首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The four salt bridges (Asp(222)-Arg(281), Arg(233)-Glu(288), Arg(234)-Glu(274), and Asp(242)-Arg(265)) linking domains I and II in Cry1Aa were abolished individually in alpha-helix 7 mutants D222A, R233A, R234A, and D242A. Two additional mutants targeting the fourth salt bridge (R265A) and the double mutant (D242A/R265A) were rapidly degraded during trypsin activation. Mutations were also introduced in the corresponding Cry1Ac salt bridge (D242E, D242K, D242N, and D242P), but only D242N and D242P could be produced. All toxins tested, except D242A, were shown by light-scattering experiments to permeabilize Manduca sexta larval midgut brush border membrane vesicles. The three active Cry1Aa mutants at pH 10.5, as well as D222A at pH 7.5, demonstrated a faster rate of pore formation than Cry1Aa, suggesting that increases in molecular flexibility due to the removal of a salt bridge facilitated toxin insertion into the membrane. However, all mutants were considerably less toxic to M. sexta larvae than to the respective parental toxins, suggesting that increased flexibility made the toxins more susceptible to proteolysis in the insect midgut. Interdomain salt bridges, especially the Asp(242)-Arg(265) bridge, therefore contribute greatly to the stability of the protein in the larval midgut, whereas their role in intrinsic pore-forming ability is relatively less important.  相似文献   

2.
To elucidate a role of the Src homology 3 (SH3)-conserved acidic residue Asp21 of the phosphatidylinositol 3-kinase (PI3K) SH3 domain, structural changes induced by the D21N mutation (Asp21 --> Asn) were examined by circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopies. In the previous study, we demonstrated that environmental alterations occurred at the side chains of Trp55 and some Tyr residues from the comparison of the near-UV CD spectra of the PI3K SH3 domain with or without a D21N mutation [Okishio, N., et al. (2000) Biopolymers 57, 208-217]. In this work, the affected Tyr residues were identified as Tyr14 and Tyr73 by the CD analysis of a series of mutants, in which every single Tyr residue was replaced by a Phe residue with or without a D21N mutation. The (1)H and (15)N resonance assignments of the PI3K SH3 domain and its D21N mutant revealed that significant chemical shift changes occurred to the aromatic side-chain protons of Trp55 and Tyr14 upon the D21N mutation. All these aromatic residues are implicated in ligand recognition. In addition, the NMR analysis showed that the backbone conformations of Lys15-Asp23, Gly54-Trp55, Asn57-Gly58, and Gly67-Pro70 were affected by the D21N mutation. Furthermore, the (15)N[(1)H] nuclear Overhauser effect values of Tyr14, Glu19, and Glu20 were remarkably changed by the mutation. These results show that the D21N mutation causes structural deformation of more than half of the ligand binding cleft of the domain and provide evidence that Asp21 plays an important role in forming a well-ordered ligand binding cleft in cooperation with the RT loop (Lys15-Glu20).  相似文献   

3.
Jao SC  Huang LF  Hwang SM  Li WS 《Biochemistry》2006,45(6):1547-1553
Analysis of the pH-rate profile for catalysis of bradykinin cleavage by aminopeptidase P (AMPP), a manganese-containing hydrolase from Escherichia coli, was carried out to show that optimal catalytic function is obtained at neutral pH. On the basis of information derived from the crystal structure, peptidase sequence alignments, and the hydrolysis of organophosphate triesters, active site residues Arg153, Arg370, Trp88, Tyr387, and Arg404 were identified as potential catalytic residues. Site-directed mutagenesis was used to substitute these residues with Leu, Ala, Trp, Lys, or Phe. The kcat values for the Arg153, Arg370, and Trp88 mutants were nearly the same as that for the wild-type enzyme. The kcat values of the R404K, R404A, and Y387A mutants were lower by factors of 285, 400, and 16, respectively. Inductively coupled plasma mass spectrometry and circular dichroism spectroscopy showed that Arg404 is not required for metal chelation or stabilization of protein secondary structure. The hydrogen bond network observed between the side chains of conserved residues Asp260, Arg404, and Tyr387 indicated that Arg404 participates in proton relay. This was further evidenced by the return of activity in the R404A mutant by the addition of guanidine. Also, reduced catalytic efficiency in the R404K mutant, which conserves the positive charge at the bridge site, shows that only the arginine group of Arg404 (not the ammonium group of Lys404) can participate in the hydrogen bond network. The hydrogen bond interaction between the Arg404 and the Tyr387 ring hydroxyl group is suggested by the reduced catalytic efficiency of the Y387F mutant.  相似文献   

