首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Lck is a member of the Src family of protein-tyrosine kinases and is essential for T cell development and function. Lck is localized to the inner surface of the plasma membrane and partitions into lipid rafts via dual acylation on its N terminus. We have tested the role of Lck binding domains in regulating Lck localization to lipid rafts. A form of Lck containing a point mutation inactivating the SH3 domain (W97ALck) was preferentially localized to lipid rafts compared with wild type or SH2 domain-inactive (R154K) Lck when expressed in Lck-deficient J.CaM1 cells. W97ALck incorporated more of the radioiodinated version of palmitic acid, 16-[(125)I]iodohexadecanoic acid. Overexpression of c-Cbl, a ligand of the Lck SH3 domain, depleted Lck from lipid rafts in Jurkat cells. Additionally, Lck localization to lipid rafts was enhanced in c-Cbl-deficient T cells. The association of Lck with c-Cbl in vivo required a functional SH3 domain. These results suggest a model whereby the SH3 domain negatively regulates basal localization of Lck to lipid rafts via association with c-Cbl.  相似文献   

2.
The SH4 domain of Fyn, a member of the Src family of tyrosine kinases, though rich in polar amino acid residues, anchors to the cytosolic face of membranes upon fatty acylation. In order to probe the requirement of specific fatty acylation at the N-terminus and at the side-chain of this domain for membrane-association, we have studied the interaction of peptides corresponding to the polar segment of the SH4 domain of Fyn and its mono- and dually fatty acylated analogs with model membranes. While the polar segment without covalently linked fatty acids (KDKEATKLTEW-amide) does not interact with lipid vesicles, peptides with one covalently linked fatty acid at the N-terminus or in the side-chain, associate with zwitterionic and anionic lipids to varying degrees. The interaction of dually acylated peptides (Myr-GK(ε-myr)KDKEATKLTEW-amide and Myr-GC(S-pal)KDKEATKLTEW-amide) with lipids depends on the linkage between fatty acyl side-chain and peptide backbone. The peptide chain associates with membranes only when the side-chain acylation is via an amide bond and not via a thioester bond. Our investigations indicate that acylation is essential for membrane targeting and unacylated polar stretch of the SH4 domain does not have a role in membrane-anchoring. Side-chain acylation via a thioester bond not only provides membrane anchorage but also directs the peptide chain away from the bilayer which might be important to enable the full length protein to interact with other signaling partners.  相似文献   

3.
The catalytic activity of Src-family kinases is regulated by association with its SH3 and SH2 domains. Activation requires displacement of intermolecular contacts by SH3/SH2 binding ligands resulting in dissociation of the SH3 and SH2 domains from the kinase domain. To understand the contribution of the SH3-SH2 domain pair to this regulatory process, the binding of peptides derived from physiologically relevant SH2 and SH3 interaction partners was studied for Lck and its relative Fyn by NMR spectroscopy. In contrast to Fyn, activating ligands do not induce communication between SH2 and SH3 domains in Lck. This can be attributed to the particular properties of the Lck SH3-SH2 linker which is shown to be extremely flexible thus effectively decoupling the behavior of the SH3 and SH2 domains. Measurements on the SH32 tandem from Lck further revealed a relative domain orientation that is distinctly different from that found in the Lck SH32 crystal structure and in other Src kinases. These data suggest that flexibility between SH2 and SH3 domains contributes to the adaptation of Src-family kinases to specific environments and distinct functions.  相似文献   

