共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutations in the cardiac troponin I (CTnI) gene occur in 5% of families with familial hypertrophic cardiomyopathy (FHC) and 20 mutations in this gene that cause FHC have now been described. The clinical manifestations of CTnI mutations that cause FHC are diverse, ranging from asymptomatic with high life expectancy to severe heart failure and sudden cardiac death. Most of these FHC mutations in CTnI result in cardiac hypertrophy unlike cardiac troponin T FHC mutations. All CTnI FHC mutations investigated in vitro affect the physiological function of CTnI, but other factors such as environmental or genetic factors (other genes that may affect the CTnI gene) are likely to be involved in influencing the severity of the phenotype produced by these mutations, since the distribution of hypertrophy among affected individuals varies within and between families. CTnI mutations mainly alter myocardial performance via changes in the Ca 2+-sensitivity of force development and in some cases alter the muscle relaxation kinetics due to haemodynamic or physical obstructions of blood flow from the left ventricle. (Mol Cell Biochem 263: 99–114, 2004) 相似文献
2.
The relaxation and contraction in vertebrate skeletal muscle are regulated by Ca2+ through troponin and tropomyosin, which are located in the thin filament. Troponin is composed of three components, troponins C, I and T. In this review article, the Ca2+-regulatory mechanism is discussed with particular reference to the regulatory properties of troponin T. 相似文献
4.
Background: In asymptomatic severe aortic stenosis (ASAS), treatment decisions are made on an individual basis, and case management presents a clinical conundrum. Methods: We prospectively phenotyped consecutive patients with ASAS using echocardiography, exercise echocardiography, cardiac MRI and biomarkers (NT-proBNP, high-sensitivity troponin T (hs-TnT) and ST2) (n?=?58). The primary endpoint was a composite of cardiovascular death, new-onset symptoms, cardiac hospitalization, guideline-driven indication for valve replacement and cardiovascular death at 12?months. Results: During the first year, 46.6% patients met primary endpoint. In multivariable analysis, aortic regurgitation ≥2 (p?=?0.01) and hs-TnT (p?=?0.007) were the only independent predictors of the primary endpoint. The best cutoff value was identified as hs-TnT >10ng/L, which was associated with a ~10-fold greater risk of the primary endpoint (HR, 9.62; 95% CI, 2.27–40.8; p?=?0.002). A baseline predictive model including age, sex and variables showing p?<?0.10 in univariable analyses showed an area under the curve (AUC) of 0.79(0.66–0.91). Incorporation of hs-TnT into this model increased the AUC to 0.90(0.81–0.98) (p?=?0.03). Patient reclassification with the model including hs-TnT yielded an NRI of 1.28(0.46–1.78), corresponding to 43% adequately reclassified patients. Conclusions: In patients with ASAS, hs-TnT >10ng/L was associated with high risk of events within 12?months. Including hs-TnT in routine ASAS management markedly improved prediction metrics. 相似文献
5.
肥厚型和扩张型心肌病中,基因缺陷分别占发病的50%和35%,其病理生理机制,主要包括肌小节蛋白基因突变引起的收缩力产生缺陷,细胞骨架蛋白基因突变引起的收缩力传递缺陷等。心肌肌钙蛋白T将肌钙蛋白C和肌钙蛋白I连接到肌动蛋白和原肌球蛋白上,在心肌细胞收缩和舒张过程中发挥重要作用。在肥厚型和扩张型心肌病中发现了多种心肌肌钙蛋白T的基因突变,围绕心肌肌钙蛋白T的研究有助于阐明心肌病的发病机制。本文总结了心肌肌钙蛋白T基因突变在心肌病发病机制中的研究情况。 相似文献
7.