4.
Human soluble epoxide hydrolase (hsEH) has been shown to play a role in regulating blood pressure and inflammation. HsEH consists of an N-terminal phosphatase and a C-terminal epoxide hydrolase domain. In the present study, we examined the effects of polymorphisms in the hsEH gene on phosphatase activity, enzyme stability, and protein quaternary structure. The results showed that mutants Lys55Arg, Arg103Cys, Cys154Tyr, Arg287Gln, and the Arg103Cys/Arg287Gln (double mutant) have significantly lower phosphatase activity compared to the most frequent allele (MFA) of hsEH. In addition, the Lys55Arg, Arg103Cys, Cys154Tyr, Arg287Gln, and the double mutant have significantly lower kcat/Km values. The stabilities at 37 degrees C of purified Arg287Gln and Arg103Cys/Arg287Gln mutants were also significantly reduced compared to the MFA. HPLC size-exclusion studies showed that the MFA exists predominantly as a dimer. However, the Arg287Gln and Arg103Cys/Arg287Gln mutants show increased concentration of the monomer. We conclude that the Arg287Gln polymorphism disrupts putative intra- and inter-monomeric salt-bridges responsible for dimerization.  相似文献   

5.
Pro-domain of a cysteine cathepsin contains a highly conserved Ex2Rx2Fx2Nx3Ix3N (ERFNIN) motif. The zymogen structure of cathepsins revealed that the Arg(R) residue of the motif is a central residue of a salt-bridge/H-bond network, stabilizing the scaffold of the pro-domain. Importance of the arginine is also demonstrated in studies where a single mutation (Arg?→?Trp) in human lysosomal cathepsin K (hCTSK) is linked to a bone-related genetic disorder “Pycnodysostosis”. In the present study, we have characterized in vitro Arg?→?Trp mutant of hCTSK and the same mutant of hCTSL. The R?→?W mutant of hCTSK revealed that this mutation leads to an unstable zymogen that is spontaneously activated and auto-proteolytically degraded rapidly. In contrast, the same mutant of hCTSL is sufficiently stable and has proteolytic activity almost like its wild-type counterpart; however it shows an altered zymogen activation condition in terms of pH, temperature and time. Far and near UV circular dichroism and intrinsic tryptophan fluorescence experiments have revealed that the mutation has minimal effect on structure of the protease hCTSL. Molecular modeling studies shows that the mutated Trp31 in hCTSL forms an aromatic cluster with Tyr23 and Trp30 leading to a local stabilization of pro-domain and supplements the loss of salt-bridge interaction mediated by Arg31 in wild-type. In hCTSK-R31W mutant, due to presence of a non-aromatic Ser30 residue such interaction is not possible and may be responsible for local instability. These differences may cause detrimental effects of R31W mutation on the regulation of hCTSK auto-activation process compared to altered activation process in hCTSL.  相似文献   

