures.  相似文献   

2.
Short-term mechanical ventilation with high tidal volume (HVT) causes mild to moderate lung injury and impairs active Na+ transport and lung liquid clearance in rats. Dopamine (DA) enhances active Na+ transport in normal rat lungs by increasing Na+-K+-ATPase activity in the alveolar epithelium. We examined whether DA would increase alveolar fluid reabsorption in rats ventilated with HVT for 40 min compared with those ventilated with low tidal volume (LVT) and with nonventilated rats. Similar to previous reports, HVT ventilation decreased alveolar fluid reabsorption by ~50% (P < 0.001). DA increased alveolar fluid reabsorption in nonventilated control rats (by ~60%), LVT ventilated rats (by approximately 55%), and HVT ventilated rats (by ~200%). In parallel studies, DA increased Na+-K+-ATPase activity in cultured rat alveolar epithelial type II cells (ATII). Depolymerization of cellular microtubules by colchicine inhibited the effect of DA on HVT ventilated rats as well as on Na+-K+-ATPase activity in ATII cells. Neither DA nor colchicine affected the short-term Na+-K+-ATPase alpha1- and beta1-subunit mRNA steady-state levels or total alpha1- and beta1-subunit protein abundance in ATII cells. Thus we reason that DA improved alveolar fluid reabsorption in rats ventilated with HVT by upregulating the Na+-K+-ATPase function in alveolar epithelial cells.  相似文献   

3.
Exposure of adult rats to 100% O(2) results in lung injury and decreases active sodium transport and lung edema clearance. It has been reported that beta-adrenergic agonists increase lung edema clearance in normal rat lungs by upregulating alveolar epithelial Na(+)-K(+)-ATPase function. This study was designed to examine whether isoproterenol (Iso) affects lung edema clearance in rats exposed to 100% O(2) for 64 h. Active Na(+) transport and lung edema clearance decreased by approximately 44% in rats exposed to acute hyperoxia. Iso (10(-6) M) increased the ability of the lung to clear edema in room-air-breathing rats (from 0.50 +/- 0.02 to 0.99 +/- 0. 05 ml/h) and in rats exposed to 100% O(2) (from 0.28 +/- 0.03 to 0. 86 +/- 0.09 ml/h; P < 0.001). Disruption of intracellular microtubular transport of ion-transporting proteins by colchicine (0. 25 mg/100 g body wt) inhibited the stimulatory effects of Iso in hyperoxia-injured rat lungs, whereas the isomer beta-lumicolchicine, which does not affect microtubular transport, did not inhibit active Na(+) transport stimulated by Iso. Accordingly, Iso restored the lung's ability to clear edema after hyperoxic lung injury, probably by stimulation of the recruitment of ion-transporting proteins (Na(+)-K(+)-ATPase) from intracellular pools to the plasma membrane in rat alveolar epithelium.  相似文献   

4.
Hypoxia inhibits Na and lung fluid reabsorption, which contributes to the formation of pulmonary edema. We tested whether dexamethasone prevents hypoxia-induced inhibition of reabsorption by stimulation of alveolar Na transport. Fluid reabsorption, transport activity, and expression of Na transporters were measured in hypoxia-exposed rats and in primary alveolar type II (ATII) cells. Rats were treated with dexamethasone (DEX; 2 mg/kg) on 3 consecutive days and exposed to 10% O(2) on the 2nd and 3rd day of treatment to measure hypoxia effects on reabsorption of fluid instilled into lungs. ATII cells were treated with DEX (1 muM) for 3 days before exposure to hypoxia (1.5% O(2)). In normoxic rats, DEX induced a twofold increase in alveolar fluid clearance. Hypoxia decreased reabsorption (-30%) by decreasing its amiloride-sensitive component; pretreatment with DEX prevented the hypoxia-induced inhibition. DEX increased short-circuit currents (ISC) of ATII monolayers in normoxia and blunted hypoxic transport inhibition by increasing the capacity of Na(+)-K(+)-ATPase and epithelial Na(+) channels (ENaC) and amiloride-sensitive ISC. DEX slightly increased the mRNA of alpha- and gamma-ENaC in whole rat lung. In ATII cells from DEX-treated rats, mRNA of alpha(1)-Na(+)-K(+)-ATPase and alpha-ENaC increased in normoxia and hypoxia, and gamma-ENaC was increased in normoxia only. DEX stimulated the mRNA expression of alpha(1)-Na(+)-K(+)-ATPase and alpha-, beta-, and gamma-ENaC of A549 cells in normoxia and hypoxia (1.5% O(2)) when DEX treatment was begun before or during hypoxic exposure. These results indicate that DEX prevents inhibition of alveolar reabsorption by hypoxia and stimulates the expression of Na transporters even when it is applied in hypoxia.  相似文献   