4.
The Src family protein tyrosine kinases participate in signalling through cell surface receptors that lack intrinsic tyrosine kinase domains. All nine members of this family possess adjacent Src homology (SH2 and SH3) domains, both of which are essential for repression of the enzymatic activity. The repression is mediated by binding between the SH2 domain and a C-terminal phosphotyrosine, and the SH3 domain is required for this interaction. However, the biochemical basis of functional SH2-SH3 interaction is unclear. Here, we demonstrate that when the SH2 and SH3 domains of p59fyn (Fyn) were present as adjacent domains in a single protein, binding of phosphotyrosyl peptides and proteins to the SH2 domain was enhanced, whereas binding of a subset of cellular polypeptide ligands to the SH3 domain was decreased. An interdomain communication was further revealed by occupancy with domain-specific peptide ligands: occupancy of the SH3 domain with a proline-rich peptide enhanced phosphotyrosine binding to the linked SH2 domain, and occupancy of the SH2 domain with phosphotyrosyl peptides enhanced binding of certain SH3-specific cellular polypeptides. Second, we demonstrate a direct binding between purified SH2 and SH3 domains of Fyn and Lck Src family kinases. Heterologous binding between SH2 and SH3 domains of closely related members of the Src family, namely, Fyn, Lck, and Src, was also observed. In contrast, Grb2, Crk, Abl, p85 phosphatidylinositol 3-kinase, and GTPase-activating protein SH2 domains showed lower or no binding to Fyn or Lck SH3 domains. SH2-SH3 binding did not require an intact phosphotyrosine binding pocket on the SH2 domain; however, perturbations of the SH2 domain induced by specific high-affinity phosphotyrosyl peptide binding abrogated binding of the SH3 domain. SH3-SH2 binding was observed in the presence of proline-rich peptides or when a point mutation (W119K) was introduced in the putative ligand-binding pouch of the Fyn SH3 domain, although these treatments completely abolished the binding to p85 phosphatidylinositol 3-kinase and other SH3-specific polypeptides. These biochemical SH2-SH3 interactions suggest novel mechanisms of regulating the enzymatic activity of Src kinases and their interactions with other proteins.  相似文献   

5.
The first step in immunoreceptor signaling is represented by ligand-dependent receptor aggregation, followed by receptor phosphorylation mediated by tyrosine kinases of the Src family. Recently, sphingolipid- and cholesterol-rich plasma membrane microdomains, called lipid rafts, have been identified and proposed to function as platforms where signal transduction molecules may interact with the aggregated immunoreceptors. Here we show that aggregation of the receptors with high affinity for immunoglobulin E (FcepsilonRI) in mast cells is accompanied by a co-redistribution of the Src family kinase Lyn. The co-redistribution requires Lyn dual fatty acylation, Src homology 2 (SH2) and/or SH3 domains, and Lyn kinase activity, in cis or in trans. Palmitoylation site-mutated Lyn, which is anchored to the plasma membrane but exhibits reduced sublocalization into lipid rafts, initiates the tyrosine phosphorylation of FcepsilonRI subunits, Syk protein tyrosine kinase, and the linker for activation of T cells, along with an increase in the concentration of intracellular Ca(2+). However, Lyn mutated in both the palmitoylation and myristoylation sites does not anchor to the plasma membrane and is incapable of initiating FcepsilonRI phosphorylation and early signaling events. These data, together with our finding that a constitutively tyrosine-phosphorylated FcepsilonRI does not exhibit an increased association with lipid rafts, suggest that FcepsilonRI phosphorylation and early activation events can be initiated outside of lipid rafts.  相似文献   

6.
The nef gene from human and simian immunodeficiency viruses (HIV and SIV) regulates cell function and viral replication, possibly through binding of the nef product to cellular proteins, including Src family tyrosine kinases. We show here that the Nef protein encoded by SIVmac239 interacts with and also activates the human Src kinases Lck and Hck. This is in direct contrast to the inhibitory effect of HIV type 1 (HIV-1) Nef on Lck catalytic activity. Unexpectedly, however, the interaction of SIV Nef with human Lck or Hck is not mediated via its consensus proline motif, which is known to mediate HIV-1 Nef binding to Src homology 3 (SH3) domains, and various experimental analyses failed to show significant interaction of SIV Nef with the SH3 domain of either kinase. Instead, SIV Nef can bind Lck and Hck SH2 domains, and its N-terminal 50 amino acid residues are sufficient for Src kinase binding and activation. Our results provide evidence for multiple mechanisms by which Nef binds to and regulates Src kinases.  相似文献   