Recently, several studies reported that urocortin (Ucn) had beneficial effects on cardiovascular system and was expressed both in the normal heart and in the heart of dilated cardiomyopathy (DCM), yet the relationship between high expression of Ucn and pathophysiology of Ucn in diseased heart has been discussed. Thus, the present study was designed to elucidate the expression of Ucn in the diseased heart by immunohistochemical approach using endomyocardial biopsy specimens. The involvement of immunoreactive Ucn in pathophysiology of cardiac disease was evaluated using endomyocardial biopsy specimens obtained from the patients with some heart diseases, including DCM and hypertrophic cardiomyopathy (HCM). Ucn was detected in all endomyocardial biopsy specimens of ventricular tissue obtained from the patients with such cardiac diseases, a specimens of atrial tissue, and normal heart specimens obtained from autopsy cases. In DCM patients, left ventricular end-diastolic pressure significantly elevated in severely stained group. On the contrary, in HCM patients, left ventricular ejection fraction was higher in the severely stained group. Ucn was expressed more abundantly in the diseased heart, especially in HCM and DCM, than in the normal heart. In conclusion, such close relationship between Ucn expression in the heart and cardiac function indicated that clinical features of Ucn resembled those of norepinephrine and Ucn could play a certain pathophysiological roles in the cardiac diseases. 相似文献
8.
Chicken fast-muscle type (F-type) troponin T (TnT) isoforms are classified into two types, leg-muscle type (L-type) and breast-muscle type (B-type), which are generated by exclusion and inclusion of exon x series-derived sequences in mRNAs, respectively. The B-type isoforms are further classified into neonatal breast-muscle (BN), young chicken breast-muscle (BC), and adult chicken breast-muscle (BA) subtypes. It is known that the multiple F-type TnT isoforms are transiently expressed in the breast muscle tissue during normal development. To examine whether the transition of the isoforms was fixed in muscle cell lineage, breast muscle pieces (pectoralis major) of 1-day old chicks were cultured under gizzard serous membrane of the same chicks for 60 days at the longest. TnT isoform expression of the implants was monitored by immunoblotting and immunostaining using anti-F-type TnT against both L-type and B-type isoforms, anti-exon x3 against only B-type isoforms, and anti-S-type TnT against slow-muscle-type (S-type) isoforms. Muscle fibers in the implant degenerated first, and then new myotubes expressing L-type isoforms were formed by the fusion of myoblasts from surviving satellite cells. When the maturation of the myotubes into myofibers proceeded, BN-, BC-, and BA-subtype isoforms were expressed in the order of developmental stage specific-manner, indicating that the order of appearance of these isoforms was fixed in muscle cell lineage. In immunostaining of the implants recovered on the 60th day after implantation, at least three kinds of the regenerated myofibers were observed, expressing mainly B-type, both B-type and L-type, and only L-type isoforms. The immunohistochemical results suggested that the regulation of alternative splicing of F-type TnT pre-mRNAs was different among individual myofibers, and that the regulation was programmed in myogenic cells, probably satellite cells, which were the primary source of the fibers. 相似文献
9.
In mammalian fast skeletal muscle, constitutive and alternative splicing from a single troponin T (TnT) gene produce multiple developmentally regulated and tissue specific TnT isoforms. Two exons, alpha (exon 16) and beta (exon 17), located near the 3' end of the gene and coding for two different 14 amino acid residue peptides are spliced in a mutually exclusive manner giving rise to the adult TnTalpha and the fetal TnTbeta isoforms. In addition, an acidic peptide coded by a fetal (f) exon located between exons 8 and 9 near the 5' end of the gene, is specifically present in TnTbeta and absent in the adult isoforms. To define the functional role of the f and alpha/beta exons, we constructed combinations of TnT cDNAs from a single human fetal fast skeletal TnTbeta cDNA clone in order to circumvent the problem of N-terminal sequence heterogeneity present in wild-type TnT isoforms, irrespective of the stage of development. Nucleotide sequences of these constructs, viz. TnTalpha, TnTalpha + f, TnTbeta - f and TnTbeta are identical, except for the presence or absence of the alpha or beta and f exons. Our results, using the recombinant TnT isoforms in different functional in vitro assays, show that the presence of the f peptide in the N-terminal T1 region of TnT, has a strong inhibitory effect on binary interactions between TnT and other thin filament proteins, TnI, TnC and Tm. The presence of the f peptide led to reduced Ca2+-dependent ATPase activity in a reconstituted thin filament, whereas the contribution of the alpha and beta peptides in the biological activity of TnT was primarily modulatory. These results indicate that the f peptide confers an inhibitory effect on the biological function of fast skeletal TnT and this can be correlated with changes in the Ca2+ regulation associated with development in fast skeletal muscle. 相似文献
10.
