共查询到20条相似文献,搜索用时 9 毫秒
1.
Interleukin (IL)-1beta and IL-18 are structurally similar proteins that require caspase-1 processing for activation. Both proteins are released from the cytosol by unknown pathway(s). To better characterize the release pathway(s) for IL-1beta and IL-18 we evaluated the role of lipopolysaccharide priming, of interleukin-1beta-converting enzyme (ICE) inhibition, of human purinergic receptor (P2X(7)) function, and of signaling pathways in human monocytes induced by ATP. Monocytes rapidly processed and released both IL-1beta and IL-18 after exogenous ATP. Despite its constitutive cytosolic presence, IL-18 required lipopolysaccharide priming for the ATP-induced release. Neither IL-1beta nor IL-18 release was prevented by ICE inhibition, and IL-18 release was not induced by ICE activation itself. Release of both cytokines was blocked completely by a P2X7 receptor antagonist, oxidized ATP, and partially by an antibody to P2X(7) receptor. In evaluating the signaling components involved in the ATP effect, we identified that the protein-tyrosine kinase inhibitor, AG126, produced a profound inhibition of both ICE activation as well as release of IL-1beta/IL-18. Taken together, these results suggest that, although synthesis of IL-1beta and IL-18 differ, ATP-mediated release of both cytokines requires a priming step but not proteolytically functional caspase-1. 相似文献
2.
We and others have shown previously that hairpin ribozyme genes, when stably expressed in cells, can reduce the steady-state levels of target mRNA and their cognate proteins. Despite this capability, ribozymes have not been as widely used in knockdown experiments as one might expect, probably because specific rules governing the selection of ribozymes that will have high activity have not been described. In this report, we show that parallel screening of less than 10 ribozyme expression constructs, with no advanced knowledge of cleavage activity or preselection, can efficiently identify knockdown ribozymes. This empirical selection study, which used interleukin-1beta (IL-1beta) and IL-1beta converting enzyme (ICE) as example targets, resulted in (1) the rapid identification of ribozymes that can reduce the production of IL-1beta in THP-1 cultures by 10-fold and (2) the consequent direct generation of stable knockdown cell lines. We conclude, based on these and similar studies, that parallel screening of ribozyme constructs could be used in high throughput gene functional analysis programs as a means of rapidly generating specific knockdown cell lines. 相似文献
3.
Interleukin 1 is a pleuripotent cytokine shown to synergize with IL-2 in the generation of lymphokine-activated killer (LAK) cells, when cultured with human peripheral blood mononuclear cells (PBMC) or peripheral blood lymphocytes (PBL). When IL-1 and low dose IL-2 are added in combination, both LAK cytotoxicity and proliferation are increased in short-term (5-6 day) and long-term (12-14 day) cultures compared with cells activated with IL-2 alone. The purpose of this study was to examine the contribution of tumor necrosis factor (TNF-alpha), lymphotoxin (LT, or TNF-beta) and the TNF receptor in the observed IL-1/IL-2 mediated synergy. Analysis of lymphocyte culture supernatants using the L929 bioassay and by specific ELISAs demonstrated an increased production of both TNF and LT in those cells cultured with IL-1 and IL-2. Utilizing specific neutralizing antisera, our experiments demonstrated the biologic activity of both cytokines, with LT-specific antibodies producing the greatest diminution of IL-1/IL-2 stimulated cell proliferation and cytotoxicity. The addition of IL-1 and IL-2 in combination markedly upregulated TNF-receptor expression (measured by Scatchard analysis) in comparison with cells stimulated with IL-2 alone. Characterization of the TNF-R by flow cytometric analysis revealed increased membrane expression of the 75 kDa, but not the 55 kDa, TNF binding protein as a result of IL-1 costimulation. 相似文献
4.