6.
To identify amino acids of cytochrome P450d (P450d) which participate in the interaction with NADPH-cytochrome P450 reductase, we changed conserved ionic amino acids of P450d to others by site-directed mutagenesis. Turnover numbers (0.032-0.008 min-1) of purified mutants Lys94-Glu, Lys99-Glu, Lys105-Glu, Lys440-Glu, Lys453-Glu, Arg455-Glu, and Lys463-Glu toward 7-ethoxycoumarin were much lower than that (0.380 min-1) of the wild type at 25 degrees C. Reduction rates (less than 0.054 s-1) of the heme of all mutants (0.1 microM) in the presence of NADPH and the reductase (0.3 microM) were much lower than that (5.9 s-1) of the wild type. Furthermore, a turnover number (0.042 min-1) of a microsomal triple mutant (Arg135-Leu + Arg136-Leu + Arg137-Leu) of a conserved Arg cluster was much lower than that (0.674 min-1) of the wild type at 37 degrees C. Thus, we suggest that Lys94, Lys99, Lys105, Lys440, Lys453, Arg455, Lys463, and perhaps the Arg cluster Arg135-Arg136-Arg137 of P450d will participate in the intermolecular electron transfer process by forming ionic bridges between the two proteins and/or by orienting appropriate geometry for electron transfer on the interfacial surface between the two proteins.  相似文献   

7.
We identified a unique conserved salt bridge Arg89-Glu74 inside the protein core of adrenodoxin, which ensures proper orientation between the [2Fe-2S] cluster-containing domain and the recognition helix. Incorporation and geometry of the redox center were essentially preserved in the mutants E74D, R89A, and R89K as judged by EPR spectroscopy. However, absorption and CD spectra pointed out essential conformational changes in the protein vicinity of the [2Fe-2S] cluster. Judged by essentially increased K(m) and K(d) values and changed redox properties, mutations resulted in displacement of the recognition helix and hindered proper docking of the protein with both adrenodoxin reductase and CYP11A1. Substitutions of Arg89 and Glu74 induce thermodynamic destabilization attested by dramatically decreased unfolding temperature (T(d)) and enthalpy (Delta(d)H(T(d))). The heat capacity change of denaturation (Delta(d)C(p)) was significantly decreased for the mutants, suggesting that parts of the polypeptide chain normally hidden inside the protein core are exposed to the solvent in these variants.  相似文献   

8.
17beta-Hydroxysteroid dehydrogenase from the fungus Cochliobolus lunatus (17beta-HSDcl) is an NADPH-dependent member of the short-chain dehydrogenase/ reductase superfamily. To study the catalytic properties of this enzyme, we prepared several specific mutations of 17beta-HSDcl (Tyr167Phe, His164Trp/Gly, Tyr212Ala). Wild-type 17beta-HSDcl and the 17beta-HSDcl mutants were evaluated by chromatographic, kinetic and thermodynamic means. The Tyr167Phe mutation resulted in a complete loss of enzyme activity, while substitution of His164 with Trp and Gly both resulted in higher specificity number (V/K) for the steroid substrates, which are mainly a consequence of easier accessibility of steroid substrates to the active-site hollow under optimized conditions. The Tyr212Ala mutant showed increased activity in the oxidative direction, which appears to be a consequence of increased NADPH dissociation. The kinetic characterizations and thermodynamic analyses also suggest that His164 and Tyr212 in 17beta-HSDcl have a role in the opening and closing of the active site of this enzyme and in the discrimination between oxidized and reduced coenzyme.  相似文献   

9.
The structural gene for pyruvate kinase from Bacillus stearothermophilus has been cloned in Escherichia coli and sequenced. The open reading frame from the ATG start codon to the TAG stop codon is 1482 base-pairs and encodes a peptide of relative molecular mass 52,967. In the expression vector pKK223-3, containing the synthetic tac promoter, the gene is overexpressed in E. coli cells to an estimated level of 30% total soluble cell protein. A purification procedure for the overexpressed protein has been established. The construction and characterization of a pair of mutant proteins has given insight into the structural basis of allosteric regulation in the tetrameric enzyme. Substituting tryptophan for tyrosine at position 466 (mutant Trp466-->Tyr) resulted in an activated form of the enzyme, having a reduced K1/2 for the substrate phosphoenolpyruvate. We propose that the characteristics of this mutant might be the result of bulk removal releasing steric inhibition to the formation of an interdomain salt bridge between Asp356 and Arg444. The regulatory behaviour of the double mutant produced by making the additional substitution aspartate for glutamate at position 356 (Trp466-->Tyr/Asp356-->Glu) corroborates this. The position of the salt bridge is such that it might be pivotal to the conformation of a pocket that is proposed to open up when the active R-conformation is adopted. We suggest that the mechanism of activation of B. stearothermophilus pyruvate kinase by ribose-5-phosphate might hinge on an interaction with, or indirectly through, residue Trp466, removing it from the vicinity of the potential salt bridge between Asp356 and Arg444 and thus effecting a closing together of the protein structure concomitant with an opening up of the pocket region.  相似文献   

10.

