首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
2.
P. L. Stovell 《CMAJ》1972,107(11):1055
  相似文献   

3.
K L Hill  R Hassett  D Kosman    S Merchant 《Plant physiology》1996,112(2):697-704
A saturable and temperature-dependent copper uptake pathway has been identified in Chlamydomonas reinhardtii. The uptake system has a high affinity for copper ions (Km approximately 0.2 microM) and is more active in cells that are adapted to copper deficiency than to cells grown in a medium containing physiological (submicromolar to micromolar) copper ion concentrations. The maximum velocity of copper uptake by copper-deficient cells (169 pmol h-1 10(6) cells-1 or 62 ng min-1 mg-1 chlorophyll) is up to 20-fold greater than that of fully copper-supplemented cells, and the Km (approximately 2 x 10(2) nM) is unaffected. Thus, the same uptake system appears to operate in both copper-replete and copper-deficient cells, but its expression or activity must be induced under copper-deficient conditions. A cupric reductase activity is also increased in copper-deficient compared with copper-sufficient cells. The physiological characteristics of the regulation of this cupric reductase are compatible with its involvement in the uptake pathway. Despite the operation of the uptake pathway under both copper-replete and copper-deficient conditions, C. reinhardtii cells maintained in fully copper-supplemented cells do not accumulate copper in excess of their metabolic need. These results provide evidence for a homeostatic mechanism for copper metabolism in C. reinhardtii.  相似文献   

4.
Purification of low molecular weight copper binding proteins from the livers of copper loaded male rats was achieved by sequential ultracentrifugation (186,000g, 2h), ultrafiltration (Amicon PM 30), gel filtration (Sephadex G-75) and anion exchange chromatography (DEAE - Biogel A) of soluble tissue extracts. The three major copper-associated polypeptides obtained which had molecular weights of about 7000, 9,000, and 12,000 daltons contained approximately 2.5g atoms of copper per mole. Amino acid analyses indicated a similarity between these proteins and the copper protein ‘L-6D’ isolated earlier from livers of Wilson's disease patients and distinguished them from metallothioneins which have been isolated from animals administered other trace metal ions.  相似文献   

5.
6.
7.
D M Hunt 《Life sciences》1976,19(12):1913-1919
The injection of copper chloride overcomes the lethality and pigment deficiency in the brindled (Mobr) mouse mutant but copper levels remain depressed in the liver and brain, and a further accumulation occurs in the kidney. The copper-dependent synthesis of brain noradrenaline returns to normal but the activity of brain cytochrome c oxidase, although increased, remains depressed. Significant changes in tissue copper content of female brindled heterozygotes are reported and in each case, the changes exceed those expected on the basis of X-inactivation. The significance of these results to the development of a satisfactory treatment regime for this disease is discussed.  相似文献   

8.
Molecular mechanisms of copper homeostasis.   总被引:10,自引:0,他引:10  
Copper is an essential trace element which plays a pivotal role in cell physiology as it constitutes a core part of important cuproenzymes. Novel components of copper homeostasis in humans have been identified recently which have been characterised at the molecular level. These include copper-transporting P-type ATPases, Menkes and Wilson proteins, and copper chaperones. These findings have paved the way towards better understanding of the role of copper deficiency or copper toxicity in physiological and pathological conditions.  相似文献   

9.
The crystal structure of the superoxide dismutase copper chaperone provides some key insights into the molecular mechanism of copper trafficking.  相似文献   

10.
Genes of the copper pathway.   总被引:3,自引:0,他引:3       下载免费PDF全文
  相似文献   

11.
Bacillus cereus strains 2 and T did not form spores and accumulated a large amount of purple pigment inside the cells, when cultured in a yeast extract-ammonium salt medium with excess glucose. The pigment was extracted and crystallized as the ethyl ester. It was identified as copper coproporphyrin III.  相似文献   

12.
Chicken liver Cd, Zn-thionein (metallothionein) was isolated from Cd-pretreated chickens weighing 1 500 g. The native Cd, Zn-thionein contained 9 g-atoms of metals per 12 000 g of protein. Upon the addition of Cu(CH3CN)4ClO4, all Cd2 and Zn2 were successfully replaced. 15 g-atoms of Cu from the acetonitrile perchlorate complex were bound to the protein. Due to the absence of aromatic amino acid residues, thionein has unique ultraviolet and circular dichroism properties. The shoulder of the ultraviolet spectrum at 250 nm (A250 X A280(-1) = 23.9) was shifted to 275 nm (A250 X A280(-1) = 1.6). No significant absorption was detected in the visible region. Th conformational changes of the protein moiety were much more visible in the circular dichroism spectra. The titration with Cu(CH3CH)2 caused the appearence of three new Cotton effects: 257.5 nm (+), 350 nm (+) and 301 nm (-). The negative Cotton effect at 239 nm of the original metallothionein was completely levelled off. The binding strength of copper with thionein is extraordinarily high: it survives proton treatment up to pH 1.9. Displacement of the Cd2 by Cu employing Cd-thionein which was formed at pH 2.2 resulted in the same circular dichroism properties as observed for Cu-thionein. D-Penicillamine proved a suitable model for the metal-free thionein, since redox reactions and polymerization of the sterically hindered thiol residue are known to be slow. The correlation of the circular dichroism properties of either copper complex using thionein or D-penicillamine was surprisingly high. Circular dichroism measurements of Cu(I)-D-penicillamine revealed Cotton effects at 255 nm (+), 280 nm (+) and 355 nm (-). Upon examining the red-violet mixed Cu(-i)-cu(II)-D-penicillamine complex, Cotton bands in the visible region at 425 nm (-) and 495 nm (+) were seen. In many blue copper enzymes, the copper is assumed to be in the neighborhood of both cysteine and aromatic amino acid residues, which are known to play an important role in the electron transfer. This is not the case in the Cu-thionein, which would explain many different properties of this copper protein. It is very attractive to conclude that the sterically hindered SH-group of D-penicillamine reacts with excess copper in a specific way, similar to the Cu-thionein. This phenomenon could explain the considerable success of D-penicillamine in the treatment of Wilson's disease.  相似文献   