5.
Alveolar fluid reabsorption (AFR) is important in keeping the air spaces free of edema. This process is accomplished via active transport of Na(+) across the alveolo-capillary barrier mostly by apical Na(+) channels and basolateral Na(+)-K(+)-ATPases. Recently, we have reported that acute elevation of left atrial pressures is associated with decreased AFR in isolated rat lungs. However, the effect of chronic elevation of pulmonary capillary pressure, such as seen in patients with congestive heart failure (CHF), on AFR is unknown. CHF was induced by creating an aorto-caval fistula (ACF) in Sprague-Dawley male rats. Seven days after the placement of the fistula, AFR was studied in the isolated perfused rat lung model. AFR in control rats was 0.49 +/- 0.02 ml/h (all values are means +/- SE) and increased by approximately 40% (0.69 +/- 0.03 ml/h) in rats with chronic CHF (P < 0.001). The albumin flux from the pulmonary circulation into the air spaces did not increase in the experimental groups, indicating that lung permeability for large solutes was not increased. Na(+)-K(+)-ATPase activity and protein abundance at the plasma membrane of distal alveolar epithelial tissue were significantly increased in CHF rats compared with controls. These changes were associated with increased plasma norepinephrine levels in CHF rats compared with controls. We provide evidence that in a rat model of chronic compensated CHF, AFR is increased, possibly due to increased endogenous norepinephrine upregulating active sodium transport and protecting against alveolar flooding.  相似文献   

6.
Invited review: lung edema clearance: role of Na(+)-K(+)-ATPase.   总被引:4,自引:0,他引:4  
Acute hypoxemic respiratory failure is a consequence of edema accumulation due to elevation of pulmonary capillary pressures and/or increases in permeability of the alveolocapillary barrier. It has been recognized that lung edema clearance is distinct from edema accumulation and is largely effected by active Na(+) transport out of the alveoli rather than reversal of the Starling forces, which control liquid flux from the pulmonary circulation into the alveolus. The alveolar epithelial Na(+)-K(+)-ATPase has an important role in regulating cell integrity and homeostasis. In the last 15 yr, Na(+)-K(+)-ATPase has been localized to the alveolar epithelium and its contribution to lung edema clearance has been appreciated. The importance of the alveolar epithelial Na(+)-K(+)-ATPase function is reflected in the changes in the lung's ability to clear edema when the Na(+)-K(+)-ATPase is inhibited or increased. An important focus of the ongoing research is the study of the mechanisms of Na(+)-K(+)-ATPase regulation in the alveolar epithelium during lung injury and how to accelerate lung edema clearance by modulating Na(+)-K(+)-ATPase activity.  相似文献   

7.
8.
Despite its importance for placental function, syncytiotrophoblast Na(+)-K(+)-ATPase has not been studied in detail. We purified syncytiotrophoblast microvillous (MVM) and basal (BM) membranes from full-term human placenta. Western blotting with isoform-specific antibodies demonstrated the presence of the alpha(1)-subunit, but not the alpha(2)- or alpha(3)-subunits, in MVM and BM. Relative density per unit membrane protein in BM was 48 +/- 1% (mean +/- SE, n = 4, P < 0.02) of that in the MVM. The activity of Na(+)-K(+)-ATPase was lower in BM (1.4 +/- 0.14 micromol. mg(-1). min(-1), n = 8, P < 0.02) than in MVM (3.9 +/- 0.25 micromol. mg(-1). min(-1)). Immunocytochemistry confirmed the distribution of Na(+)-K(+)-ATPase to MVM and BM. These findings suggest that the syncytiotrophoblast represents a type of transporting epithelium different from the classical epithelia found in the small intestine and kidney, where Na(+)-K(+)-ATPase is confined to the basolateral membrane only. This unique polarization of the Na(+) pump does not, however, preclude a net transcellular transport of Na(+) to the fetus.  相似文献   