The balance between IL-1 and its naturally occurring inhibitor IL-1 receptor antagonist (IL-1ra) is critical in determining the inflammatory response. Four splice variants of the IL-1ra gene have been identified; one secreted (sIL-1ra) and three intracellular (icIL-1ra1-3). The biological roles of the intracellular isoforms remain largely unclear. We wished to determine whether icIL-1ra1 had intracellular functions regulating IL-1 signalling. Signalling was determined using an NF-kappaB reporter assay measuring induction of the IL-8 promoter in transfected cells. Over-expression of icIL-1ra1 in HeLa cells had no effect on IL-1 stimulated IL-8 activity. In contrast over-expression of sIL-ra significantly attenuated IL-1 activity. In addition, transfection of icIL-1ra1 in HeLa cells did not cause inhibition of IL-8 promoter activity following over-expression of the IL-1 signalling components MyD88, IRAK-1, TRAF-6, Ikappakappabeta or RelA. This implies that icIL-1ra1 does not act to alter IL-1 mediated intracellular signalling in this system. We investigated whether ATP and/or over-expression of the P2X7 receptor caused icIL-1ra1 inhibition of IL-1beta mediated IL-8 reporter activation, by permitting its release. In HeLa cells, no effect of icIL-1ra1 was observed in ATP stimulated and/or P2X7 transfected cells, compared to a significant inhibition in sIL-1ra transfected cells. However, in endothelial cells stimulated with ATP, the released fraction was effective in attenuating IL-1beta activation of the IL-8 reporter. These results suggest that icIL-1ra1 does not act at an intracellular level to alter IL-1 mediated signalling, and is effective in inhibiting IL-1 responses only when released in an ATP-dependent and cell type specific manner. 相似文献
5.
Imbalance production between interleukin-1beta (IL-1beta) and IL-1 receptor antagonist (IL-1Ra) in bronchial asthma 总被引:7,自引:0,他引:7
Mao XQ Kawai M Yamashita T Enomoto T Dake Y Sasaki S Kataoka Y Fukuzumi T Endo K Sano H Aoki T Kurimoto F Adra CN Shirakawa T Hopkin JM 《Biochemical and biophysical research communications》2000,276(2):607-612
Genes of the IL-1 family encode three different peptides, IL-1alpha, IL-1beta, and IL-1Ra, respectively. IL-1 operates through IL-1RI, and is involved in airway inflammation in asthmatic subjects, whereas IL-1Ra appears to be a specific competitive inhibitor of IL-1. All genes are on chromosome 2q12-21 where genomewide searches have identified linkage for asthma. To test whether variants of IL-1 relate to asthma, we conducted a genetic association study in a Japanese population. We show that the A2 allele of IL1RN (encoding IL-1Ra) associates with nonatopic asthma [OR = 5.71, 95% CI: 1.63-19. 8, Pc = 0.007]. Both atopic and nonatopic asthmatics with the A2 allele had significantly lower serum IL-1Ra levels in both types of asthmatics. Peripheral blood cells from asthmatics with A2 alleles, however, produced as much IL-1 as did those with A1 homozygotes. Since Th1 and Th2 cytokines differentially regulate the ratio between IL-1beta and IL-1Ra, these findings suggest that dysregulation of IL-1beta/IL-1Ra, probably due to interaction between epithelium and immuno-competent cells in the airway, is important in asthma inflammation. 相似文献
6.
Virus infection activates IL-1 beta and IL-18 production in human macrophages by a caspase-1-dependent pathway. 总被引:8,自引:0,他引:8
J Pirhonen T Sareneva M Kurimoto I Julkunen S Matikainen 《Journal of immunology (Baltimore, Md. : 1950)》1999,162(12):7322-7329
Monocytes and macrophages play a significant role in host's defense system, since they produce a number of cytokines in response to microbial infections. We have studied IL-1 beta, IL-18, IFN-alpha/beta, and TNF-alpha gene expression and protein production in human primary monocytes and GM-CSF-differentiated macrophages during influenza A and Sendai virus infections. Virus-infected monocytes released only small amounts of IL-1 beta or IL-18 protein, whereas 7- and 14-day-old GM-CSF-differentiated macrophages readily produced these cytokines. Constitutive expression of proIL-18 was seen in monocytes and macrophages, and the expression of it was enhanced during monocyte/macrophage differentiation. Expression of IL-18 mRNA was clearly induced only by Sendai virus, whereas both influenza A and Sendai viruses induced IL-1 beta mRNA expression. Since caspase-1 is known to cleave proIL-1 beta and proIL-18 into their mature, active forms, we analyzed the effect of a specific caspase-1 inhibitor on virus-induced IL-1 beta and IL-18 production. The release of IL-1 beta and IL-18, but not that of IFN-alpha/beta or TNF-alpha, was clearly blocked by the inhibitor. Our results suggest that the cellular differentiation is a crucial factor that affects the capacity of monocytes/macrophages to produce IL-1 beta and IL-18 in response to virus infections. Furthermore, the virus-induced activation of caspase-1 is required for the efficient production of biologically active IL-1 beta and IL-18. 相似文献
7.
