首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The importance of conjugation as a mechanism to spread biofilm determinants among microbial populations was illustrated with the gram-positive bacterium Lactococcus lactis. Conjugation triggered the enhanced expression of the clumping protein CluA, which is a main biofilm attribute in lactococci. Clumping transconjugants further transmitted the biofilm-forming elements among the lactococcal population at a much higher frequency than the parental nonclumping donor. This cell-clumping-associated high-frequency conjugation system also appeared to serve as an internal enhancer facilitating the dissemination of the broad-host-range drug resistance gene-encoding plasmid pAMβ1 within L. lactis, at frequencies more than 10,000 times higher than those for the nonclumping parental donor strain. The implications of this finding for antibiotic resistance gene dissemination are discussed.  相似文献   

2.
Conjugation was used to construct nisin-producing Lactococcus lactis subsp. cremoris strains. Recipients were obtained by electroporation of L. lactis subsp. cremoris strains with the drug resistance plasmid pGK13 or pGB301. A method, direct-plate conjugation, was developed in which donor and recipient cells were concentrated and then combined directly on selective media. This method facilitated transfer of the nisin-sucrose (Nip+ Suc+) phenotype from the donor strain, L. lactis subsp. lactis 11454, to three L. lactis subsp. cremoris recipient strains. Nip+ Suc+ L. lactis subsp. cremoris transconjugants were obtained at frequencies which ranged from 10(-7) to 10(-8) per donor CFU. DNA-DNA hybridization to transconjugant DNAs, performed with an oligonucleotide probe synthesized to detect the nisin precursor gene, showed that this gene was transferred during conjugation but was not associated with detectable plasmid DNA. Further investigation indicated that L. lactis subsp. cremoris Nip+ Suc+ transconjugants retained the recipient strain phenotype with respect to bacteriophage resistance and acid production in milk. Results suggested that it would be feasible to construct nisin-producing L. lactis subsp. cremoris strains for application as mixed and multiple starter systems. Additionally, the direct-plate conjugation method required less time than filter or milk agar matings and may also be useful for investigations of conjugal mechanisms in these organisms.  相似文献   

3.
Conjugation was used to construct nisin-producing Lactococcus lactis subsp. cremoris strains. Recipients were obtained by electroporation of L. lactis subsp. cremoris strains with the drug resistance plasmid pGK13 or pGB301. A method, direct-plate conjugation, was developed in which donor and recipient cells were concentrated and then combined directly on selective media. This method facilitated transfer of the nisin-sucrose (Nip+ Suc+) phenotype from the donor strain, L. lactis subsp. lactis 11454, to three L. lactis subsp. cremoris recipient strains. Nip+ Suc+ L. lactis subsp. cremoris transconjugants were obtained at frequencies which ranged from 10(-7) to 10(-8) per donor CFU. DNA-DNA hybridization to transconjugant DNAs, performed with an oligonucleotide probe synthesized to detect the nisin precursor gene, showed that this gene was transferred during conjugation but was not associated with detectable plasmid DNA. Further investigation indicated that L. lactis subsp. cremoris Nip+ Suc+ transconjugants retained the recipient strain phenotype with respect to bacteriophage resistance and acid production in milk. Results suggested that it would be feasible to construct nisin-producing L. lactis subsp. cremoris strains for application as mixed and multiple starter systems. Additionally, the direct-plate conjugation method required less time than filter or milk agar matings and may also be useful for investigations of conjugal mechanisms in these organisms.  相似文献   

4.
The transferability of a large plasmid that harbors a tetracycline resistance gene tet (S), to fish and human pathogens was assessed using electrotransformation and conjugation. The plasmid, originally isolated from fish intestinal Lactococcus lactis ssp. lactis KYA-7, has potent antagonistic activity against the selected recipients ( Lactococcus garvieae and Listeria monocytogenes ), preventing conjugation. Therefore the tetracycline resistance determinant was transferred via electroporation to L . garvieae . A transformant clone was used as the donor in conjugation experiments with three different L. monocytogenes strains. To our knowledge, this is the first study showing the transfer of an antibiotic resistance plasmid from fish-associated lactic bacteria to L. monocytogenes , even if the donor L. garvieae was not the original host of the tetracycline resistance but experimentally created by electroporation. These results demonstrate that the antibiotic resistance genes in the fish intestinal bacteria have the potential to spread both to fish and human pathogens, posing a risk to aquaculture and consumer safety.  相似文献   