7.
The adamalysins (ADAMs) are transmembrane glycoproteins involved in cell adhesion and proteolytic ectodomain processing of cytokines and adhesion molecules. Many ADAM cytoplasmic domains are proline-rich and have potential phosphorylation sites. We show here that the cytoplasmic domain of ADAM15, metargidin, can interact specifically with Src family protein-tyrosine kinases (PTKs) and the adaptor protein Grb2 in hematopoietic cells (Jurkat, THP-1, U937, and K562 cell lines). Src homology 3 domains from several Src family PTKs including Lck, Fyn, Abl, and Src associate with ADAM15 in vitro. Dephosphorylation of cell extracts resulted in decreased association of ADAM15 with Src family PTK SH3 domains, indicating that phosphorylation influences ADAM15 interactions with its binding partners. This was confirmed in vitro for Hck, Lck, and Grb2, which showed enhanced association with tyrosine-phosphorylated glutathione S-transferase-ADAM15 cytoplasmic domain compared with unphosphorylated protein. In contrast, binding of MAD2 to ADAM15 was slightly reduced by phosphorylation of the ADAM. Immunoprecipitation of ADAM15 from Jurkat cells confirmed the association with Lck in vivo, and upon PMA stimulation, the phosphorylation level of ADAM15 was increased. Cotransfection of ADAM15 and Hck showed Hck-dependent phosphorylation of ADAM15 in vivo. Hck, and to a lesser extent Lck, phosphorylated the ADAM15 cytoplasmic domain in vitro in immune complex kinase assays. Binding of ADAM15 cytoplasmic domain to Hck and Lck was also shown by Far Western analysis. In contrast to Hck, Lck activity was not required for binding to ADAM15, as shown by treatment of cells with PP1. Deletion and point mutation analysis of the ADAM15 cytoplasmic domain confirmed the importance of the proline-rich motifs for Grb2 and Lck binding and indicated the regulatory nature of Tyr(715) and Tyr(735). These data demonstrate selective, phosphorylation-dependent interactions of ADAM15 with Src family PTKs and Grb2, which highlight the potential for integration of ADAM functions and cellular signaling.  相似文献   

8.
The ability of the Src family kinases Fyn and Lck to participate in signaling through the T cell receptor is critically dependent on their dual fatty acylation with myristate and palmitate. Here we identify a palmitate analog, 2-bromopalmitate, that effectively blocks Fyn fatty acylation in general and palmitoylation in particular. Treatment of COS-1 cells with 2-bromopalmitate blocked myristoylation and palmitoylation of Fyn and inhibited membrane binding and localization of Fyn to detergent-resistant membranes (DRMs). In Jurkat T cells, 2-bromopalmitate blocked localization of the endogenous palmitoylated proteins Fyn, Lck, and LAT to DRMs. This resulted in impaired signaling through the T cell receptor as evidenced by reductions in tyrosine phosphorylation, calcium release, and activation of mitogen-activated protein kinase. We also examined the ability of long chain polyunsaturated fatty acids (PUFAs) to inhibit protein fatty acylation. PUFAs have been reported to inhibit T cell signaling by excluding Src family kinases from DRMs. Here we show that the PUFAs arachidonic acid and eicosapentaenoic acid inhibit Fyn palmitoylation and consequently block Fyn localization to DRMs. We propose that inhibition of protein palmitoylation represents a novel mechanism by which PUFAs exert their immunosuppressive effects.  相似文献   

9.
A mutation in the tub gene leads to maturity-onset obesity, insulin resistance, and progressive retinal and cochlear degeneration in mice. tub is a member of a growing family of genes that encode proteins of unknown function that are remarkably conserved across species. The absence of obvious transmembrane domain(s) or signal sequence peptide motif(s) suggests that Tub is an intracellular protein. Additional sequence analysis revealed the presence of putative tyrosine phosphorylation motifs and Src homology 2 (SH2)-binding sites. Here we demonstrate that in CHO-IR cells, transfected Tub is phosphorylated on tyrosine in response to insulin and insulin-like growth factor-1 and that in PC12 cells, insulin but not EGF induced tyrosine phosphorylation of endogenous Tub. In vitro, Tub is phosphorylated by purified insulin receptor kinase as well as by Abl and JAK 2 but not by epidermal growth factor receptor and Src kinases. Furthermore, upon tyrosine phosphorylation, Tub associated selectively with the SH2 domains of Abl, Lck, and the C-terminal SH2 domain of phospholipase Cgamma and insulin enhanced the association of Tub with endogenous phospholipase Cgamma in CHO-IR cells. These data suggest that Tub may function as an adaptor protein linking the insulin receptor, and possibly other protein-tyrosine kinases, to SH2-containing proteins.  相似文献   