Background

Stabilization strategies adopted by proteins under extreme conditions are very complex and involve various kinds of interactions. Recent studies have shown that a large proportion of proteins have their N- and C-terminal elements in close contact and suggested they play a role in protein folding and stability. However, the biological significance of this contact remains elusive.

Methodology

In the present study, we investigate the role of N- and C-terminal residue interaction using a family 10 xylanase (BSX) with a TIM-barrel structure that shows stability under high temperature, alkali pH, and protease and SDS treatment. Based on crystal structure, an aromatic cluster was identified that involves Phe4, Trp6 and Tyr343 holding the N- and C-terminus together; this is a unique and important feature of this protein that might be crucial for folding and stability under poly-extreme conditions.

Conclusion

A series of mutants was created to disrupt this aromatic cluster formation and study the loss of stability and function under given conditions. While the deletions of Phe4 resulted in loss of stability, removal of Trp6 and Tyr343 affected in vivo folding and activity. Alanine substitution with Phe4, Trp6 and Tyr343 drastically decreased stability under all parameters studied. Importantly, substitution of Phe4 with Trp increased stability in SDS treatment. Mass spectrometry results of limited proteolysis further demonstrated that the Arg344 residue is highly susceptible to trypsin digestion in sensitive mutants such as ΔF4, W6A and Y343A, suggesting again that disruption of the Phe4-Trp6-Tyr343 (F-W-Y) cluster destabilizes the N- and C-terminal interaction. Our results underscore the importance of N- and C-terminal contact through aromatic interactions in protein folding and stability under extreme conditions, and these results may be useful to improve the stability of other proteins under suboptimal conditions.  相似文献   

11.
Previous research in our laboratory comparing the three-dimensional structural elements of two highly homologous alcohol dehydrogenases, one from the mesophile Clostridium beijerinckii (CbADH) and the other from the extreme thermophile Thermoanaerobacter brockii (TbADH), suggested that in the thermophilic enzyme, an extra intrasubunit ion pair (Glu224-Lys254) and a short ion-pair network (Lys257-Asp237-Arg304-Glu165) at the intersubunit interface might contribute to the extreme thermal stability of TbADH. In the present study, we used site-directed mutagenesis to replace these structurally strategic residues in CbADH with the corresponding amino acids from TbADH, and we determined the effect of such replacements on the thermal stability of CbADH. Mutations in the intrasubunit ion pair region increased thermostability in the single mutant S254K- and in the double mutant V224E/S254K-CbADH, but not in the single mutant V224E-CbADH. Both single amino acid replacements, M304R- and Q165E-CbADH, in the region of the intersubunit ion pair network augmented thermal stability, with an additive effect in the double mutant M304R/Q165E-CbADH. To investigate the precise mechanism by which such mutations alter the molecular structure of CbADH to achieve enhanced thermostability, we constructed a quadruple mutant V224E/S254K/Q165E/M304R-CbADH and solved its three-dimensional structure. The overall results indicate that the amino acid substitutions in CbADH mutants with enhanced thermal stability reinforce the quaternary structure of the enzyme by formation of an extended network of intersubunit ion pairs and salt bridges, mediated by water molecules, and by forming a new intrasubunit salt bridge.  相似文献   

