首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kim SW  Ha NY  Kim KI  Park JK  Lee YH 《BMB reports》2008,41(3):242-247
MSS, a comprising mixture of maesil (Prunus mume Sieb. et Zucc) concentrate, disodium succinate and Span80 (3.6:4.6 :1 ratio) showed a significant improvement of memory when daily administered (460 mg/kg day, p.o.) into the normal rats for 3 weeks. During the spatial learning of 4 days in Morris water maze test, both working memory and short-term working memory index were significantly increased when compared to untreated controls. We investigated a molecular signal transduction mechanism of MSS on the behaviors of spatial learning and memory. MSS treatment increased hippocampal mRNA levels of NR2B and TrkB without changes of NR1, NR2A, ERK1, ERK2 and CREB. However, the protein levels of pERK/ERK and pCREB/CREB were all significantly increased to 1.5+/-0.17 times. These results suggest that the improving effect of spatial memory for MSS is linked to MAPK/ERK signaling pathway that ends up in the phosphorylation of CREB through TrkB and/or NR2B of NMDA receptor.  相似文献   

2.
Tat, the transactivator of HIV-1 gene expression, is released by acutely HIV-1-infected T-cells and promotes adhesion, migration, and growth of inflammatory cytokine-activated endothelial and Kaposi's sarcoma cells. It has been previously demonstrated that these effects of Tat are due to its ability to bind through its arginine-glycine-aspartic (RGD) region to the alpha5beta1 and alphavbeta3 integrins. However, the signaling pathways linking Tat to the regulation of cellular functions are incompletely understood. Here, we report that Tat ligation on human endothelial cells results in the activation of the small GTPases Ras and Rac and the mitogen-activated protein kinase ERK, specifically through its RGD region. In addition, we demonstrated that Tat activation of Ras, but not of Rac, induces ERK phosphorylation. We also found that the receptor proximal events accompanying Tat-induced Ras activation are mediated by tyrosine phosphorylation of Shc and recruitment of Grb2. Moreover, Tat enabled endothelial cells to progress through the G1 phase in response to bFGF, and the process is linked to ERK activation. Taken together, these data provide novel evidence about the ability of Tat to activate the Ras-ERK cascade which may be relevant for endothelial cell proliferation and for Kaposi's sarcoma progression.  相似文献   

3.
While there have been more and more studies concerning mitogen-activated protein kinases (MAPKs) signaling pathways, which control many cellular complex programmes, such as cell proliferation, differentiation, cell death and embryogenesis. However, few studies are carried out about expression and activation of classical MAPKs, extracellular signal-regulated kinase1/2 (ERK1/2) in human esophageal cancer cell line. Therefore, in the present study, we investigated the expression and activation of ERK1/2 in human esophageal cancer cell line EC9706 and human normal esophageal epithelial cell line Heepic, which is as control. This study showed that ERK1/2 was transiently phosphorylated both in EC9706 and Heepic, the kinetics of which were slightly different. To further study the ERK/MAPK signaling pathway in EC9706 and Heepic cell line, U0126 a kind of specific inhibitor of MEK was used. This study showed that U0126 can block the phosphorylation of ERK1/2 in a short time, the complete inhibition concentration for EC9706 and Heepic cell line is 50 and 20 ??M, respectively. Incidentally, to further investigate the different roles of ERK1 and ERK2, vector-based short hairpin interference vectors targeted on ERK1/2 was constructed. Moreover, the effective interference target sequence was screened out in a transient transfection manner. MTT experiment showed that ERK2 is more important than ERK1 in the proliferation of EC9706 cells.  相似文献   