10.
HIV‐1 Nef, an essential factor in AIDS pathogenesis, boosts virus replication in vivo. As one of its activities in CD4+ T‐lymphocytes, Nef potently retargets the Src family kinase (SFK) Lck but not closely related Fyn from the plasma membrane to recycling endosomes and the trans‐Golgi network to tailor T‐cell activation and optimize virus replication. Investigating the underlying mechanism we find Lck retargeting involves removal of the kinase from membrane microdomains. Moreover, Nef interferes with rapid vesicular transport of Lck to block anterograde transport and plasma membrane delivery of newly synthesized Lck. The sensitivity of Lck to Nef does not depend on functional domains of Lck but requires membrane insertion of the kinase. Surprisingly, the short N‐terminal SH4 domain membrane anchor of Lck is necessary and sufficient to confer sensitivity to Nef‐mediated anterograde transport block and microdomain extraction. In contrast, the SH4 domain of Fyn is inert to Nef‐mediated manipulation. Nef thus interferes with a specialized membrane microdomain‐associated pathway for plasma membrane delivery of newly synthesized Lck whose specificity is determined by the affinity of cargo for these sorting platforms. These results provide new insight into the mechanism of Nef action and the pathways used for SFK plasma membrane delivery.  相似文献   

11.
Lck is a member of the Src family kinases expressed predominantly in T cells, and plays a pivotal role in TCR-mediated signal transduction. Myristoylation of glysine 2 in the N-terminal Src homology 4 (SH4) domain of Lck is essential for membrane localization and function. In this study, we examined a site within the SH4 domain of Lck regulating myristoylation, membrane localization, and function of Lck. A Lck mutant in which serine 6 (Ser6) was substituted by an alanine was almost completely cytosolic in COS-7 cells, and this change of localization was associated with a drastic inhibition of myristoylation in this mutant. To assess the role of Ser6 of Lck in T cell function, we established stable transfectants expressing various Lck mutants using Lck-negative JCaM1 cells. The Lck mutant of Ser6 to alanine, most of which did not target to the plasma membrane, was not able to reconstitute TCR-mediated signaling events in JCaM1 cells, as analyzed by tyrosine phosphorylation of intracellular proteins and CD69 expression. These results demonstrate that Ser6 is a critical factor for Lck myristoylation, membrane localization, and function in T cells, presumably because the residue is important for N-myristoyl transferase recognition.  相似文献   

12.
Fatty acylation of Src family kinases is essential for localization of the modified proteins to the plasma membrane and to plasma membrane rafts. It has been suggested that the presence of saturated fatty acyl chains on proteins is conducive for their insertion into liquid ordered lipid domains present in rafts. The ability of unsaturated dietary fatty acids to be attached to Src family kinases has not been investigated. Here we demonstrate that heterogeneous fatty acylation of Src family kinases occurs and that the nature of the attached fatty acid influences raft-mediated signal transduction. By using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, we show that in addition to 14:0 (myristate), 14:1 and 14:2 fatty acids can be attached to the N-terminal glycine of the Src family kinase Fyn when the growth media are supplemented with these dietary fatty acids. Moreover, we synthesized novel iodinated analogs of oleate and stearate, and we showed that heterogeneous S-acylation can occur on cysteine residues within Fyn as well as Galpha, GAP43, and Ras. Modification of Fyn with unsaturated or polyunsaturated fatty acids reduced its raft localization and resulted in decreased T cell signal transduction. These studies establish that heterogeneous fatty acylation is a widespread occurrence that serves to regulate signal transduction by membrane-bound proteins.  相似文献   

13.
The N-terminal SH4 domain of Src family kinases is responsible for promoting membrane binding and plasma membrane targeting. Most Src family kinases contain an N-terminal Met-Gly-Cys consensus sequence that undergoes dual acylation with myristate and palmitate after removal of methionine. Previous studies of Src family kinase fatty acylation have relied on radiolabeling of cells with radioactive fatty acids. Although this method is useful for verifying that a given fatty acid is attached to a protein, it does not reveal whether other fatty acids or other modifying groups are attached to the protein. Here we use matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry to identify fatty acylated species of the Src family kinase Fyn. Our results reveal that Fyn is efficiently myristoylated and that some of the myristoylated proteins are also heterogeneously S-acylated with palmitate, palmitoleate, stearate, or oleate. Furthermore, we show for the first time that Fyn is trimethylated at lysine residues 7 and/or 9 within its N-terminal region. Both myristoylation and palmitoylation were required for methylation of Fyn. However, a general methylation inhibitor had no inhibitory effect on myristoylation and palmitoylation of Fyn, suggesting that methylation occurs after myristoylation and palmitoylation. Lysine mutants of Fyn that could not be methylated failed to promote cell adhesion and spreading, suggesting that methylation is important for Fyn function.  相似文献   

