首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The expression of the Neisseria gonorrhoeae opacity protein (Op, protein II), a major antigenic determinant of the outer membrane, is subject to frequent phase transitions. At least nine expression loci (opaE) are involved in the production of a large number of serologically distinct Op types. Using opa-specific oligonucleotides as probes in genomic blots, we detect Op-related gene sequences (opr) in N. meninglitidis as well as in N. lactamica. DNA sequence analysis of such opr genes derived from N. meninglitidis reveals distinct regions of homology with gonococcal opa E genes. As shown in the immunoblot, the proteins encoded by ops and opr are serologically related. Like the opa E genes, the 5′-coding sequences of the opr genes include a repetitive sequence composed of pentameric CTCTT units. The number of these coding repeat (CR) units is variable. This finding, together with the observation that all opr genes are constitutively transcribed, regardless of the status of protein production, suggests a translational control mechanism identical to that of the opa genes in gonococci. The related structures and control mechanisms of opa and opr genes imply a general significance of their gene products for the pathogenic character of the investigated Neisseria species.  相似文献   

2.
3.
Opacity (Opa) proteins are a family of antigenically variable outer-membrane proteins of Neisseria meningitidis. Even among clonally related epidemic meningococcal isolates, there is greater variation of Opa protein expression than can be accounted for by the opa gene repertoire of any individual strain. We characterized the opa genes of eight closely related Isolates of serogroup A N. meningitidis (subgroup IV-1) from a recent meningitis epidemic in West Africa. DNA sequence analysis and Southern blot experiments indicated that changes occurred in the opa genes of these bacteria as they spread through the human population, over a relatively short period of time. Such changes in one or a few loci within a clonal population are referred to as microevolution. The distribution of sequences present in hypervariable (HV) regions of the opa genes suggests that duplication of all or part of opa genes into other opa loci changed the repertoire of Opa proteins that could be expressed. Additional variability in this gene family appears to have been introduced by horizontal exchange of opa sequences from other meningococcal strains and from Neisseria gonorrhoeae. These results indicate that processes of recombination and genetic exchange contributed to variability in major surface antigens of this clonal population of pathogenic bacteria.  相似文献   

4.
Opa proteins are major proteins involved in meningococcal colonization of the nasopharynx and immune interactions. Opa proteins undergo phase variation (PV) due to the presence of the 5′-CTCTT-3′ coding repeat (CR) sequence. The dynamics of PV of meningococcal Opa proteins is unknown. Opa PV, including the effect of transformation on PV, was assessed using a panel of Opa-deficient strains of Neisseria meningitidis. Analysis of Opa expression from UK disease-causing isolates was undertaken. Different opa genes demonstrated variable rates of PV, between 6.4 ×10–4 and 6.9 ×10–3 per cell per generation. opa genes with a longer CR tract had a higher rate of PV (r 2=0.77, p=0.1212). Bacterial transformation resulted in a 180-fold increase in PV rate. The majority of opa genes in UK disease isolates (315/463, 68.0%) were in the ‘on’ phase, suggesting the importance of Opa proteins during invasive disease. These data provide valuable information for the first time regarding meningococcal Opa PV. The presence of Opa PV in meningococcal populations and high expression of Opa among invasive strains likely indicates the importance of this protein in bacterial colonization in the human nasopharynx. These findings have potential implications for development of vaccines derived from meningococcal outer membranes.  相似文献   

5.
In order to produce a successful infection, Neisseria gonorrhoeae (GC) must attach to and invade mucosal epithelial cells. To identify GC gene products involved in this early interaction with host cells we constructed a gene bank derived from a clinical isolate of GC, and isolated a clone which had the capacity to adhere to the human endometrial adenocarcinoma tissue-culture line HEC-1-B. The cloned sequence was identified as a member of the opa gene family whose protein products have been associated with virulence. The GC chromosome contains numerous variant opa genes which, in MS11, are designated opaA-K. Previous work showed that expression of opaC confers a highly invasive phenotype upon strain MS11. When our cloned opa gene was mutated and returned to the GC MS11A chromosome by transformation and homologous recombination, we isolated one transformation that was significantly reduced in its invasive capacity. The locus mutated in this transformant was identified as opaH. Our resuits indicate that invasive-ness of GC for human epithelail cells can be determined by more than one opa gene in strain MS11 A.  相似文献   