目的:探讨急性脑梗死患者血清肌钙蛋白水平升高与梗死严重程度、梗死部位和预后的关系。方法:247例急性脑梗死患者,在住院的第一天内完成12导联心电图及血清肌钙蛋白-T(cTnT)水平的检查。以0.5ng/ml为界,将患者分为cTnT水平升高组和cTnT水平正常组。结果:26例(10.5%)血清cTnT水平升高。与cTnT水平正常组相比,cTnT水平升高组患者入院时NIHSS评分更严重,岛叶受累的发生率更高,预后较差,异常心电图发生率较高。结论:血清cTnT水平升高的急性脑梗死患者梗死更严重,预后较差,这些患者大多岛叶受累和ECG异常。 相似文献
11.
Patients with chest pain have a large impact on available resources in coronary emergency rooms (CER). Clinical judgement, ECG, risk scores and biomarkers guide in risk stratification. We investigated if high-sensitivity troponin T (HsT) and the HEART Score could contribute to risk stratification at the CER. All patients with chest pain, without elevated conventional troponin levels at presentation, were included. HsT levels were determined at admission (T1), at 4–6 h (T2) and 8–10 h after symptom onset (T3). The HEART Score was calculated as risk score for the occurrence of a major adverse cardiac event (MACE). Thirty days after discharge, occurrence of MACE was registered. Eighty-nine patients were included (overall mean age 61 years (range 20–90)). At presentation, 68 patients (76 %) had a HsT below cut-off value of 14 ng/l (mean HEART Score 3.7, range 1–9). Thirty-one of these 68 patients had a HEART Score between 1–3, no MACE occurred in this group. For 3 patients (4 %) HsT levels increased above 14 ng/l. These 3 patients had a HEART Score between 4–6. The majority of patients with chest pain can be safely discharged within 4–6 h after onset of symptoms using HsT and the HEART Score. In contrast, patients with initially normal HsT but a high HEART Score need longer follow-up and repeat HsT determination. 相似文献
12.
Regulation of skeletal and cardiac muscle contraction is associated with structural changes of the thin filament-based proteins, troponin consisting of three subunits (TnC, TnI, and TnT), tropomyosin, and actin, triggered by Ca2+-binding to TnC. Knowledge of in situ structures of these proteins is indispensable for elucidating the molecular mechanism of this Ca2+-sensitive regulation. Here, the in situ structure of TnC within the thin filaments was investigated with neutron scattering, combined with selective deuteration and the contrast matching technique. Deuterated TnC (dTnC) was first prepared, this dTnC was then reconstituted into the native thin filaments, and finally neutron scattering patterns of these reconstituted thin filaments containing dTnC were measured under the condition where non-deuterated components were rendered "invisible" to neutrons. The obtained scattering curves arising only from dTnC showed distinct difference in the absence and presence of Ca2+. These curves were analyzed by model calculations using the Monte Carlo method, in which inter-dTnC interference was explicitly taken into consideration. The model calculation showed that in situ radius of gyration of TnC was 23 A (99% confidence limits between 22 A and 23 A) and 24 A (99% confidence limits between 23 A and 25 A) in the absence and presence of Ca2+, respectively, indicating that TnC within the thin filaments assumes a conformation consistent with the extended dumbbell structure, which is different from the structures found in the crystals of various Tn complexes. Elongation of TnC by binding of Ca2+ was also suggested. Furthermore, the radial position of TnC within the thin filament was estimated to be 53 A (99% confidence limits between 49 A and 57 A) and 49 A (99% confidence limits between 44 A and 53 A) in the absence and presence of Ca2+, respectively, suggesting that this radial movement of TnC by 4A is associated with large conformational changes of the entire Tn molecule by binding of Ca2+. 相似文献
13.