Yong Seok Choi Jin Kyun Park Eun Ha Kang Young-Kyun Lee Tae Kyun Kim Jin-Haeng Chung Jason M Zimmerer William E Carson III Yeong Wook Song Yun Jong Lee 《Arthritis research & therapy》2013,15(6):R191
Introduction
Although IL-1β is believed to be crucial in the pathogenesis of osteoarthritis (OA), the IL-1β blockade brings no therapeutic benefit in human OA and results in OA aggravation in several animal models. We explored the role of a cytokine signaling 1 (SOCS1) suppressor as a regulatory modulator of IL-1β signaling in chondrocytes.Methods
Cartilage samples were obtained from patients with knee OA and those without OA who underwent surgery for femur-neck fracture. SOCS1 expression in cartilage was assessed with immunohistochemistry. IL-1β-induced SOCS1 expression in chondrocytes was analyzed with quantitative polymerase chain reaction and immunoblot. The effect of SOCS1 on IL-1β signaling pathways and the synthesis of matrix metalloproteinases (MMPs) and aggrecanase-1 was investigated in SOCS1-overexpressing or -knockdown chondrocytes.Results
SOCS1 expression was significantly increased in OA cartilage, especially in areas of severe damage (P < 0.01). IL-1β stimulated SOCS1 mRNA expression in a dose-dependent pattern (P < 0.01). The IL-1β-induced production of MMP-1, MMP-3, MMP-13, and ADAMTS-4 (aggrecanase-1, a disintegrin and metalloproteinase with thrombospondin motifs 4) was affected by SOCS1 overexpression or knockdown in both SW1353 cells and primary human articular chondrocytes (all P values < 0.05). The inhibitory effects of SOCS1 were mediated by blocking p38, c-Jun N-terminal kinase (JNK), and nuclear factor κB (NF-κB) activation, and by downregulating transforming growth factor-β-activated kinase 1 (TAK1) expression.Conclusions
Our results show that SOCS1 is induced by IL1-β in OA chondrocytes and suppresses the IL-1β-induced synthesis of matrix-degrading enzymes by inhibiting IL-1β signaling at multiple levels. It suggests that the IL-1β-inducible SOCS1 acts as a negative regulator of the IL-1β response in OA cartilage. 相似文献8.
Blasi F Riccio M Brogi A Strazza M Taddei ML Romagnoli S Luddi A D'Angelo R Santi S Costantino-Ceccarini E Melli M 《Biological chemistry》1999,380(2):259-264
The RT-PCR analysis of RNA from progenitor and differentiated primary rat oligodendrocytes, and from the oligodendrocyte CG-4 cell line, shows the presence of the IL-1beta mRNA, the type I IL-1beta receptor and the IL-1 receptor accessory protein in these cells. In situ hybridization of a rat IL-1beta probe to primary progenitor and differentiated rat oligodendrocytes results in a positive signal. The double hybridization of the IL-1beta probe, together with an oligodendrocyte-specific differentiation marker, to sections of postnatal rat brain at different stages of differentiation is also positive. The double immuno-labelling technique utilized indicates coincidence of the signals on the brain slices. The results show that IL-1beta mRNA is constitutively expressed in rat brain oligodendrocytes from 1 day after birth onward. In agreement with this observation, CG-4 cells, primary progenitor and differentiated rat oligodendrocytes are positively stained by antibodies against IL-1beta. Postnatal brain slices from 1 and 4 day old and adult rats, labelled with a double immunofluorescence technique, are also stained by antibodies against IL-1beta. This signal coincides with that of antibodies against oligodendrocyte-specific surface markers. We conclude that IL-1beta is constitutively expressed in rat brain progenitor and differentiated oligodendrocytes. 相似文献
9.