9.
Atrial natriuretic factor (ANF) and dopamine (DA) are both important regulators of sodium and water transport across renal proximal tubules. Many evidences suggest that some of ANF inhibitory effects on sodium and water reabsorption are mediated by dopaminergic mechanisms. We have previously reported that ANF stimulates extraneuronal DA uptake in external renal cortex by activation of NPR-A receptors coupled to cGMP signal and PKG. Moreover, ANF enhanced DA-induced inhibition of Na(+)-K(+) ATPase activity. The aim of the present study was to evaluate if ANF could alter also renal DA release, catabolism and turn over. The results indicate that ANF did not affect basal secretion of the amine in external renal cortex or its KCl-induced release, but diminished DA turn over. Moreover, ANF diminished COMT and did not alter MAO activity. In conclusion, present results as well as previous findings show that ANF modifies DA metabolism in rat external renal cortex by enhancing DA uptake and decreasing COMT activity. All those effects, taken together, may favor DA accumulation into renal cells and increase its endogenous content and availability. This would permit D1 receptor recruitment and stimulation and in turn, Na(+), K(+)-ATPase activity over inhibition that results in decreased sodium reabsorption. Therefore, ANF and DA could act via a common pathway to enhance natriuresis and diuresis.  相似文献   

10.
Isolated salivary glands of Periplaneta americana were used to measure secretion rates and, by quantitative capillary electrophoresis, Na(+), K(+), and Cl(-) concentrations in saliva collected during dopamine (1 micro M) and serotonin (1 micro M) stimulation in the absence and presence of ouabain (100 micro M) or bumetanide (10 micro M). Dopamine stimulated secretion of a NaCl-rich hyposmotic saliva containing (mM): Na(+) 95 +/- 2; K(+) 38 +/- 1; Cl(-) 145 +/- 3. Saliva collected during serotonin stimulation had a similar composition. Bumetanide decreased secretion rates induced by dopamine and serotonin; secreted saliva had lower Na(+), K(+) and Cl(-) concentrations and osmolarity. Ouabain caused increased secretion rates on a serotonin background. Saliva secreted during dopamine but not serotonin stimulation in the presence of ouabain had lower K(+) and higher Na(+) and Cl(-) concentrations, and was isosmotic. We concluded: The Na(+)-K(+)-2Cl(-) cotransporter is of cardinal importance for electrolyte and fluid secretion. The Na(+)/K(+)-ATPase contributes to apical Na(+) outward transport and Na(+) and K(+) cycling across the basolateral membrane in acinar P-cells. The salivary ducts modify the primary saliva by Na(+) reabsorption and K(+) secretion, whereby Na(+) reabsorption is energized by the basolateral Na(+)/K(+)-ATPase which imports also some of the K(+) needed for apical K(+) extrusion.  相似文献   

11.
We tested the hypothesis that previously demonstrated gender differences in ACh-induced vascular relaxation could involve diverse Na(+)-K(+)-ATPase functions. We determined Na(+)-K(+)-ATPase by measuring arterial ouabain-sensitive 86Rb uptake in response to ACh. We found a significant increase of Na+ pump activity only in aortic rings from female rats (control 206 +/- 11 vs. 367 +/- 29 nmol 86Rb/K.min(-1).g wt tissue(-1); P < 0.01). Ovariectomy eliminated sex differences in Na(+)-K(+)-ATPase function, and chronic in vivo hormone replacement with 17beta-estradiol restored the ACh effect on Na(+)-K(+)-ATPase. Because ACh acts by enhancing production of NO, we examined whether the NO donor sodium nitroprusside (SNP) mimics the action of ACh on Na(+)-K(+)-ATPase activity. SNP increased ouabain-sensitive 86Rb uptake in denuded female arteries (control 123 +/- 7 vs. 197 +/- 12 nmol 86Rb/K.min(-1).g wt tissue(-1); P < 0.05). Methylene blue (an inhibitor of guanylate cyclase) and KT-5823 (a cGMP-dependent kinase inhibitor) blocked the stimulatory action of SNP. Exposure of female thoracic aorta to the Na+/K+ pump inhibitor ouabain significantly decreased SNP-induced and ACh-mediated relaxation of aortic rings. At the molecular level, Western blot analysis of arterial tissue revealed significant gender differences in the relative abundance of catalytic isoforms of Na(+)-K(+)-ATPase. Female-derived aortas exhibited a greater proportion of alpha2-isoform (44%) compared with male-derived aortas. Furthermore, estradiol upregulated the expression of alpha2 mRNA in male arterial explants. Our results demonstrate that enhancement of ACh-induced relaxation observed in female rats may be in part explained by 1) NO-dependent increased Na(+)-K(+)-ATPase activity in female vascular tissue and 2) greater abundance of Na(+)-K(+)-ATPase alpha2-isoform in females.  相似文献   