The X-ray crystal structure of a human cardiac muscle troponin C/troponin I chimera has been determined in two different crystal forms and shows a conformation of the complex that differs from that previously observed by NMR. The chimera consists of the N-terminal domain of troponin C (cTnC; residues 1–80) fused to the switch region of troponin I (cTnI; residues 138–162). In both crystal forms, the cTnI residues form a six-turn α-helix that lays across the hydrophobic groove of an adjacent cTnC molecule in the crystal structure. In contrast to previous models, the cTnI helix runs in a parallel direction relative to the cTnC groove and completely blocks the calcium desensitizer binding site of the cTnC–cTnI interface. 相似文献
15.
Cardiac muscle development is characterised by the activation of contractile protein genes and subsequent modulation of expression resulting, ultimately, in the formation of a mature four-chambered organ. Myocardial gene expression is also altered in the adult in response to pathological stimuli and this is thought to contribute to the altered contractile characteristics of the diseased heart. We have examined the expression of the slow skeletal troponin T (TnT) gene in the human heart during development and in disease using whole mount in situ hybridisation and real-time quantitative (TaqMan) polymerase chain reaction (PCR). Slow skeletal TnT mRNA shows transitory and regional expression in the early foetal heart, which occurs at different times in atria and ventricles. In ventricular myocardium, expression is seen in the outer epicardial layer at a time when the coronary circulation is being established. Expression was detected at low levels in the adult human heart and was significantly increased in end-stage heart failure. Similarly, expression was readily detectable during early rat heart development and was up-regulated in pressure overload hypertrophy in adult. Together these data show for the first time that slow skeletal TnT mRNA is readily detectable during early human heart development. They further suggest that slow skeletal TnT may be responsive to myocardial stress and that elevated levels may contribute to myocardial dysfunction in adult disease. (Mol Cell Biochem 263: 91–97, 2004) 相似文献
16.
In vertebrate skeletal muscle, contraction is initiated by the elevation of the intracellular Ca 2+ concentration. The binding of Ca 2+ to TnC induces a series of conformational changes which ultimately release the inhibition of the actomyosin ATPase activity by Tnl. In this study we have characterized the dynamic behavior of TnC and Tnl in solution, as well as in reconstituted fibers, using EPR and ST-EPR spectroscopy. Cys98 of TnC and Cys133 of Tnl were specifically labeled with malemide spin label (MSL) and indane dione nitroxide spin label (InVSL). In solution, the labeled TnC and Tnl exhibited fast nanosecond motion. MSL-TnC is sensitive to cation binding to the high affinity sites (τ r increases from 1.5 to 3.7 ns), InVSL-TnC s sensitive to the replacement of Mg 2+ by Ca 2+ at these sites (τ r increase from 1.7 to 6 ns). Upon reconstitution into fibers, the nanosecond mobility is reduced by interactions with other proteins. TnC and Tnl both exhibited microsecond anisotropic motion in fibers similar to that of the actin monomers within the filament. The microsecond motion of TnC was found to be modulated by the binding of Ca 2+ and by cross-bridge attachment, but this was not the case for the global mobility of Tnl. © 1997 John Wiley & Sons, Ltd. 相似文献
17.