Regulation of the interleukin-1 beta (IL-1 beta) gene by mycobacterial components and lipopolysaccharide is mediated by two nuclear factor-IL6 motifs. 总被引:8,自引:1,他引:8 下载免费PDF全文
The cytokines interleukin-1 beta (IL-1 beta) and tumor necrosis factor alpha (TNF-alpha) are released by mononuclear phagocytes in vitro after stimulation with mycobacteria and are considered to mediate pathophysiologic events, including granuloma formation and systemic symptoms. We demonstrated that the Mycobacterium tuberculosis cell wall component lipoarabinomannan (LAM) is a very potent inducer of IL-1 beta gene expression in human monocytes and investigated the mechanism of this effect. We localized the LAM-, lipopolysaccharide (LPS)-, and TNF-alpha-inducible promoter activity to a -131/+15 (positions -131 to +15) DNA fragment of the IL-1 beta gene by deletion analysis and chloramphenicol acetyltransferase assay. Within this DNA fragment, there were two novel 9-bp motifs (-90/-82 and -40/-32) with high homology to the nuclear factor-IL6 (NF-IL6) binding site. Site-directed mutagenesis demonstrated that the two NF-IL-6 motifs could be independently activated by LAM, LPS, or TNF-alpha and that they acted in an orientation-independent manner. DNA mobility shift assay revealed specific binding of nuclear protein(s) from LAM-, LPS-, or TNF-alpha-stimulated THP-1 cells to the NF-IL6 motifs. We conclude that the two NF-IL6 sites mediate induction of IL-1 beta in response to the stimuli LAM, LPS, and TNF-alpha. 相似文献
10.
In the current study we sought to determine whether hypothalamic IL-1beta is regulated by melanocortin signaling and if melanocortin-induced changes in energy balance are dependent on IL-1beta. A melanocortin agonist, MTII, increased hypothalamic IL-1beta mRNA levels by two-fold, whereas a melanocortin antagonist, SHU9119, blunted lipopolysaccharide (LPS)-mediated increase of hypothalamic IL-1beta content. Pharmacological or genetic disruption of IL-1 receptor signaling prevented MTII-mediated reductions in locomotor activity, but did not reduce MTII-induced anorexia. These data suggest a potential role for central melanocortins in mediating the decrease of ambulation characteristic of the 'sickness' response. 相似文献
11.
Shrestha S Bhattarai BR Cho H Choi JK Cho H 《Bioorganic & medicinal chemistry letters》2007,17(10):2728-2730
Ertiprotafib was developed as an inhibitor of PTP1B for the treatment of type 2 diabetes. It normalized the plasma glucose and insulin levels in diabetic animal models, and progressed to a phase II clinical trial. Multiple in vivo targets of Ertiprotafib, in addition to PTP1B inhibition, have been suggested. In this study, Ertiprotafib was also shown to be a potent inhibitor of IkappaB kinase beta (IKK-beta), with an IC(50) of 400nM. 相似文献
12.
A A?t-Ikhlef D Hantaz-Ambroise C Jacque L Belkadi F Rieger 《Cellular and molecular biology, including cyto-enzymology》1999,45(4):393-400
The wobbler mutant mouse (wr/wr) displays motoneuron degeneration and astrocyte reactivity in the spinal cord. We have previously reported that, in vitro, primary wobbler astrocytes display morphological and biochemical changes. In this report, we show that wobbler astrocyte conditioned medium enhances the in vitro proliferation of normal neonatal primary astrocytes. This stimulated proliferation is correlated with high levels of IL1-beta and TNF-alpha cytokines in the conditioned medium of wobbler astrocytes. Neutralizing antibodies directed against both IL1-beta and TNF-alpha block the wobbler astrocyte conditioned medium-enhanced astrocyte proliferation. Moreover, IL1-beta and TNF-alpha mRNAs are elevated in the wobbler spinal cord. All these data suggest that diffusible IL1-beta and TNF-alpha are involved in the processus of astrogliosis observed in the wobbler spinal cord. 相似文献
13.
14.
Yang J Si T Ling Y Ruan Y Han Y Wang X Zhou M Zhang D Zhang H Kong Q Liu C Li X Yu Y Liu S Shu L Ma D Wei J Zhang D 《Life sciences》2003,72(26):3017-3021
An increasing amount of evidence suggests that the pathophysiology of schizophrenia is associated with the abnormal immune system, and cytokines may be important in schizophrenia. Among these cytokines, interleukin-1beta may play a role in the pathogenesis of the disease. In the present study, we investigated the genetic association between a TaqI polymorphism in interleukin-1beta gene (IL-1beta) and schizophrenia by restriction fragment length polymorphism (RFLP) analysis among 132 Chinese families of Han descent. The transmission disequilibrium test (TDT) did not demonstrate an allelic association with schizophrenia. Our results suggested that the TaqI polymorphism in IL-1beta gene might not confer increased susceptibility for schizophrenia. 相似文献
15.