4.
Sustained extracellular signal-regulated kinase 1/2 (ERK1/2) activation does not always correlate with its upstream Ras-Raf-mitogen-activated protein kinase kinase 1/2 (MKK1/2) signal cascade in cancer cells, and the mechanism remains elusive. Here we report a novel mechanism by which sustained ERK1/2 activation is established. We demonstrate that Pb(II), a carcinogenic metal, persistently induces ERK1/2 activity in CL3 human lung cancer cells and that Ras-Raf-MKK1/2 signaling cannot fully account for such activation. It is intriguing that Pb(II) treatment reduces mitogen-activated protein kinase phosphatase 1 (MKP-1) protein levels in time- and dose-dependent manners, which correlates with sustained ERK1/2 activation, and that Pb(II) also induces mRNA and de novo protein synthesis of MKP-1. In Pb(II)-treated cells, MKP-1 is polyubiquitinated, and proteasome inhibitors markedly alleviate the ubiquitination and degradation of MKP-1. Inhibiting the Pb(II)-induced ERK1/2 activation by PD98059 greatly suppresses MKP-1 ubiquitination and degradation. It is remarkable that constitutive activation of MKK1/2 triggers endogenous MKP-1 ubiquitination and degradation in various mammalian cell lines. Furthermore, expression of functional MKP-1 decreases ERK1/2 activation and the c-Fos protein level and enhances cytotoxicity under Pb(II) exposure. Taken together, these results demonstrate that activated ERK1/2 can trigger MKP-1 degradation via the ubiquitin-proteasome pathway, thus facilitating long-term activation of ERK1/2 against cytotoxicity.  相似文献   

5.
6.
Chlamydia are obligate intracellular bacteria that frequently cause human disease. Host cells infected with Chlamydia are profoundly resistant to diverse apoptotic stimuli. The inhibition of apoptosis is thought to be an important immune escape mechanism allowing Chlamydia to productively complete their obligate intracellular growth cycle. Chlamydial antiapoptotic activity involves activation of the MAPK/ERK survival pathway. However, the molecular mechanisms are not well understood. Here we show that Bag-1 is up-regulated in Chlamydia-infected cells. U0126 and GW5074 suppress the induction of Bag-1 by Chlamydia, implying that Chlamydia may up-regulate Bag-1 via the MAPK/ERK survival pathway. Overexpression of Bag-1 is sufficient to protect against apoptosis, while depletion of Bag-1 suppresses the antiapoptotic effect of Chlamydia. The data indicate Chlamydia may up-regulate Bag-1 through the MAPK/ERK survival pathway to suppress apoptosis.  相似文献   

7.
8.
Unraveling molecular mechanisms that regulate tumor development and proliferation is of the utmost importance in the quest to decrease the high mortality rate of adrenocortical carcinomas (ACC). Our aim was to evaluate the role of two of the mitogen-activated protein kinase (MAPK) signaling pathways (extracellular signal-regulated protein kinases [ERKs 1/2] and p38) in the adrenocortical tumorigenesis, as well as the therapeutic potential of MAPK/ERK inhibition. ERKs 1/2 and p38 activation were evaluated in incidentalomas (INC; n = 10), benign Cushing's syndrome (BCS; n = 12), malignant Cushing's syndrome (MCS; n = 6) and normal adrenal glands (NAG; 8). ACC cell line (H295R) was used to evaluate the ability of PD184352 (0.1, 1, and 10 µM), a specific MEK-MAPK-ERK pathway inhibitor, to modulate cell proliferation, viability, metabolism, and steroidogenesis. ERKs 1/2 activation was significantly higher in MCS (2.83 ± 0.17) compared with NAG (1.00 ± 0.19 “arbitrary units”), INC (1.20 ± 0.13) and BCS (2.09 ± 0.09). Phospho-p38 expression was absent in all the MCS analyzed. MAPK/ERK kinase (MEK) inhibition with PD184352 significantly decreased proliferation as well as steroidogenesis and also increased the redox state of the H295R cells. This data suggests that MEK-MAPK-ERK signaling has a role in adrenocortical tumorigenesis that could be potentially used as a diagnostic marker for malignancy and targeted treatment in ACC.  相似文献   