5.
Integration of pCI192, a pBR322-derived vector plasmid containing homology to the chromosomally located conjugative transposon Tn919 was observed in two strains that harbor Tn919, namely, Enterococcus faecalis GF590 and Lactococcus lactis subsp. lactis CH919. Hybridization analysis indicated that single-copy integration of the plasmid had occurred at low frequency. The Tn919::plasmid structure was conjugated from an E. faecalis donor to a L. lactis recipient, although at lower frequencies than was Tn919. Segregation of the tetracycline and chloramphenicol resistance markers during conjugation was observed. The integration strategy described allows for DNA manipulations to be performed in an easily manipulated model host strain with the subsequent transfer of integrated structures by conjugation to any strain capable of receiving Tn919. The results indicate that homologous recombination events may be used to introduce plasmid-encoded genes to the lactococcal chromosome.  相似文献   

6.
Integration of pCI192, a pBR322-derived vector plasmid containing homology to the chromosomally located conjugative transposon Tn919 was observed in two strains that harbor Tn919, namely, Enterococcus faecalis GF590 and Lactococcus lactis subsp. lactis CH919. Hybridization analysis indicated that single-copy integration of the plasmid had occurred at low frequency. The Tn919::plasmid structure was conjugated from an E. faecalis donor to a L. lactis recipient, although at lower frequencies than was Tn919. Segregation of the tetracycline and chloramphenicol resistance markers during conjugation was observed. The integration strategy described allows for DNA manipulations to be performed in an easily manipulated model host strain with the subsequent transfer of integrated structures by conjugation to any strain capable of receiving Tn919. The results indicate that homologous recombination events may be used to introduce plasmid-encoded genes to the lactococcal chromosome.  相似文献   

7.
Conjugation is an important mode of horizontal gene transfer in bacteria, enhancing the spread of antibiotic resistance. In clinical settings, biofilms are likely locations for antibiotic resistance transfer events involving nosocomial pathogens such as Enterococcus faecalis. Here we demonstrate that growth in biofilms alters the induction of conjugation by a sex pheromone in E. faecalis. Mathematical modelling suggested that a higher plasmid copy number in biofilm cells would enhance a switch-like behaviour in the pheromone response of donor cells with a delayed, but increased response to the mating signal. Alterations in plasmid copy number, and a bimodal response to induction of conjugation in populations of plasmid-containing donor cells were both observed in biofilms, consistent with the predictions of the model. The pheromone system may have evolved such that donor cells in biofilms are only induced to transfer when they are in extremely close proximity to potential recipients in the biofilm community. These results may have important implications for development of chemotherapeutic agents to block resistance transfer and treat biofilm-related clinical infections.  相似文献   

8.
The Ll.LtrB group II intron from the low-G+C gram-positive bacterium Lactococcus lactis was the first bacterial group II intron shown to splice and mobilize in vivo. This retroelement interrupts the relaxase gene (ltrB) of three L. lactis conjugative elements: plasmids pRS01 and pAH90 and the chromosomal sex factor. Conjugative transfer of a plasmid harboring a segment of the pRS01 conjugative plasmid including the Ll.LtrB intron allows dissemination of Ll.LtrB among L. lactis strains and lateral transfer of this retroelement from L. lactis to Enterococcus faecalis. Here we report the dissemination of the Ll.LtrB group II intron among L. lactis strains following conjugative transfer of the native chromosomally embedded L. lactis sex factor. We demonstrated that Ll.LtrB dissemination is highly variable and often more efficient from this integrative and conjugative element than from an engineered conjugative plasmid. Cotransfer among L. lactis strains of both Ll.LtrB-containing elements, the conjugative plasmid and the sex factor, was detected and shown to be synergistic. Moreover, following their concurrent transfer, both mobilizable elements supported the spread of their respective copies of the Ll.LtrB intron. Our findings explain the unusually high efficiency of Ll.LtrB mobility observed following conjugation of intron-containing plasmids.  相似文献   