6.
The simultaneous and quantitative analysis of the expression of multiple genes helps to shed light on gene regulatory networks. We established a method for multi‐color fluorescence in situ hybridization (mFISH) for the analysis of cell‐type diversification and developmental gene regulation in the embryo of the spider Parasteatoda tepidariorum. This mFISH technique allowed quadruple staining using four types of labels for RNA probes, digoxigenin, fluorescein, biotin, and dinitrophenyl, together with different fluorescent tyramides. To validate the usability of mFISH, we conducted four experiments. First, we distinguished similar gene expression patterns with mFISH, which showed overlaps and differences in the expression domains of anterior patterning hedgehog (hh), orthodenticle (otd), and labial genes at a cellular resolution. Second, we used mFISH to identify early cell types that are internalized on the anterior side. We found that fork head‐positive cells were subdivided into two cell types, 012_A08‐positive endoderm cells and twist‐positive mesoderm cells. Third, we quantified the ratio of expression levels of the odd‐paired (opa) gene in the chelicera and pedipalp segments based on the intensity of mFISH signals. Finally, we combined mFISH with embryonic RNA interference. It was possible to identify opa knockdown cell clones and detect the specific reduction of opa and the upregulation of otd and hh expression levels in the same cell clone that formed in the head region. This study proposes that mFISH is a powerful tool for the cell‐level analysis of gene regulation and quantification in the spider model.  相似文献   

7.
Summary The gene master mind (mam) is located in bands 50C23-D1 of the second chromosome of Drosophila melanogaster. mam is one of the neurogenic genes, whose function is necessary for a normal segregation of neural and epidermal lineages during embryonic development. Loss of function of any of the neurogenic genes results in a mis-routeing into neurogenesis of cells that normally would have given rise to epidermis. We describe here the molecular cloning of 198 kb of genomic DNA containing the mam gene. Ten different mam mutations (point mutants and chromosomal aberrations) have been mapped within 45 kb of the genomic walk. One of the mutations, an insertion of a P-element, was originally recovered from a dysgenic cross. Four different wild-type revertants of this mutation were characterized at the molecular level and, although modifications of the insertions were found, in no case was the transposon completely excised. An unusually high number of the repetitive opa sequence, and of an additional previously unknown element, which we have called N repeat, are scattered throughout the 45 kb where the mam mutations map. The functional significance of these repeats is unknown.  相似文献   

8.
9.
The Neisseria gonorrhoeae (the gonococcus [Gc]) opacity-associated (Opa) proteins mediate bacterial binding and internalization by human epithelial cells and neutrophils (polymorphonuclear leukocytes [PMNs]). Investigating the contribution of Opa proteins to gonococcal pathogenesis is complicated by high-frequency phase variation of the opa genes. We therefore engineered a derivative of Gc strain FA1090 in which all opa genes were deleted in frame, termed Opaless. Opaless Gc remained uniformly Opa negative (Opa), whereas cultures of predominantly Opa parental Gc and an intermediate lacking the “translucent” subset of opa genes (ΔopaBEGK) stochastically gave rise to Opa-positive (Opa+) bacterial colonies. Loss of Opa expression did not affect Gc growth. Opaless Gc survived exposure to primary human PMNs and suppressed the PMN oxidative burst akin to parental, Opa bacteria. Notably, unopsonized Opaless Gc was internalized by adherent, chemokine-primed, primary human PMNs, by an actin-dependent process. When a non-phase-variable, in-frame allele of FA1090 opaD was reintroduced into Opaless Gc, the bacteria induced the PMN oxidative burst, and OpaD+ Gc survived less well after exposure to PMNs compared to Opa bacteria. These derivatives provide a robust system for assessing the role of Opa proteins in Gc biology.  相似文献   

10.
You C  Dai X  Li X  Wang L  Chen G  Xiao J  Wu C 《Plant molecular biology》2010,74(6):617-629
Leucine-rich repeat proteins constitute a large gene family and play important roles in plant growth and development. Among them, Arabidopsis PIRL is a plant-specific class of intracellular Ras-group-related leucine-rich repeat proteins. In this study, we identified eight homologues of PIRLs in rice and designated them as OsIRL proteins. We described the gene structures, chromosome localizations, protein motifs, and phylogenetic relationships of the OsIRL gene family. The expression profiles of OsIRL genes were analyzed throughout the entire rice life cycle, along with light and three hormone stress conditions, using quantitative RT-PCR and microarray data. All OsIRL genes were expressed in at least one experimental stage and exhibited divergent expression patterns, with several genes showing preferential expression at specific stages. OsIRL4 and OsIRL5 showed higher expression levels under light compared to dark. OsIRL4 and OsIRL7 exhibited significant differential expression in response to hormone treatments. Six T-DNA or Tos17 insertion lines for five individual OsIRL genes were identified and examined morphologically. The comprehensive expression profile elucidated in this investigation together with the characterized insertion lines will provide a solid foundation for in-depth dissection of OsIRL functions.  相似文献   