12.
The relationship between salt bridges and stability/enzymatic activity is unclear. We studied this relationship by systematic alanine-scanning mutation analysis using the typical M4 family metalloprotease Pseudomonas aeruginosa elastase (PAE, also known as pseudolysin) as a model. Structural analysis revealed seven salt bridges in the PAE structure. We constructed ten mutants for six salt bridges. Among these mutants, six (Asp189Ala, Arg179Ala, Asp201Ala, Arg205Ala, Arg245Ala and Glu249Ala) were active and four (Asp168Ala, Arg198Ala, Arg253Ala, and Arg279Ala) were inactive. Five mutants were purified, and their catalytic efficiencies (k cat/K m), half-lives (t 1/2) and thermal unfolding curves were compared with those of PAE. Mutants Asp189Ala and Arg179Ala both showed decreased thermal stabilities and increased activities, suggesting that the salt bridge Asp189-Arg179 stabilizes the protein at the expense of catalytic efficiency. In contrast, mutants Asp201Ala and Arg205Ala both showed slightly increased thermal stability and slightly decreased activity, suggesting that the salt bridge Asp201-Arg205 destabilizes the protein. Mutant Glu249Ala is related to a C-terminal salt bridge network and showed both decreased thermal stability and decreased activity. Furthermore, Glu249Ala showed a thermal unfolding curve with three discernable states [the native state (N), the partially unfolded state (I) and the unfolded state (U)]. In comparison, there were only two discernable states (N and U) in the thermal unfolding curve of PAE. These results suggest that Glu249 is important for catalytic efficiency, stability and unfolding cooperativity. This study represents a systematic mutational analyses of salt bridges in the model metalloprotease PAE and provides important insights into the structure-function relationship of enzymes.  相似文献   

13.
Guan L  Hu Y  Kaback HR 《Biochemistry》2003,42(6):1377-1382
Major determinants for substrate recognition by the lactose permease of Escherichia coli are at the interface between helices IV (Glu126, Ala122), V (Arg144, Cys148), and VIII (Glu269). We demonstrate here that Trp151, one turn of helix V removed from Cys148, also plays an important role in substrate binding probably by aromatic stacking with the galactopyranosyl ring. Mutants with Phe or Tyr in place of Trp151 catalyze active lactose transport with time courses nearly the same as wild type. In addition, apparent K(m) values for lactose transport in the Phe or Tyr mutants are only 6- or 3-fold higher than wild type, respectively, with a comparable V(max). Surprisingly, however, binding of high-affinity galactoside analogues is severely compromised in the mutants; the affinity of mutant Trp151-->Phe or Trp151-->Tyr is diminished by factors of at least 50 or 20, respectively. The results demonstrate that Trp151 is an important component of the binding site, probably orienting the galactopyranosyl ring so that important H-bond interactions with side chains in helices IV, V, and VIII can be realized. The results are discussed in the context of a current model for the binding site.  相似文献   

14.
The hGSTM3 subunit, which is preferentially expressed in germ-line cells, has the greatest sequence divergence among the human mu class glutathione S-transferases. To determine a structural basis for the catalytic differences between hGSTM3-3 and other mu class enzymes, chimeric proteins were designed by modular interchange of the divergent C-terminal domains of hGSTM3 and hGSTM5 subunits. Replacement of 24 residues of the C-terminal segment of either subunit produced chimeric enzymes with catalytic properties that reflected those of the wild-type enzyme from which the C-terminus had been derived. Deletion of the tripeptide C-terminal extension found only in the hGSTM3 subunit had no effect on catalysis. The crystal structure determined for a ligand-free hGSTM3 subunit indicates that an Asn212 residue of the C-terminal domain is near a hydrophobic cluster of side chains formed in part by Ile13, Leu16, Leu114, Ile115, Tyr119, Ile211, and Trp218. Accordingly, a series of point mutations were introduced into the hGSTM3 subunit, and it was indeed determined that a Y119F mutation considerably enhanced the turnover rate of the enzyme for nucleophilic aromatic substitution reactions. A more striking effect was observed for a double mutant (Y119F/N212F) which had a k(cat)/K(m)(CDNB) value of 7.6 x 10(5) s(-)(1) M(-)(1) as compared to 4.9 x 10(3) s(-)(1) M(-)(1) for the wild-type hGSTM3-3 enzyme. The presence of a polar Asn212 in place of a Phe residue found in the cognate position of other mu class glutathione S-transferases, therefore, has a marked influence on catalysis by hGSTM3-3.  相似文献   