9.
Considering that plasmid conjugation is a major driver for the dissemination of antimicrobial resistance in bacteria, this study aimed to investigate the effects of residual concentrations of antimicrobial growth promoters (AGPs) in poultry litter on the frequencies of IncFII-FIB plasmid conjugation among Escherichia coli organisms. A 2 × 5 factorial trial was performed in vitro, using two types of litter materials (sugarcane bagasse and wood shavings) and five treatments of litter: non-treated (CON), herbal alkaloid sanguinarine (SANG), AGPs monensin (MON), lincomycin (LCM) and virginiamycin (VIR). E. coli H2332 and E. coli J62 were used as donor and recipient strains, respectively. The presence of residues of monensin, lincomycin and virginiamycin increased the frequency of plasmid conjugation among E. coli in both types of litter materials. On the contrary, sanguinarine significantly reduced the frequency of conjugation among E. coli in sugarcane bagasse litter. The conjugation frequencies were significantly higher in wood shavings compared with sugarcane bagasse only in the presence of AGPs. Considering that the presence of AGPs in the litter can increase the conjugation of IncFII-FIB plasmids carrying antimicrobial resistance genes, the real impact of this phenomenon on the dissemination of antimicrobial resistant bacteria in the poultry production chain must be investigated.  相似文献   

10.
Biofilms cause much of all human microbial infections. Attempts to eradicate biofilm-based infections rely on disinfectants and antibiotics. Unfortunately, biofilm bacteria are significantly less responsive to antibiotic stressors than their planktonic counterparts. Sublethal doses of antibiotics can actually enhance biofilm formation. Here, we have developed a non-invasive microscopic image analyses to quantify plasmid conjugation within a developing biofilm. Corroborating destructive samples were analyzed by a cultivation-independent flow cytometry analysis and a selective plate count method to cultivate transconjugants. Increases in substrate loading altered biofilm 3-D architecture and subsequently affected the frequency of plasmid conjugation (decreases at least two times) in the absence of any antibiotic selective pressure. More importantly, donor populations in biofilms exposed to a sublethal dose of kanamycin exhibited enhanced transfer efficiency of plasmids containing the kanamycin resistance gene, up to tenfold. However, when stressed with a different antibiotic, imipenem, transfer of plasmids containing the kanR+ gene was not enhanced. These preliminary results suggest biofilm bacteria “sense” antibiotics to which they are resistant, which enhances the spread of that resistance. Confocal scanning microscopy coupled with our non-invasive image analysis was able to estimate plasmid conjugative transfer efficiency either averaged over the entire biofilm landscape or locally with individual biofilm clusters.  相似文献   

11.
Bacterial conjugation is the main mechanism for the dissemination of multiple antibiotic resistance in human pathogens. This dissemination could be controlled by molecules that interfere with the conjugation process. A search for conjugation inhibitors among a collection of 1,632 natural compounds, identified tanzawaic acids A and B as best hits. They specially inhibited IncW and IncFII conjugative systems, including plasmids mobilized by them. Plasmids belonging to IncFI, IncI, IncL/M, IncX and IncH incompatibility groups were targeted to a lesser extent, whereas IncN and IncP plasmids were unaffected. Tanzawaic acids showed reduced toxicity in bacterial, fungal or human cells, when compared to synthetic conjugation inhibitors, opening the possibility of their deployment in complex environments, including natural settings relevant for antibiotic resistance dissemination.  相似文献   