13.
14.
Both ascorbic acid and copper were strong prooxidants in the oxidation of linoleate in a buffered (pH 7.0) aqueous dispersion at 37 degrees C. Minimum concentrations at which catalytic activity was detected were 1.3 x 10(-7) m for copper and 1.8 x 10(-6) m for ascorbic acid. For concentrations up to 10(-3) m, the increase in rate of oxidation with increase in concentration of catalyst was greater for ascorbic acid than for copper. Ascorbic acid had maximum catalytic activity at 2.0 x 10(-3) m, but was still prooxidant at the highest concentration tested (5.0 x 10(-2) m). Dehydroascorbic acid was a weaker prooxidant than ascorbic acid. Further degradation products of ascorbic acid were not prooxidant. In early stages of the oxidation autocatalytic behavior was observed with copper, but not with ascorbic acid. Ascorbic acid functioned as a true catalyst, i.e., it accelerated the reaction but it was not oxidized simultaneously with the linoleate. It is proposed that the dehydroascorbic acid radical initiates the linoleate oxidation reaction.  相似文献   

15.
16.
Diethyldithiocarbamate, copper and neurological disorders.   总被引:1,自引:0,他引:1  
P Allain  N Krari 《Life sciences》1991,48(3):291-299
Diethyldithiocarbamate (DEDTC) given orally to rats without any addition of copper considerably increased the concentration of Cu in the brain without any change in the other tested tissues. Cysteine, comparatively studied, did not induce any change in the brain Cu level. Based on these findings and the literature data concerning DEDTC effects in animal and human, we put forward the hypothesis that the main effect of DEDTC is to provoke in the brain not a deficiency but an excess of Cu liberated from the lipophilic complex Cu-DEDTC. Cu is then engaged in an oscillatory oxido reduction giving a Cu++ cation radical able to induce deleterious effects on tissues in a similar way as paraquat. The practical consequences of this hypothesis are considered.  相似文献   

17.
18.
The product of agmatine oxidation catalyzed by Pisum sativum L. copper amine oxidase has been identified by means of one- and two-dimensional (1)H-NMR spectroscopy to be N-amidino-2-hydroxypyrrolidine. This compound inhibits competitively rat nitric oxide synthase type I and type II (NOS-I and NOS-II, respectively) and bovine trypsin (trypsin) activity, values of Ki being (1.1 +/- 0.1) x 10(-5) m (at pH 7.5 and 37.0 degrees C), (2.1 +/- 0.1) x 10(-5) m (at pH 7.5 and 37.0 degrees C), and (8.9 +/- 0.4) x 10(-5) m (at pH 6.8 and 21.0 degrees C), respectively. Remarkably, the affinity of N-amidino-2-hydroxypyrrolidine for NOS-I, NOS-II and trypsin is significantly higher than that observed for agmatine and clonidine binding. Furthermore, N-amidino-2-hydroxypyrrolidine and agmatine are more efficient than clonidine in displacing [(3)H]clonidine (= 1.0 x 10(-8) m) from specific binding sites in heart rat membranes, values of IC50 being (1.3 +/- 0.4) x 10(-9) m and (2.2 +/- 0.4) x 10(-8) m, respectively (at pH 7.4 and 37.0 degrees C).  相似文献   

19.
Heavy metals are toxic to living organisms. Some have no known beneficial biological function, while others have essential roles in physiological reactions. Mechanisms which deal with heavy metal stress must protect against the deleterious effects of heavy metals, yet avoid depleting the cell of a heavy metal which is also an essential nutrient. We describe the mechanisms of resistance in Escherichia coli to two different heavy metals, mercury and copper. Resistance of E. coli to mercury is reasonably well understood and is known to occur by transport of mercuric ions into the cytoplasmic compartment of the bacterial cell and subsequent reductive detoxification of mercuric ions. Recent mutational analysis has started to uncover the mechanistic detail of the mercuric ion transport processes, and has shown the essential nature of cysteine residues in transport of Hg(II). Resistance to copper is much less well understood, but is known to involve the increased export of copper from the bacterial cell and modification of the copper; the details of the process are still being elucidated. Expression of both metal resistance determinants is regulated by the corresponding cation. In each case the response enables the maintenance of cellular homeostasis for the metal. The conclusions drawn allow us to make testable predictions about the regulation of expression of resistance to other heavy metals.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号