12.
Alveolar epithelial cells effect edema clearance by transporting Na(+) and liquid out of the air spaces. Active Na(+) transport by the basolaterally located Na(+)-K(+)-ATPase is an important contributor to lung edema clearance. Because alveoli undergo cyclic stretch in vivo, we investigated the role of cyclic stretch in the regulation of Na(+)-K(+)-ATPase activity in alveolar epithelial cells. Using the Flexercell Strain Unit, we exposed a cell line of murine lung epithelial cells (MLE-12) to cyclic stretch (30 cycles/min). After 15 min of stretch (10% mean strain), there was no change in Na(+)-K(+)-ATPase activity, as assessed by (86)Rb(+) uptake. By 30 min and after 60 min, Na(+)-K(+)-ATPase activity was significantly increased. When cells were treated with amiloride to block amiloride-sensitive Na(+) entry into cells or when cells were treated with gadolinium to block stretch-activated, nonselective cation channels, there was no stimulation of Na(+)-K(+)-ATPase activity by cyclic stretch. Conversely, cells exposed to Nystatin, which increases Na(+) entry into cells, demonstrated increased Na(+)-K(+)-ATPase activity. The changes in Na(+)-K(+)-ATPase activity were paralleled by increased Na(+)-K(+)-ATPase protein in the basolateral membrane of MLE-12 cells. Thus, in MLE-12 cells, short-term cyclic stretch stimulates Na(+)-K(+)-ATPase activity, most likely by increasing intracellular Na(+) and by recruitment of Na(+)-K(+)-ATPase subunits from intracellular pools to the basolateral membrane.  相似文献   

13.
We examined whether hypoxic exposure in vivo would influence transalveolar fluid transport in rats. We found a significant decrease in alveolar fluid clearance of the rats exposed to 10% oxygen for 48 h. Terbutaline did not stimulate alveolar fluid clearance, and alveolar fluid cAMP levels were lower than those determined in normoxia experiment. Hypoxia did not influence the alveolar fluid lactate dehydrogenase levels, Evans blue dye fluid-to-serum concentration ratio, or lung wet-to-dry weight ratio, indicating no significant change in the permeability of alveolar-capillary barrier. Histological examination showed no significant fluid accumulation into the interstitium and the alveolar space. Hypoxia did not reduce lung ATP content; however, we found significant decrease in Na(+)-K(+)-ATPase hydrolytic activity in lung tissue preparations and isolated alveolar type II cells. Our data indicate that hypoxic exposure in vivo impairs transalveolar fluid transport, and this impairment is related to the decrease in alveolar epithelial Na(+)-K(+)-ATPase hydrolytic activity but is not secondary to the alteration of cellular energy source.  相似文献   

14.
Vectorial Na(+) reabsorption across the proximal tubule is mediated by apical entry of Na(+), primarily via Na(+)/H(+) exchanger isoform 3 (NHE3), and basolateral extrusion via the Na(+) pump (Na(+)-K(+)-ATPase). We hypothesized that regulation of Na(+) reabsorption should involve not only the activity of the basolateral Na(+)-K(+)-ATPase, but also the apical NHE3, in a concerted manner. To generate a cell line that overexpresses Na(+)-K(+)-ATPase, opossum kidney (OK) cells were transfected with the rodent Na(+)-K(+)-ATPase alpha(1)-subunit (pCMV ouabain vector), and native cells were used as a control. The existence of distinct functional classes of Na(+)-K(+)-ATPase in wild-type and transfected cells was confirmed by the inhibition profile of Na(+)-K(+)-ATPase activity by ouabain. In contrast to wild-type cells, transfected cells exhibited two IC(50) values for ouabain: the first value was similar to the IC(50) of control cells, and the second value was 2 log units greater than the first, consistent with the presence of rat and opossum alpha(1)-isozymes. It is shown that transfection of OK cells with Na(+)-K(+)-ATPase increased Na(+)-K(+)-ATPase and NHE3 activities. This was associated with overexpression of the Na(+)-K(+)-ATPase alpha(1)-subunit and NHE3 in transfected OK cells. The abundance of the Na(+)-K(+)-ATPase beta(1)-subunit was slightly lower in transfected OK cells. In conclusion, the increase in expression and function of Na(+)-K(+)-ATPase in cells transfected with the rodent Na(+) pump alpha(1)-subunit cDNA is expected to stimulate apical Na(+) influx into the cells, thereby accounting for the observed stimulation of the apical NHE3 activity.  相似文献   

15.
Electrolyte transport across the adult alveolar epithelium plays an important role in maintaining a thin fluid layer along the apical surface of the alveolus that facilitates gas exchange across the epithelium. Most of the work published on the transport properties of alveolar epithelial cells has focused on the mechanisms and regulation of Na(+) transport and, in particular, the role of amiloride-sensitive Na(+) channels in the apical membrane and the Na(+)-K(+)-ATPase located in the basolateral membrane. Less is known about the identity and role of Cl(-) and K(+) channels in alveolar epithelial cells, but studies are revealing important functions for these channels in regulation of alveolar fluid volume and ionic composition. The purpose of this review is to examine previous work published on Cl(-) and K(+) channels in alveolar epithelial cells and to discuss the conclusions and speculations regarding their role in alveolar cell transport function.  相似文献   