12.
In matings between Lactococcus lactis strains, the conjugative transposons Tn916 and Tn919 are found in the chromosome of the transconjugants in the same place as in the chromosome of the donor, indicating that no transposition has occurred. In agreement with this, the frequency of L. lactis transconjugants from intraspecies matings is the same whether the donor contains the wild-type form of the transposon or the mutant Tn916-int1, which has an insertion in the transposon's integrase gene. However, in intergeneric crosses with Bacillus subtilis or Enterococcus faecalis donors, Tn916 and Tn919 transpose to different locations on the chromosome of the L. lactis transconjugants. Moreover, Tn916 and Tn919 could not be transferred by conjugation from L. lactis and B. subtilis, E. faecalis or Streptococcus pyogenes. This suggests that excision of these elements does not occur in L. lactis. When cloned into E. coli with adjacent chromosomal DNA from L. lactis, the conjugative transposons were able to excise, transpose and promote conjugation. Therefore, the inability of these elements to excise in L. lactis is not caused by a permanent structural alteration in the transposon. We conclude that L. lactis lacks a factor required for excision of conjugative transposons.  相似文献   

13.
Nisin-producing transconjugants were generated by mating nisin-producing strains of Lactococcus lactis subsp. lactis with derivatives of L. lactis subsp. lactis LM0230. The sucrose-utilizing ability and reduced bacteriophage sensitivity were also transferred with the nisin-producing character. Pulsed-field gel electrophoretic analysis of genomic DNA from donor, recipient, and nisin-producing transconjugants indicated that 68 kbp of DNA was transferred from the chromosome of the donor into the chromosome of the recipient in the conjugation process. The location of the transferred nisin structural gene spaN in the transconjugant HID500 was not stable, and cultures of strain HID500 were a mixture of different genotypes in which spaN was located at different positions in the chromosome on different SmaI fragments. ApaI, BglI, BssHII, NciI, SalI, and SmaI digests of genomic DNA were used to map the location of spaN in a donor (DL11) and a nisin-producing transconjugant (HID504).  相似文献   

14.
Nisin-producing transconjugants were generated by mating nisin-producing strains of Lactococcus lactis subsp. lactis with derivatives of L. lactis subsp. lactis LM0230. The sucrose-utilizing ability and reduced bacteriophage sensitivity were also transferred with the nisin-producing character. Pulsed-field gel electrophoretic analysis of genomic DNA from donor, recipient, and nisin-producing transconjugants indicated that 68 kbp of DNA was transferred from the chromosome of the donor into the chromosome of the recipient in the conjugation process. The location of the transferred nisin structural gene spaN in the transconjugant HID500 was not stable, and cultures of strain HID500 were a mixture of different genotypes in which spaN was located at different positions in the chromosome on different SmaI fragments. ApaI, BglI, BssHII, NciI, SalI, and SmaI digests of genomic DNA were used to map the location of spaN in a donor (DL11) and a nisin-producing transconjugant (HID504).  相似文献   

15.
The genome sequence of Lactococcus lactis revealed that the ycdB gene was recently exchanged between lactococci and enterobacteria. The present study of ycdB orthologs suggests that L. lactis was probably the gene donor and reveals three instances of gene transfer to enterobacteria. Analysis of ycdB gene transfer between two L. lactis subspecies, L. lactis subsp. lactis and L. lactis subsp. cremoris, indicates that the gene can be mobilized, possibly by conjugation.  相似文献   

16.
Some self-splicing group II introns (ribozymes) are mobile retroelements. These retroelements, which can insert themselves into cognate intronless alleles or ectopic sites by reverse splicing, are thought to be the evolutionary progenitors of the widely distributed eukaryotic spliceosomal introns. Lateral or horizontal transmission of introns (i.e. between species), although never experimentally demonstrated, is a well-accepted model for intron dispersal and evolution. Horizontal transfer of the ancestral bacterial group II introns may have contributed to the dispersal and wide distribution of spliceosomal introns present in modern eukaryotic genomes. Here, the Ll.LtrB group II intron from the Gram-positive bacterium Lactococcus lactis was used as a model system to address the dissemination of introns in the bacterial kingdom. We report the first experimental demonstration of horizontal transfer of a group II intron. We show that the Ll.LtrB group II intron, originally discovered on an L. lactis conjugative plasmid (pRS01) and within a chromosomally located sex factor in L. lactis 712, invades new sites using both retrohoming and retrotransposition pathways after its transfer by conjugation. Ll.LtrB lateral transfer is shown among different L. lactis strains (intraspecies) (retrohoming and retrotransposition) and between L. lactis and Enterococcus faecalis (interspecies) (retrohoming). These results shed light on long-standing questions about intron evolution and propagation, and demonstrate that conjugation is one of the mechanisms by which group II introns are, and probably were, broadly disseminated between widely diverged organisms.  相似文献   