15.
Nitric-oxide synthase (NOS) requires the cofactor, (6R)-5,6,7, 8-tetrahydrobiopterin (H4B), for catalytic activity. The crystal structures of NOSs indicate that H4B is surrounded by aromatic residues. We have mutated the conserved aromatic acids, Trp(676), Trp(678), Phe(691), His(692), and Tyr(706), together with the neighboring Arg(414) residue within the H4B binding region of full-length neuronal NOS. The W676L, W678L, and F691L mutants had no NO formation activity and had very low heme reduction rates (<0.02 min(-1)) with NADPH. Thus, it appears that Trp(676), Trp(678), and Phe(691) are important to retain the appropriate active site conformation for H4B/l-Arg binding and/or electron transfer to the heme from NADPH. The mutation of Tyr(706) to Leu and Phe decreased the activity down to 13 and 29%, respectively, of that of the wild type together with a dramatically increased EC(50) value for H4B (30-40-fold of wild type). The Tyr(706) phenol group interacts with the heme propionate and Arg(414) amine via hydrogen bonds. The mutation of Arg(414) to Leu and Glu resulted in the total loss of NO formation activity and of the heme reduction with NADPH. Thus, hydrogen bond networks consisting of the heme carboxylate, Tyr(706), and Arg(414) are crucial in stabilizing the appropriate conformation(s) of the heme active site for H4B/l-Arg binding and/or efficient electron transfer to occur.  相似文献   

16.
An aromatic amino acid, Tyr or Trp, located in the esterase active site wall, is highly conserved, with hyperthermophilic esterases showing preference for Tyr and lower temperature esterases showing preference for Trp. In this study, we investigated the role of Tyr182 in the active site wall of hyperthermophilic esterase EstE1. Mutation of Tyr to Phe or Ala had a moderate effect on EstE1 thermal stability. However, a small-to-large mutation such as Tyr to His or Trp had a devastating effect on thermal stability. All mutant EstE1 enzymes showed reduced catalytic rates and enhanced substrate affinities as compared with wild-type EstE1. Hydrogen bond formation involving Tyr182 was unimportant for maintaining EstE1 thermal stability, as the EstE1 structure is already adapted to high temperatures via increased intramolecular interactions. However, removal of hydrogen bond from Tyr182 significantly decreased EstE1 catalytic activity, suggesting its role in stabilization of the active site. These results suggest that Tyr is preferred over a similarly sized Phe residue or bulky His or Trp residue in the active site walls of hyperthermophilic esterases for stabilizing the active site and regulating catalytic activity at high temperatures.  相似文献   

17.
Point mutations at the dimer interface of the homodimeric enzyme ascorbate peroxidase (APx) were constructed to assess the role of quaternary interactions in the stability and activity of APx. Analysis of the APx crystal structure shows that Glu112 forms a salt bridge with Lys20 and Arg24 of the opposing subunit near the axis of dyad symmetry between the subunits. Two point mutants, E112A and E112K, were made to determine the effects of a neutral (alanine) and repulsive (lysine) mutation on dimerization, stability, and activity. Gel filtration analysis indicated that the ratio of the monomer to dimer increased as the dimer interface interactions went from attractive to repulsive. Differential scanning calorimetry (DSC) data exhibited a decrease in both the transition temperature (Tm) and enthalpy of unfolding (deltaHc) with Tm = 58.3 +/- 0.5 degrees C, 56.0 +/- 0.8 degrees C, and 53.0 +/- 0.9 degrees C and deltaHc = 245 +/- 29 kcal/mol, 199 +/- 38 kcal/mol, and 170 +/- 25 kcal/mol for wild-type APx, E112A, and E112K, respectively. Similar changes were observed based on thermal melting curves obtained by absorption spectroscopy. No change in enzyme activity was found for the E112A mutant, and only a 25% drop in activity was observed for the E112K mutant which demonstrates that the non-Michaelis Menten kinetics of APx is not due to the APx oligomeric structure. The cryogenic crystal structures of the wild-type and mutant proteins show that mutation induced changes are limited to the dimer interface including an alteration in solvent structure.  相似文献   