16.
17.
We tested whether activation of inwardly rectifying K(+) (Kir) channels, Na(+)-K(+)-ATPase, or nitric oxide synthase (NOS) play a role in K(+)-induced dilatation of the rat basilar artery in vivo. When cerebrospinal fluid [K(+)] was elevated from 3 to 5, 10, 15, 20, and 30 mM, a reproducible concentration-dependent vasodilator response was elicited (change in diameter = 9 +/- 1, 27 +/- 4, 35 +/- 4, 43 +/- 12, and 47 +/- 16%, respectively). Responses to K(+) were inhibited by approximately 50% by the Kir channel inhibitor BaCl(2) (30 and 100 microM). In contrast, neither ouabain (1-100 microM, a Na(+)-K(+)-ATPase inhibitor) nor N(G)-nitro-L-arginine (30 microM, a NOS inhibitor) had any effect on K(+)-induced vasodilatation. These concentrations of K(+) also hyperpolarized smooth muscle in isolated segments of basilar artery, and these hyperpolarizations were virtually abolished by 30 microM BaCl(2). RT-PCR experiments confirmed the presence of mRNA for Kir2.1 in the basilar artery. Thus K(+)-induced dilatation of the basilar artery in vivo appears to partly involve hyperpolarization mediated by Kir channel activity and possibly another mechanism that does not involve hyperpolarization, activation of Na(+)-K(+)-ATPase, or NOS.  相似文献   

18.
Normalization of intracellular sodium (Na) after postischemic reperfusion depends on reactivation of the sarcolemmal Na(+)-K(+)-ATPase. To evaluate the requirement of glycolytic ATP for Na(+)-K(+)-ATPase function during postischemic reperfusion, 5-s time-resolution 23Na NMR was performed in isolated perfused rat hearts. During 20 min of ischemia, Na increased approximately twofold. In glucose-reperfused hearts with or without prior preischemic glycogen depletion, Na decreased immediately upon postischemic reperfusion. In glycogen-depleted pyruvate-reperfused hearts, however, the decrease of Na was delayed by approximately 25 s, and application of the pyruvate dehydrogenase (PDH) activator dichloroacetate (DA) did not shorten this delay. After 30 min of reperfusion, Na had almost normalized in all groups and contractile recovery was highest in the DA-treated hearts. In conclusion, some degree of functional coupling of glycolytic ATP and Na(+)-K(+)-ATPase activity exists, but glycolysis is not essential for recovery of Na homeostasis and contractility after prolonged reperfusion. Furthermore, the delayed Na(+)-K(+)-ATPase reactivation observed in pyruvate-reperfused hearts is not due to inhibition of PDH.  相似文献   

19.
20.
The inotropic and toxic effects of cardiac steroids are thought to result from Na(+)-K(+)-ATPase inhibition, with elevated intracellular Na(+)(Na)causing increased intracellular Ca(2+)(Ca) via Na-Ca exchange. We studied the effects of ouabain on cat ventricular myocytes in Na(+)-free conditions where the exchanger is inhibited. Cell shortening and Ca transients (with fluo 4-AM fluorescence) were measured under voltage clamp during exposure to Na(+)-free solutions [LiCl or N-methyl-D-glucamine (NMDG) replacement]. Ouabain enhanced contractility by 121 +/- 55% at 1 micromol/l (n = 11) and 476 +/- 159% at 3 micromol/l (n = 8) (means +/- SE). Ca transient amplitude was also increased. The inotropic effects of ouabain were retained even after pretreatment with saxitoxin (5 micromol/l) or changing the holding potential to -40 mV (to inactivate Na(+) current). Similar results were obtained with both Li(+) and NMDG replacement and in the absence of external K(+), indicating that ouabain produced positive inotropy in the absence of functional Na-Ca exchange and Na(+)-K(+)-ATPase activity. In contrast, ouabain had no inotropic response in rat ventricular myocytes (10-100 micromol/l). Finally, ouabain reversibly increased Ca(2+) overload toxicity by accelerating the rate of spontaneous aftercontractions (n = 13). These results suggest that the cellular effects of ouabain on the heart may include actions independent of Na(+)-K(+)-ATPase inhibition, Na-Ca exchange, and changes in Na.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号