17.
Lactococcus lactis subsp. lactis MG1363 can act as a conjugative donor of chromosomal markers. This requires a chromosomally located fertility function that we designate the lactococcal fertility factor (Laff). Using inter- and intrastrain crosses, we identified other L. lactis strains (LMO230 and MMS373) that appear to lack Laff. The selectable marker in our crosses was Tcr, carried by Tn916, a transposon present on the chromosome. The transfer of Tcr was not due to Tn916-encoded conjugative functions, because (i) L. lactis cannot act as a donor in Tn916-promoted conjugation (F. Bringel, G. L. Van Alstine, and J. R. Scott, Mol. Microbiol. 5:2983-2993, 1992) and (ii) transfer occurred when the Tcr marker was present in a Tn916 derivative containing a mutation, tra-641, that prevents Tn916-directed conjugation in any host. In addition, we isolated a strain in which Tn916 appears to be linked to Laff; this strain should be useful for further analysis of this fertility factor. In this strain, Tn916 is on the same 600-kb SmaI fragment as Clu, a fertility factor previously shown to promote lactose plasmid transfer in L. lactis. Thus, it is possible that Clu and Laff are identical.  相似文献   

18.
Abstract Plasmid pIP501 was transferred by conjugation from Lactococcus lactis to Lactobacillus delbrückii subsp. bulgaricus and Lactobacillus helveticus . Only Lb. delbrückii subsp. bulgaricus transconjugants could act as a donor in crosses with Lc. lactis . No Lactobacillus transconjugants were detected after inter- or intra-species Lactobacillus crosses. Plasmid pIP501 has undergone no detectable deletion or rearrangement during transfer from Lc. lactis to Lactobacillus strains.  相似文献   

19.
Plasmid pIP501 was transferred by conjugation from Lactococcus lactis to Lactobacillus delbrückii subsp. bulgaricus and Lactobacillus helveticus. Only Lb. delbrückii subsp. bulgaricus transconjugants could act as a donor in crosses with Lc. lactis. No Lactobacillus transconjugants were detected after inter- or intra-species Lactobacillus crosses. Plasmid pIP501 has undergone no detectable deletion or rearrangement during transfer from Lc. lactis to Lactobacillus strains.  相似文献   

20.
Lactose-positive (Lac+) transconjugants resulting from matings between Streptococcus lactic ML3 and S. lactis LM2301 possess a single plasmid of approximately 60 megadaltons (Mdal) which is nearly twice the size of the lactose plasmid of the donor. The majority of these Lac+ transconjugants aggregated in broth and were able to transfer lactose-fermenting ability at a frequency higher than 10(-1) per donor on milk agar plates or in broth. Lac+ transconjugants which did not clump conjugated at a much lower frequency. Lactose-negative derivatives of Lac+ clumping transconjugants did not aggregate in broth and were missing the 60-Mdal plasmid. The ability to aggregates in broth was very unstable. Strains could lose the ability to clump but retain lactose-fermenting ability. The majority of these Lac+ nonclumping derivatives of clumping transconjugants contained a plasmid of approximately 33 Mdal, the size of the lactose plasmid of the original donor ML3. These strains transferred lactose-fermenting ability at a frequency of approximately 10(-6) per donor, resulting in both Lac+ clumping transconjugants which contained a 60-Mdal plasmid and Lac+ nonclumping transconjugants which possessed a 33-Mdal plasmid. Our results suggest that the genes responsible for cell aggregation and high-frequency conjugation are on the segment of deoxyribonucleic acid which recombined with the 33-Mdal lactose plasmid in S. lactis ML3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号