首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The freemartin condition represents the most frequent form of intersexuality found in cattle, and occasionally other species. This review considers the current state of knowledge of freemartin biology, incidence, experimental models, diagnosis, uses for freemartins in cattle herds, occurrence in non-bovine species, effects on the male, and highlights potential new research areas. Freemartins arise when vascular connections form between the placentae of developing heterosexual twin foeti, XX/XY chimerism develops, and ultimately there is masculinisation of the female tubular reproductive tract to varying degrees. With twinning rates in Holstein cows increasing, there will be greater economic importance to establish early diagnosis of the freemartin and the detection of the less common single born freemartin. New diagnostic methods based on the detection of Y-chromosome DNA segments by polymerase chain reaction (PCR) show improved assay sensitivity and efficiency over karyotyping and clinical examination. The implications for the chimeric male animal born co-twin to the freemartin are contentious as to whether fertility is affected; if germ cell chimerism does indeed occur; and, if there are any real effects on the sex ratio of offspring produced. In beef cattle, the freemartin carcass has similar characteristics to normal herdmates. Hormonal treatment of freemartins for use as oestrous detectors has been used to obtain salvage value. The biology of freemartin sheep has recently been studied in detail, and the condition may be increasing in prevalence with the introduction of high fecundity genes into flocks. Potential new research areas are discussed, such as detection of foetal DNA in maternal circulation for prenatal diagnosis and investigation of the anti-tumour properties of Mullerian inhibiting substance (MIS). The freemartin syndrome will always be a limiting factor in cattle and to a lesser extent in sheep production systems that have the goal to produce multiple reproductively normal female offspring from a single dam without using sex predetermination.  相似文献   

2.
Werner syndrome is an inherited disease displaying a premature aging phenotype. The gene mutated in Werner syndrome encodes both a 3' --> 5' DNA helicase and a 3' --> 5' DNA exonuclease. Both WRN helicase and exonuclease preferentially utilize DNA substrates containing alternate secondary structures. By virtue of its ability to resolve such DNA structures, WRN is postulated to prevent the stalling and collapse of replication forks that encounter damaged DNA. Using electron microscopy, we visualized the binding of full-length WRN to DNA templates containing replication forks and Holliday junctions, intermediates observed during DNA replication and recombination, respectively. We show that both wild-type WRN and a helicase-defective mutant bind with exceptionally high specificity (>1000-fold) to DNA secondary structures at the replication fork and at Holliday junctions. Little or no binding is observed elsewhere on the DNA molecules. Calculations of the molecular weight of full-length WRN revealed that, in solution, WRN exists predominantly as a dimer. However, WRN bound to DNA is larger; the mass is consistent with that of a tetramer.  相似文献   

3.
The Werner syndrome (WS) protein WRN is unique in possessing a 3' to 5' exonuclease activity in addition to the 3' to 5' helicase activity characteristic of other RecQ proteins. In order to determine in vivo functions of the WRN catalytic activities and their roles in Werner syndrome pathogenesis, we quantified cell survival and homologous recombination after DNA damage in cells expressing WRN missense-mutant proteins that lacked exonuclease and/or helicase activity. Both WRN biochemical activities were required to generate viable recombinant daughter cells. In contrast, either activity was sufficient to promote cell survival after DNA damage in the absence of recombination. These results indicate that WRN has recombination and survival functions that can be separated by missense mutations. Two implications are that Werner syndrome most likely results from the loss of both activities and their associated functions from patient cells, and that WRN missense mutations or polymorphisms could promote genetic instability and cancer in the general population by selectively interfering with recombination in somatic cells.  相似文献   

4.
Sirtuin-mediated deacetylation pathway stabilizes Werner syndrome protein   总被引:2,自引:0,他引:2  
Kahyo T  Mostoslavsky R  Goto M  Setou M 《FEBS letters》2008,582(17):2479-2483
Caloric restriction (CR) is known to promote longevity in various species. Sirtuin-mediated deacetylation has been shown to be related to the promotion of longevity in some species. Here, we show that CR of rats led to an increase in the level of Werner syndrome protein (WRN), a recognized DNA repair protein. In addition, CR simultaneously increased the level of SIRT1, a mammalian sirtuin. In HEK293T cells, sirtuin inhibitors decreased the WRN level, and this effect was suppressed by proteasomal inhibitors. Furthermore, we found a decrease in the WRN level in Sirt1-deficient mice. These results indicate that sirtuin-mediated deacetylation stabilizes WRN. STRUCTURED SUMMARY:  相似文献   

5.
DNA double-strand breaks (DSBs) are a highly mutagenic and potentially lethal damage that occurs in all organisms. Mammalian cells repair DSBs by homologous recombination and non-homologous end joining, the latter requiring DNA-dependent protein kinase (DNA-PK). Werner syndrome is a disorder characterized by genomic instability, aging pathologies and defective WRN, a RecQ-like helicase with exonuclease activity. We show that WRN interacts directly with the catalytic subunit of DNA-PK (DNA-PK(CS)), which inhibits both the helicase and exonuclease activities of WRN. In addition we show that WRN forms a stable complex on DNA with DNA-PK(CS) and the DNA binding subunit Ku. This assembly reverses WRN enzymatic inhibition. Finally, we show that WRN is phosphorylated in vitro by DNA-PK and requires DNA-PK for phosphorylation in vivo, and that cells deficient in WRN are mildly sensitive to ionizing radiation. These data suggest that DNA-PK and WRN may function together in DNA metabolism and implicate WRN function in non-homologous end joining.  相似文献   