11.
Neisseria meningitidis is a major global pathogen causing invasive disease with a mortality of 5–10%. Most disease in developed countries is caused by serogroup B infection, against which there is no universal vaccine. Opacity-associated adhesin (Opa) proteins are major meningococcal outer membrane proteins, which have shown recent promise as a potential novel vaccine. Immunisation of mice with different Opa variants elicited high levels of meningococcal-specific bactericidal antibodies, demonstrating proof in principle for this approach. Opa proteins are critical in meningococcal pathogenesis, mediating bacterial adherence to host cells, and modulating human cellular immunity via interactions with T cells and neutrophils, although there are conflicting data regarding their effects on CD4+ T cells. We constructed Opa-positive and Opa-negative meningococcal strains to allow further evaluation of Opa as a vaccine component. All four opa genes from N. meningitidis strain H44/76 were sequentially disrupted to construct all possible combinations of N. meningitidis strains deficient in one, two, three, or all four opa genes. The transformations demonstrated that homologous recombination of exogenous DNA into the meningococcal chromosome can occur with as little as 80 bp, and that minor sequence differences are permissible. Anti-Opa bactericidal antibody responses following immunisation of mice with recombinant Opa were specific to the Opa variant used in immunisation. No immunomodulatory effects were observed when Opa was contained within meningococcal outer membrane vesicles (OMVs), compared to Opa-negative OMVs. These observations support the incorporation of Opa in meningococcal vaccines.  相似文献   

12.

Background  

Alpha-isopropylmalate synthase (α-IPMS) is the key enzyme that catalyzes the first committed step in the leucine biosynthetic pathway. The gene encoding α-IPMS in Mycobacterium tuberculosis, leuA, is polymorphic due to the insertion of 57-bp repeat units referred to as Variable Number of Tandem Repeats (VNTR). The role of the VNTR found within the M. tuberculosis genome is unclear. To investigate the role of the VNTR in leuA, we compared two α-IPMS proteins with different numbers of amino acid repeats, one with two copies and the other with 14 copies. We have cloned leuA with 14 copies of the repeat units into the pET15b expression vector with a His6-tag at the N-terminus, as was previously done for the leuA gene with two copies of the repeat units.  相似文献   

13.
The expression of the Neisseria gonorrhoeae opacity protein (Op, protein II), a major antigenic determinant of the outer membrane, is subject to frequent phase transitions. At least nine expression loci (opaE) are involved in the production of a large number of serologically distinct Op types. Using opa-specific oligonucleotides as probes in genomic blots, we detect Op-related gene sequences (opr) in N. meningitidis as well as in N. lactamica. DNA sequence analysis of such opr genes derived from N. meningitidis reveals distinct regions of homology with gonococcal opa E genes. As shown in the immunoblot, the proteins encoded by opa and opr are serologically related. Like the opaE genes, the 5'-coding sequences of the opr genes include a repetitive sequence composed of pentameric CTCTT units. The number of these coding repeat (CR) units is variable. This finding, together with the observation that all opr genes are constitutively transcribed, regardless of the status of protein production, suggests a translational control mechanism identical to that of the opa genes in gonococci. The related structures and control mechanisms of opa and opr genes imply a general significance of their gene products for the pathogenic character of the investigated Neisseria species.  相似文献   

14.
Ankyrin repeat (ANK) containing proteins comprise a large protein family. Although many members of this family have been implicated in plant growth, development and signal transduction, only a few ANK genes have been reported in rice. In this study, we analyzed the structures, phylogenetic relationship, genome localizations and expression profiles of 175 ankyrin repeat genes identified in rice (OsANK). Domain composition analysis suggested OsANK proteins can be classified into ten subfamilies. Chromosomal localizations of OsANK genes indicated nine segmental duplication events involving 17 genes and 65 OsANK genes were involved in tandem duplications. The expression profiles of 158 OsANK genes were analyzed in 24 tissues covering the whole life cycle of two rice genotypes, Minghui 63 and Zhenshan 97. Sixteen genes showed preferential expression in given tissues compared to all the other tissues in Minghui 63 and Zhenshan 97. Nine genes were preferentially expressed in stamen of 1 day before flowering, suggesting that these genes may play important roles in pollination and fertilization. Expression data of OsANK genes were also obtained with tissues of seedlings subjected to three phytohormone (NAA, GA3 and KT) and light/dark treatments. Eighteen genes showed differential expression with at least one phytohormone treatment while under light/dark treatments, 13 OsANK genes showed differential expression. Our data provided a very useful reference for cloning and functional analysis of members of this gene family in rice. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
Complete sequence determination of the brachiopod Lingula anatina mtDNA (28,818 bp) revealed an organization that is remarkably atypical for an animal mt-genome. In addition to the usual set of 37 animal mitochondrial genes, which make up only 57% (16,555 bp) of the entire sequence, the genome contains lengthy unassigned sequences. All the genes are encoded in the same DNA strand, generally in a compact way, whereas the overall gene order is highly divergent in comparison with known animal mtDNA. Individual genes are generally longer and deviate considerably in sequence from their homologues in other animals. The genome contains two major repeat regions, in which 11 units of unassigned sequences and six genes (atp8, trnM, trnQ, trnV, and part of cox2 and nad2) are found in repetition, in the form of nested direct repeats of unparalleled complexity. One of the repeat regions contains unassigned repeat units dispersed among several unique sequences, novel repetitive structure for animal mtDNAs. Each of those unique sequences contains an open reading frame for a polypeptide between 80 and 357 amino acids long, potentially encoding a functional molecule, but none of them has been identified with known proteins. In both repeat regions, tRNA genes or tRNA gene-like sequences flank major repeated units, supporting the view that those structures play a role in the mitochondrial gene rearrangements. Although the intricate repeated organization of this genome can be explained by recurrent tandem duplications and subsequent deletions mediated by replication errors, other mechanisms, such as nonhomologous recombinations, appear to explain certain structures more easily.  相似文献   