14.
Yadav SS  Miller WT 《Biochemistry》2008,47(41):10871-10880
The SH3-SH2-kinase domain arrangement in nonreceptor tyrosine kinases has been conserved throughout evolution. For Src family kinases, the relative positions of the domains are important for enzyme regulation; they permit the assembly of Src kinases into autoinhibited conformations. The SH3 and SH2 domains of Src family kinases have an additional role in determining the substrate specificity of the kinase. We addressed the question of whether the domain arrangement of Src family kinases has a role in substrate specificity by producing mutants with alternative arrangements. Our results suggest that changes in the positions of domains can lead to specific changes in the phosphorylation of Sam68 and Cas by Src. Phosphorylation of Cas by several mutants triggers downstream signaling leading to cell migration. The placement of the SH2 domain with respect to the catalytic domain of Src appears to be especially important for proper substrate recognition, while the placement of the SH3 domain is more flexible. The results suggest that the involvement of the SH3 and SH2 domains in substrate recognition is one reason for the strict conservation of the SH3-SH2-kinase architecture.  相似文献   

15.
Nef is an HIV accessory protein required for high-titer viral replication and AIDS progression. Previous studies have shown that the SH3 domains of Hck and Lyn bind to Nef via proline-rich sequences in vitro, identifying these Src-related kinases as potential targets for Nef in vivo. Association of Nef with Hck causes displacement of the intramolecular interaction between the SH3 domain and the SH2-kinase linker, leading to kinase activation both in vitro and in vivo. In this study, we investigated whether interaction with Nef induces activation of other Src family kinases (Lyn, Fyn, Src, and Lck) following coexpression with Nef in Rat-2 fibroblasts. Coexpression with Nef induced Hck kinase activation and fibroblast transformation, consistent with previous results. In contrast, coexpression of Nef with Lyn was without effect, despite equivalent binding of Nef to full-length Lyn and Hck. Furthermore, Nef was found to suppress the kinase and transforming activities of Fyn, the SH3 domain of which exhibits low affinity for Nef. Coexpression with Nef did not alter c-Src or Lck tyrosine kinase or transforming activity in this system. Differential modulation of Src family members by Nef may produce unique downstream signals depending on the profile of Src kinases expressed in a given cell type.  相似文献   

16.
Src homology 3 (SH3) domains mediate protein-protein interactions necessary for the coupling of cellular proteins involved in intracellular signal transduction. We previously established solution-binding conditions that allow affinity isolation of Src SH3-binding proteins from cellular extracts (Z. Weng, J. A. Taylor, C. E. Turner, J. S. Brugge, and C. Seidel-Dugan, J. Biol. Chem. 268:14956-14963, 1993). In this report, we identified three of these proteins: Shc, a signaling protein that couples membrane tyrosine kinases with Ras; p62, a protein which can bind to p21rasGAP; and heterogeneous nuclear ribonucleoprotein K, a pre-mRNA-binding protein. All of these proteins contain proline-rich peptide motifs that could serve as SH3 domain ligands, and the binding of these proteins to the Src SH3 domain was inhibited with a proline-rich Src SH3 peptide ligand. These three proteins, as well as most of the other Src SH3 ligands, also bound to the SH3 domains of the closely related protein tyrosine kinases Fyn and Lyn. However, Src- and Lyn-specific SH3-binding proteins were also detected, suggesting subtle differences in the binding specificity of the SH3 domains from these related proteins. Several Src SH3-binding proteins were phosphorylated in Src-transformed cells. The phosphorylation of these proteins was not detected in cells transformed by a mutant variant of Src lacking the SH3 domain, while there was little change in tyrosine phosphorylation of other Src-induced phosphoproteins. In addition, the coprecipitation of v-Src with two tyrosyl-phosphorylated proteins with M(r)s of 62,000 and 130,000 was inhibited by incubation with a Src SH3 peptide ligand, suggesting that the binding of these substrate proteins is dependent on interactions with the SH3 domain. These results strongly suggest a role for the Src SH3 domain in the recruitment of substrates to this protein tyrosine kinase, either through direct interaction with the SH3 domain or indirectly through interactions with proteins that bind to the SH3 domain.  相似文献   