Differential scanning calorimetry (DSC) was used to study the effect of troponin (Tn) and its isolated components on the thermal unfolding of skeletal muscle tropomyosin (Tm) bound to F-actin. It is shown that in the absence of actin the thermal unfolding of Tm is expressed in two well-distinguished thermal transitions with maxima at 42.8 and 53.8°C. Interaction with F-actin affects the character of thermal unfolding of Tm leading to appearance of a new Tm transition with maximum at about 48°C, but it has no influence on the thermal denaturation of F-actin stabilized by aluminum fluoride, which occurs within the temperature region above 70°C. Addition of troponin leads to significant increase in the cooperativity and enthalpy of the thermal transition of the actin-bound Tm. The most pronounced effect of Tn was observed in the absence of calcium. To elucidate how troponin complex affects the properties of Tm, we studied the influence of its isolated components, troponin I (TnI) and troponin T (TnT), on the thermal unfolding of actin-bound Tm. Isolated TnT and TnI do not demonstrate cooperative thermal transitions on heating up to 100°C. However, addition of TnI, and especially of TnT, to the F-actin–Tm complex significantly increased the cooperativity of the thermal unfolding of actin-bound tropomyosin. 相似文献
18.
We present here the solution structure for the bisphosphorylated form of the cardiac N-extension of troponin I (cTnI(1-32)), a region for which there are no previous high-resolution data. Using this structure, the X-ray crystal structure of the cardiac troponin core, and uniform density models of the troponin components derived from neutron contrast variation data, we built atomic models for troponin that show the conformational transition in cardiac troponin induced by bisphosphorylation. In the absence of phosphorylation, our NMR data and sequence analyses indicate a less structured cardiac N-extension with a propensity for a helical region surrounding the phosphorylation motif, followed by a helical C-terminal region (residues 25-30). In this conformation, TnI(1-32) interacts with the N-lobe of cardiac troponin C (cTnC) and thus is positioned to modulate myofilament Ca2+-sensitivity. Bisphosphorylation at Ser23/24 extends the C-terminal helix (residues 21-30) which results in weakening interactions with the N-lobe of cTnC and a re-positioning of the acidic amino terminus of cTnI(1-32) for favorable interactions with basic regions, likely the inhibitory region of cTnI. An extended poly(L-proline)II helix between residues 11 and 19 serves as the rigid linker that aids in re-positioning the amino terminus of cTnI(1-32) upon bisphosphorylation at Ser23/24. We propose that it is these electrostatic interactions between the acidic amino terminus of cTnI(1-32) and the basic inhibitory region of troponin I that induces a bending of cTnI at the end that interacts with cTnC. This model provides a molecular mechanism for the observed changes in cross-bridge kinetics upon TnI phosphorylation. 相似文献
20.
The cardiac-specific N-terminus of cardiac troponin I (cTnI) is known to modulate the activity of troponin upon phosphorylation with protein kinase A (PKA) by decreasing its Ca 2+ affinity and increasing the relaxation rate of the thin filament. The molecular details of this modulation have not been elaborated to date. We have established that the N-terminus and the switch region of cTnI bind to cNTnC [the N-domain of cardiac troponin C (cTnC)] simultaneously and that the PKA signal is transferred via the cTnI N-terminus modulating the cNTnC affinity toward cTnI 147-163 but not toward Ca 2+. The Kd of cNTnC for cTnI 147-163 was found to be 600 μM in the presence of cTnI 1-29 and 370 μM in the presence of cTn1 1-29PP, which can explain the difference in muscle relaxation rates upon the phosphorylation with PKA in experiments with cardiac fibers. In the light of newly found mutations in cNTnC that are associated with cardiomyopathies, the important role played by the cTnI N-terminus in the development of heart disorders emerges. The mutants studied, L29Q (the N-domain of cTnC containing mutation L29Q) and E59D/D75Y (the N-domain of cTnC containing mutation E59D/D75Y), demonstrated unchanged Ca 2+ affinity per se and in complex with the cTnI N-terminus (cTnI 1-29 and cTnI 1-29PP). The affinity of L29Q and E59D/D75Y toward cTnI 147-163 was significantly perturbed, both alone and in complex with cTnI 1-29 and cTnI 1-29PP, which is likely to be responsible for the development of malfunctions. 相似文献
|