16.
Summary Meiotic recombination was analyzed between two twelve-copy arrays of a gene amplification at theCUP1 locus ofSaccharomyces cerevisiae. Utilizing Southern analysis to identify spores with non-parental repeat arrays, we find that approximately 11% of a sample with 202 unselected tetrads possess at least one nonparental spore array. Both reciprocal and non-reciprocal changes are observed. The data suggest a model in which frequent mispairing among identical copies of the 2.0 kb repeat unit leads to the formation of unpaired loops containing integral numbers of repeat units. In this model, conversions involving the loops lead to non-reciprocal changes in arrays: about half are associated with reciprocal exchange, and net increases in repeat unit numbers occur about as frequently as net decreases. Thus, the known properties of gene conversion can account for all the segregations we observe.  相似文献   

17.
A Stern  M Brown  P Nickel  T F Meyer 《Cell》1986,47(1):61-71
The chromosome of N. gonorrhoeae contains several complete expression genes coding for variant opacity proteins. DNA sequence analysis of two opacity genes derived from the same locus (opaE1) of two isogenic gonococcal variants reveals common and variable regions in these genes. Genomic blotting experiments using synthetic probes suggest gene conversion as a principle for the assembly of variant sequence information in opacity genes. The 5' region of opacity genes is composed of identical pentameric pyrimidine units (CTCTT) encoding the hydrophobic portion of the opacity leader peptide. This coding repeat is variable in a given locus with respect of the number of pentameric units. While all expression loci in a single cell are constitutively transcribed, the production of opacity proteins is determined by the coding repeat sequence on the translational level.  相似文献   

18.
The synucleins     
  相似文献   

19.
Summary The four Balbiani ring (BR) genes, BR1, BR2.1, BR2.2, and BR6 in the midge Chironomus tentans constitute a gene family encoding secretory proteins with molecular weights of approximately 106 daltons. The major part of each gene is known to consist of tandemly organized composite repeat units resulting in a hierarchic repeat arrangement.Here, we present the sequence organization of the 5 part of the BR2.2 and BR6 genes and describe the entire transcribed part of the two genes. As the BR1 and BR2.1 genes were also fully characterized recently, this allows the comparison of all genes in the BR gene family.All four genes share the same exon-intron structure and have evolved by gene duplications starting from a common ancestor, having the same overall organization as the BR genes of today.The genes encode proteins that have an approximately 10,000-amino acid residue extended central domain, flanked by a highly charged, 200-residue amino-terminal domain and a globular 110-residue carboxy-terminal domain. Exons 1–3 and the beginning of exon 4 encode the amino-terminal domain, which throughout contains many regions built from short repeats. These repeats are often degenerate as to repeat unit and sequence and are present in different numbers between the genes. In several instances these repeat structures, however, are conserved at the protein level where they form positively or negatively charged regions.Each BR gene has a 26–38-kb-long exon 4, which consists of an array of 125–150 repeat units and encodes the central domain. The number of repeat units appears to be largely preserved by selection and all repeat units in the array are very efficiently homogenized. Occasionally variant repeats have been introduced, presumably from another BR gene by gene conversion, and spread within the array.Introns 1–3 at the 5 end of the genes have diverged extensively in sequence and length between the genes. In contrast, intron 4 at the 3 end is virtually identical between three of the four genes, suggesting that gene conversion homogenizes the 3 ends of the genes, but not the 5 ends. Offprint requests to: L. Wieslander  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号