9.
cAMP-dependent protein kinase (PKA) has been suggested to interfere with T-cell activation by inhibiting interleukin (IL-2) receptor alpha-chain (CD25) expression and IL-2 production. The Ras/MAP kinase pathway has been found to be necessary for induction of the IL-2 production. In this study, we have scrutinized the Ras/MAP kinase pathway in Jurkat T-cells to attempt to identify any sites for PKA-mediated regulatory phosphorylations. Here we unambiguously demonstrate that PKA directly inhibits anti-CD3-induced MAP kinase activation. In vitro phosphorylation experiments showed that Raf-1 was extensively phosphorylated by PKA, while ERK2 and MEK were not. Phosphopeptide mapping identified Ser-43 of Raf-1 as the only site phosphorylated by PKA in the Ras/MAPK pathway. Transient transfection experiments demonstrated that mutations of Ser-43 of the Raf-1 kinase were rendered insensitive to cAMP-mediated inhibition.  相似文献   

10.
Cell cycle arrest is essential for initiation of muscle differentiation in myoblasts. Given the previously described essential role for p38 MAPK in myogenesis, we undertook the present study to investigate the role of p38 MAPK in the cell cycle arrest that initiates muscle differentiation. p38 MAPK activity increased during, and was required for, muscle differentiation. Inhibition of p38 MAPK stimulated Raf and ERK activities, and induced cell proliferation in differentiation medium. The concomitant inhibition of p38 MAPK and ERK, however, failed to induce differentiation or proliferation. In conclusion, inhibition of the Raf/ERK pathway and the consequent cell cycle arrest is one of the major functions of p38 MAPK during muscle differentiation.  相似文献   

11.
12.
Recent evidence suggests that reactive oxygen species function as second messenger molecules in normal physiological processes. For example, activation of N-Methyl-D-Aspartate receptor results in the production of ROS, which appears to be critical for synaptic plasticity, one of the cellular mechanisms that underlie learning and memory. In this work, we studied the effect of iron in the activation of MAPK/ERK pathway and on Ca2+ signaling in neuronal PC12 cells. We found that iron-dependent generation of hydroxyl radicals is likely to modulate Ca2+ signaling through RyR calcium channel activation, which, in turn, activates the MAPK/ERK pathway. These findings underline the relevance of iron in normal neuronal function.  相似文献   

13.
14.
15.
Identifying the trophic factors for retina photoreceptors and the intracellular pathways activated to promote cell survival is crucial for treating retina neurodegenerative diseases. Docosahexaenoic acid (DHA), the major retinal polyunsaturated fatty acid, prevents photoreceptor apoptosis during early development in vitro , and upon oxidative stress. However, the signaling mechanisms activated by DHA are still unclear. We investigated whether the extracellular signal regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) or the phosphatidylinositol-3-kinase (PI3K) pathway participated in DHA protection. 1,4-Diamino-2,3-dicyano-1,4-bis(2-aminophynyltio) butadiene (U0126), a specific MEK inhibitor, completely blocked the DHA anti-apoptotic effect. DHA rapidly increased ERK phosphorylation in photoreceptors, whereas U0126 blocked this increase. U0126 hindered DHA prevention of mitochondrial depolarization, and blocked the DHA-induced increase in opsin expression. On the contrary, PI3K inhibitors did not diminish the DHA protective effect. DHA promoted the early expression of Bcl-2, decreased Bax expression and reduced caspase-3 activation in photoreceptors. These results suggest that DHA exclusively activates the ERK/MAPK pathway to promote photoreceptor survival during early development in vitro and upon oxidative stress. This leads to the regulation of Bcl-2 and Bax expression, thus preserving mitochondrial membrane potential and inhibiting caspase activation. Hence, DHA, a lipid trophic factor, promotes photoreceptor survival and differentiation by activating the same signaling pathways triggered by peptidic trophic factors.  相似文献   