17.
Src functions depend on its association with the plasma membrane and with specific membrane-associated assemblies. Many aspects of these interactions are unclear. We investigated the functions of kinase, SH2, and SH3 domains in Src membrane interactions. We used FRAP beam-size analysis in live cells expressing a series of c-Src-GFP proteins with targeted mutations in specific domains together with biochemical experiments to determine whether the mutants can generate and bind to phosphotyrosyl proteins. Wild-type Src displays lipid-like membrane association, whereas constitutively active Src-Y527F interacts transiently with slower-diffusing membrane-associated proteins. These interactions require Src kinase activity and SH2 binding, but not SH3 binding. Furthermore, overexpression of paxillin, an Src substrate with a high cytoplasmic population, competes with membrane phosphotyrosyl protein targets for binding to activated Src. Our observations indicate that the interactions of Src with lipid and protein targets are dynamic and that the kinase and SH2 domain cooperate in the membrane targeting of Src.  相似文献   

18.
Scott MP  Miller WT 《Biochemistry》2000,39(47):14531-14537
The Src homology 2 (SH2) and Src homology 3 (SH3) domains of Src family kinases are involved in substrate recognition in vivo. Many cellular substrates of Src kinases contain a large number of potential phosphorylation sites, and the SH2 and SH3 domains of Src are known to be required for phosphorylation of these substrates. In principle, Src could phosphorylate these substrates by either a processive mechanism, in which the enzyme remains bound to the peptide substrate during multiple phosphorylation events, or a nonprocessive (distributive) mechanism, where each phosphorylation requires a separate binding interaction between enzyme and substrate. Here we use a synthetic peptide system to demonstrate that Hck, a Src family kinase, can phosphorylate substrates containing an SH2 domain ligand by a processive mechanism. Hck catalyzes the phosphorylation of these sites in a defined order. Furthermore, we show that addition of an SH3 domain to a peptide can enhance its phosphorylation both by activating Hck and by increasing the affinity of the substrate. On the basis of our observations on the role of the SH2 and SH3 domains in substrate recognition, we present a model for substrate targeting in vivo.  相似文献   

19.
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that activates Src family kinases via SH2- and SH3-mediated interactions. Specific FAK isoforms (FAK+), responsive to depolarization and neurotransmitters, are enriched in neurons. We analyzed the interactions of endogenous FAK+ and recombinant FAK+ isoforms containing amino acid insertions (boxes 6,7,28) with an array of SH3 domains and the c-Src SH2/SH3 domain tandem. Endogenous FAK+ bound specifically to the SH3 domains of c-Src (but not n-Src), Fyn, Yes, phosphtidylinositol-3 kinase, amphiphysin II, amphiphysin I, phospholipase Cgamma and NH2-terminal Grb2. The inclusion of boxes 6,7 was associated with a significant decrease in the binding of FAK+ to the c-Src and Fyn SH3 domains, and a significant increase in the binding to the Src SH2 domain, as a consequence of the higher phosphorylation of Tyr-397. The novel interaction with the amphiphysin SH3 domain, involving the COOH-terminal proline-rich region of FAK, was confirmed by coimmunoprecipitation of the two proteins and a closely similar response to stimuli affecting the actin cytoskeleton. Moreover, an impairment of endocytosis was observed in synaptosomes after internalization of a proline-rich peptide corresponding to the site of interaction. The data account for the different subcellular distribution of FAK and Src kinases and the specific regulation of the transduction pathways linked to FAK activation in the brain and implicate FAK in the regulation of membrane trafficking in nerve terminals.  相似文献   

20.
Acylated SH4 domains represent N-terminal targeting signals that anchor peripheral membrane proteins such as Src kinases in the inner leaflet of plasma membranes. Here we provide evidence for a novel regulatory mechanism that may control the levels of SH4 proteins being associated with plasma membranes. Using a fusion protein of the SH4 domain of Leishmania HASPB and GFP as a model system, we demonstrate that threonine 6 is a substrate for phosphorylation. Substitution of threonine 6 by glutamate (to mimic a phosphothreonine residue) resulted in a dramatic redistribution from plasma membranes to intracellular sites with a particular accumulation in a perinuclear region. As shown by both pharmacological inhibition and RNAi-mediated down-regulation of the threonine/ serine-specific phosphatases PP1 and PP2A, recycling back to the plasma membrane required dephosphorylation of threonine 6. We provide evidence that a cycle of phosphorylation and dephosphorylation may also be involved in intracellular targeting of other SH4 proteins such as the Src kinase Yes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号