The interleukin-1 (IL-1) receptor colocalizes with focal adhesion complexes (FACs), actin-enriched structures involved in cell adhesion and signaling in fibroblasts and chondrocytes. The colocalization of FACs and IL-1 receptors has been implicated in the restriction of IL-1 signaling transduction to ERK; however, the mechanism of this restriction and the requirement of IL-1 receptor-associated proteins have not been characterized. We determined if the association kinetics of the interleukin-1 receptor-associated kinase (IRAK) colocalizes with FACs and the requirement for IRAK in IL-1-dependent ERK activation. Human gingival fibroblasts were incubated with collagen-coated beads to induce the assembly of FACs at sites of cell-bead contact. Immunoblot analysis of bead-isolated FACs showed a time-dependent assembly of the focal adhesion proteins beta-actin, vinculin, and talin, which was blocked by the actin monomer sequestering toxin latrunculin B. Although no IRAK was isolated with FACs from unstimulated cells, phosphorylated IRAK was transiently associated with FACs isolated from IL-1beta-stimulated fibroblasts. Fibroblasts plated on tissue culture plastic (which permitted the formation of focal adhesions) showed phosphorylation of ERK, JNK, and p38. Cells plated on poly-l-lysine (to prevent the formation of focal adhesions) showed activation only of JNK and p38. ERK activation was partially restored by incubating cells plated on poly-l-lysine with collagen-coated beads before IL-1 stimulation. Cells treated with latrunculin B or swinholide A, which caused a progressive depolymerization of actin filaments, showed a reduction or elimination of IL-1-induced ERK activation, respectively. Fibroblasts electroinjected with a mouse monoclonal anti-IRAK antibody to block the recruitment of IRAK into FACs failed to activate ERK after IL-1 treatment, indicating that FAC-associated IRAK is required for the activation of ERK. These data indicate that the integrity of actin filament arrays and the recruitment of IRAK into focal adhesions are involved in the restriction of IL-1 signaling to ERK. 相似文献
16.
Spontaneous human monocyte apoptosis utilizes a caspase-3-dependent pathway that is blocked by endotoxin and is independent of caspase-1. 总被引:5,自引:0,他引:5
Apoptosis is an important mechanism for regulating the numbers of monocytes and macrophages. Caspases (cysteine-aspartate-specific proteases) are key molecules in apoptosis and require proteolytic removal of prodomains for activity. Caspase-1 and caspase-3 have both been connected to apoptosis in other model systems. The present study attempted to delineate what role these caspases play in spontaneous monocyte apoptosis. In serum-free conditions, monocytes showed a commitment to apoptosis as early as 4 h in culture, as evidenced by caspase-3-like activity. Apoptosis, as defined by oligonucleosomal DNA fragmentation, was prevented by a generalized caspase inhibitor, z-VAD-FMK, and the more specific caspase inhibitor, z-DEVD-FMK. The caspase activity was specifically attributable to caspase-3 by the identification of cleavage of procaspase-3 to active forms by immunoblots and by cleavage of the fluorogenic substrate DEVD-AFC. In contrast, a caspase-1 family inhibitor, YVAD-CMK, did not protect monocytes from apoptosis, and the fluorogenic substrate YVAD-AFC failed to show an increase in activity in apoptotic monocytes. When cultured with LPS (1 microgram/ml), monocyte apoptosis was prevented, as was the activation of caspase-3. Unexpectedly, LPS did not change baseline caspase-1 activity. These findings link spontaneous monocyte apoptosis to the proteolytic activation of caspase-3. 相似文献
17.