16.
Mesenchymal Stromal Cells (MSCs) represent promising tools for cellular therapy owing to their multipotentiality and ability to localize to injured, inflamed sites and tumor. Various approaches to manipulate expression of MSC surface markers, including adhesion molecules and chemokine receptors, have been explored to enhance homing of MSCs. Recently, Neural Cell Adhesion Molecule (NCAM) has been found to be expressed on MSCs yet its function remains largely elusive. Herein, we show that bone marrow-derived MSCs from NCAM deficient mice exhibit defective migratory ability and significantly impaired adipogenic and osteogenic differentiation potential. We further explore the mechanism governing NCAM mediated migration of MSCs by showing the interplay between NCAM and Fibroblast Growth Factor Receptor (FGFR) induces activation of MAPK/ERK signaling, thereby the migration of MSCs. In addition, re-expression of NCAM180, but not NCAM140, could restore the defective MAPK/ERK signaling thereby the migration of NCAM deficient MSCs. Finally, we demonstrate that NCAM180 expression level could be manipulated by pro-inflammatory cytokine Tumor Necrosis Factor (TNF)-α treatment. Overall, our data reveal the vital function of NCAM in MSCs migration and differentiation thus raising the possibility of manipulating NCAM expression to enhance homing and therapeutic potential of MSCs in cellular therapy.  相似文献   

17.
In this study, the roles of the p38 MAPK, ERK1/2 and JNK signaling pathway in IGF-I-induced AR induction and activation were examined. C2C12 cells were treated with IGF-I in the absence or presence of various inhibitors of p38 MAPK (SB203580), ERK1/2 (PD98059), and JNK (SP600125). Inhibition of the MAPK pathway with SB203580, PD98059, or SP600125 significantly decreased IGF-I-induced AR phosphorylation and total AR protein expression. IGF-I-induced nuclear fraction of total AR and phosphorylated AR were significantly inhibited by SB203580, PD98059, or SP600125. Furthermore, IGF-I-induced AR mRNA and skeletal α-actin mRNA were blocked by those inhibitors in dose-dependent manner. Confocal images showed that IGF-I-induced AR nuclear translocation from cytosol was significantly blocked by SB203580, PD98059, or SP600125, suggesting that the MAPK pathway regulates IGF-I-induced AR nuclear localization in skeletal muscle cells. The present results suggest that the MAPK pathways are required for the ligand-independent activation of AR by IGF-I in C2C12 skeletal muscle cells.  相似文献   

18.
Autophagy maintains cellular homeostasis by sequestering unwanted material within autophagosomes and transferring these to lysosomes for degradation. Several signaling cascades activate or suppress autophagy in response to diverse environmental cues. However, whether autophagic structures per se regulate cell signaling was not known. The MAPK/ERK (mitogen-activated protein kinase) pathway controls several functions in the cell, and studies have identified the importance of scaffold proteins in modulating MAPK signaling through the spatial coordination of the RAF1-MAP2K/MEK-MAPK cascade. Growth factors increase the nuclear localization and activity of MAPK, and since the nucleus has been reported to contain LC3, an autophagy-related protein, we asked whether autophagic structures could serve as cytosolic and nuclear scaffolds for growth factor-induced MAPK phosphorylation.  相似文献   

19.
20.
A role for p38(MAPK)/HSP27 pathway in smooth muscle cell migration.   总被引:19,自引:0,他引:19  
Smooth muscle cells are exposed to growth factors and cytokines that contribute to pathological states including airway hyperresponsiveness, atherosclerosis, angiogenesis, smooth muscle hypertrophy, and hyperplasia. A common feature of several of these conditions is migration of smooth muscle beyond the initial boundary of the organ. Signal transduction pathways activated by extracellular signals that instigate migration are mostly undefined in smooth muscles. We measured migration of cultured tracheal myocytes in response to platelet-derived growth factor, interleukin-1beta, and transforming growth factor-beta. Cellular migration was blocked by SB203580, an inhibitor of p38(MAPK). Time course experiments demonstrated increased phosphorylation of p38(MAPK). Activation of p38(MAPK) resulted in the phosphorylation of HSP27 (heat shock protein 27), which may modulate F-actin polymerization. Inhibition of p38(MAPK) activity inhibited phosphorylation of HSP27. Adenovirus-mediated expression of activated mutant MAPK kinase 6b(E), an upstream activator for p38(MAPK), increased cell migration, whereas overexpression of p38alpha MAPK dominant negative mutant and an HSP27 phosphorylation mutant blocked cell migration completely. The results indicate that activation of the p38(MAPK) pathway by growth factors and proinflammatory cytokines regulates smooth muscle cell migration and may contribute to pathological states involving smooth muscle dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号