18.
Annexin V is an abundant eukaryotic protein that binds phospholipid membranes in a Ca(2+)-dependent manner. In the present studies, site-directed mutagenesis was combined with x-ray crystallography and solution liposome binding assays to probe the functional role of a cluster of interfacial basic residues in annexin V. Four mutants were investigated: R23E, K27E, R61E, and R149E. All four mutants exhibited a significant reduction in adsorption to phospholipid membranes relative to the wild-type protein, and the R23E mutation was the most deleterious. Crystal structures of wild-type and mutant proteins were similar except for local changes in salt bridges involving basic cluster residues. The combined data indicate that Arg(23) is a major determinant for interfacial phospholipid binding and participates in an intermolecular salt bridge that is key for trimer formation on the membrane surface. Together, crystallographic and solution data provide evidence that the interfacial basic cluster is a locus where trimerization is synergistically coupled to membrane phospholipid binding.  相似文献   

19.
Aromatic amino acid residues within kringle domains play important roles in the structural stability and ligand-binding properties of these protein modules. In previous investigations, it has been demonstrated that the rigidly conserved Trp25 is primarily involved in stabilizing the conformation of the kringle-2 domain of tissue-type plasminogen activator (K2tpA), whereas Trp63, Trp74, and Tyr76 function in omega-amino acid ligand binding, and, to varying extents, in stabilizing the native folding of this kringle module. In the current study, the remaining aromatic residues of K2tPA, viz., Tyr2, Phe3, Tyr9, Tyr35, Tyr52, have been subjected to structure-function analysis via site-directed mutagenesis studies. Ligand binding was not significantly influenced by conservative amino acid mutations at these residues, but a radical mutation at Tyr35 destabilized the interaction of the ligand with the variant kringle. In addition, as reflected in the values of the melting temperatures, changes at Tyr9 and Tyr52 generally destabilized the native structure of K2tPA to a greater extent than changes at Tyr2, Phe3, and Tyr35. Taken together, results to date show that, in concert with predictions from the crystal structure of K2tpA, ligand binding appears to rely most on the integrity of Trp63 and Trp74, and aromaticity at Tyr76. With regard to aromatic amino acids, kringle folding is most dependent on Tyr9, Trp25, Tyr52, Trp63, and Tyr76. As yet, no obvious major roles have been uncovered for Tyr2, Phe3, or Tyr35 in K2tpA.  相似文献   

20.
About one-third of the amino acid residues conserved in all scorpion long chain Na+ channel toxins are aromatic residues, some of which constitute the so-called "conserved hydrophobic surface." At present, in-depth structure-function studies of these aromatic residues using site-directed mutagenesis are still rare. In this study, an effective yeast expression system was used to study the role of seven conserved aromatic residues (Tyr5, Tyr14, Tyr21, Tyr35, Trp38, Tyr42, and Trp47) from the scorpion toxin BmK M1. Using site-directed mutagenesis, all of these aromatic residues were individually substituted with Gly in association with a more conservative substitution of Phe for Tyr5, Tyr14, Tyr35, or Trp47. The mutants, which were expressed in Saccharomyces cerevisiae S-78 cells, were then subjected to a bioassay in mice, electrophysiological characterization on cloned Na+ channels (Nav1.5), and CD analysis. Our results show an eye-catching correlation between the LD50 values in mice and the EC50 values on Nav1.5 channels in oocytes, indicating large mutant-dependent differences that emphasize important specific roles for the conserved aromatic residues in BmK M1. The aromatic side chains of the Tyr5, Tyr35, and Trp47 cluster protruding from the three-stranded beta-sheet seem to be essential for the structure and function of the toxin. Trp38 and Tyr42 (located in the beta2-sheet and in the loop between the beta2- and beta3-sheets, respectively) are most likely involved in the pharmacological function of the toxin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号