Kumar S Hanning CR Brigham-Burke MR Rieman DJ Lehr R Khandekar S Kirkpatrick RB Scott GF Lee JC Lynch FJ Gao W Gambotto A Lotze MT 《Cytokine》2002,18(2):61-71
We have recently reported the identification of four novel members of the interleukin-1 (IL-1) family which we designated as IL-1 homologue 1-4 (IL-1H1-4). These proteins exhibit significant sequence homology to other members of the IL-1 family. Of these homologues, only IL-1H4 (renamed IL-1F7b) was predicted to contain a propeptide domain and a caspase cleavage site. We now report that caspase-1 cleaves IL-1F7b at the predicted site to generate mature IL-1F7b. Caspase-4 was also able to process IL-1F7b, albeit inefficiently. Other caspases and Granzyme-B did not cleave IL-1F7b. Furthermore, adenovirus-mediated expression of IL-1F7b in HEK 293 cells led to in situ processing and secretion of mature IL-1F7b. In a screen to identify a potential receptor, both pro and mature IL-1F7b bound to the soluble IL-18 receptor alpha-Fc (IL-18Ralpha-Fc) but not to the soluble IL-1R-Fc or ST2R-Fc fusion proteins. Mature IL-1F7b bound to the IL-18Ralpha-Fc protein with higher affinity than the pro form, although the affinities for both proteins were significantly lower than that observed for IL-18. Consistent with this observation, only IL-18 and not IL-1F7b induced IFN-gamma production by KG1a cells. We also report that pro and mature IL-1F7b form homodimers with association constants of 4 microM and 5 nM, respectively, suggesting biological relevance to IL-1F7b processing. Finally, we have localized the expression of IL-1F7b protein in discrete cell populations including plasma cells and tumor cells. These data suggest that IL-1F7b may be involved in immune response, inflammatory diseases and/or cancer. 相似文献
18.
Interleukin 1 beta (IL-1beta) is often associated with thyroidal autoimmune diseases. This cytokine has been largely described to trigger an important biological signalling pathway: the sphingomyelin/ceramide pathway. In this report we show that IL-1beta induces ceramide formation and sphingomyelin degradation in porcine thyroid cells via the activation of a neutral sphingomyelinase. Among the potential targets of IL-1beta and ceramides action, we have investigated the role of an atypical protein kinase C (PKC), the PKC zeta. We show that both IL-1beta and ceramides lead to an increase of PKCzeta activity. All these results suggest an important role for ceramides and IL-1beta in regulation of thyroid function, leading to cell survival or to apoptosis. 相似文献
19.
Scheinfeld MH Ghersi E Davies P D'Adamio L 《The Journal of biological chemistry》2003,278(43):42058-42063
Alzheimer's disease (AD) is genetically linked to the processing of amyloid beta protein precursor (AbetaPP). Aside from being the precursor of the amyloid beta (Abeta) found in plaques in the brains of patients with AD, little is known regarding the functional role of AbetaPP. We have recently reported biochemical evidence linking AbetaPP to the JNK signaling cascade by finding that JNK-interacting protein-1 (JIP-1) binds AbetaPP. In order to study the functional implications of this interaction we assayed the carboxyl-terminal of AbetaPP for phosphorylation. We found that the threonine 668 within the AbetaPP intracellular domain (AID or elsewhere AICD) is indeed phosphorylated by JNK1. We surprisingly found that although JIP-1 can facilitate this phosphorylation, it is not required for this process. We also found that JIP-1 only facilitated phosphorylation of AbetaPP but not of the two other family members APLP1 (amyloid precursor-like protein 1) and APLP2. Understanding the connection between AbetaPP phosphorylation and the JNK signaling pathway, which mediates cell response to stress may have important implications in understanding the pathogenesis of Alzheimer's disease. 相似文献
20.
The growth inhibitor of African green monkey (BSC-1) cells is transforming growth factors beta 1 and beta 2 总被引:1,自引:0,他引:1
The growth inhibitory activity in conditioned medium of African green monkey kidney epithelial (BSC-1) cells that has been shown to arise, at least in part, from transforming growth factor beta 2 (TGF-beta 2) [Hanks, S. K., Armour, R., Baldwin, J. H., Maldonado, F., Spiess, J., & Holley, R. W. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 79-82] was tested for growth inhibitory activity prior to and following acidification. Similar to TGF-beta 1 from human platelets, the inhibitory activity from BSC-1 cells demonstrated an 8-10-fold stimulation following acidification, showing that the activity was secreted from the cells in latent form. Conditioned medium from BSC-1 cells was collected, acidified, and fractionated by procedures that separate TGF-beta 1 and -2. Biological activity was assayed by using the BSC-1 cell proliferation assay. Two active proteins with properties similar to known TGF-beta 1 and TGF-beta 2 were identified. Identity was confirmed by using immunological and amino acid sequencing techniques. These results were consistent with Northern blot analysis of total BSC-1 RNA, using cDNA probes for TGF-beta 1 and TGF-beta 2, which demonstrated strong signals for both mRNAs. Metabolic labeling in conjunction with two-dimensional gel electrophoresis revealed that the cells secrete approximately 10% TGF-beta 1 and 90% TGF-beta 2. 相似文献