6.
7.
8.
Comment on: Li B, et al. Aging 2009; 1:289-302.  相似文献   

9.
A case of adult progeria has been described. During detailed studies of the cells from this patient the nuclear lamina and cytoskeleton aberrations were detected. It has been suggested that this case is an atypical form of Werner syndrome with laminopathy--not the WRN helicase-nuclease defect.  相似文献   

10.
11.
12.
13.
Kamath-Loeb A  Loeb LA  Fry M 《PloS one》2012,7(1):e30189
Loss of Werner syndrome helicase-exonuclease (WRN) or of its homolog Bloom syndrome helicase (BLM) results in different inherited disorders. Whereas Werner syndrome is characterized by premature onset of aging and age-associated diseases, Bloom syndrome involves developmental abnormalities and increased predisposition to diverse malignancies. To identify biochemical differences between WRN and BLM that might contribute to the dissimilar outcomes of their loss, we compared their abilities to unwind and bind in vitro diverse DNA structures. Full-length recombinant WRN and BLM proteins expressed in and purified from Sf9 insect cells unwound to comparable extents and with similar K(m) values partial DNA duplex, splayed arm DNA and G'2 bimolecular quadruplex DNA. However, WRN resolved bubble DNA ~25-fold more efficiently than BLM. The two enzymes were mainly distinguished by their contrasting abilities to bind DNA. WRN bound partial duplexes, bubble and splayed arm DNA and G'2 bimolecular and G4 four-molecular quadruplexes with dissociation constants of 0.25 to 25 nM. By contrast, BLM formed substantial complexes with only G4 quadruplex DNA while binding only marginally other DNA structures. We raise the possibility that in addition to its enzymatic activities WRN may act as a scaffold for the assembly on DNA of additional DNA processing proteins.  相似文献   

14.
Retinol binding protein 4 (RBP(4)) is regarded as a novel cardiometabolic risk factor, which is secreted mainly by the hepatocytes and also by the adipose tissue. RBP(4) has been shown to induce insulin resistance, and plasma RBP(4) values are increased in type 2 diabetes mellitus, obesity, metabolic syndrome, and cardiovascular disease. Moreover, it has been found that circulating RBP(4) decreases during medical interventions that result in amelioration of the metabolic profile, such as diet, exercise, oral antidiabetic drugs, and hypolipidemic agents. However, only few of the RBP(4)-related studies have investigated whether RBP(4) constitutes a causal factor of the above-mentioned metabolic conditions. Importantly, circulating RBP(4) is influenced by some nonmetabolic conditions, such as renal failure, acute illness, injury, and liver failure. Thus, further studies investigating the metabolic roles of RBP(4) should be carefully planned, taking into account the effects of nonmetabolic conditions on circulating RBP(4).  相似文献   

15.
G Blander  N Zalle  J F Leal  R L Bar-Or  C E Yu  M Oren 《FASEB journal》2000,14(14):2138-2140
Mutations in the p53 tumor-suppressor gene promote increased genomic instability and cancer. Mutations in the WRN gene, encoding a DNA helicase, underlie the segmental progeroid Werner syndrome (WS). WS is also associated with increased genomic instability and elevated cancer risk. The p53 and WRN proteins can engage in direct protein-protein interactions. We report that excess WRN elicits increased cellular p53 levels and potentiates p53-mediated apoptosis. Importantly, cells derived from WS patients exhibit an attenuated and delayed induction of p53 by UV or by the topoisomerase I inhibitor camptothecin. These results suggest that WRN may participate in the activation of p53 in response to certain types of DNA damage. Furthermore, the failure to induce p53 effectively may contribute to enhanced genomic instability and elevated cancer risk in WS patients.  相似文献   

16.
17.
Li B  Comai L 《Nucleic acids research》2002,30(17):3653-3661
The DNA-dependent protein kinase (DNA-PK) complex, which is composed of a DNA-dependent kinase subunit (DNA-PKcs) and the Ku70/80 heterodimer, is involved in DNA double-strand break repair by non-homologous end joining (NHEJ). Ku70/80 interacts with the Werner syndrome protein (WRN) and stimulates WRN exonuclease activity. To investigate a possible function of WRN in NHEJ, we have examined the relationship between DNA-PKcs, Ku and WRN. First, we showed that WRN forms a complex with DNA-PKcs and Ku in solution. Next, we determined whether this complex assembles on DNA ends. Interestingly, the addition of WRN to a Ku:DNA-PKcs:DNA complex results in the displacement of DNA-PKcs from the DNA, indicating that the triple complex WRN:Ku:DNA-PKcs cannot form on DNA ends. The displacement of DNA-PKcs from DNA requires the N- and C-terminal regions of WRN, both of which make direct contact with the Ku70/80 heterodimer. Moreover, exonuclease assays indicate that DNA-PKcs does not protect DNA from the nucleolytic action of WRN. These results suggest that WRN may influence the mechanism by which DNA ends are processed.  相似文献   

18.
Ozgenc A  Loeb LA 《Mutation research》2005,577(1-2):237-251
Werner syndrome (WS) is an autosomal recessive premature aging disease manifested by the mimicry of age-related phenotypes such as atherosclerosis, arteriosclerosis, cataracts, osteoporosis, soft tissue calcification, premature thinning, graying, and loss of hair, as well as a high incidence of some types of cancers. The gene product defective in WS, WRN, is a member of the RecQ family of DNA helicases that are widely distributed in nature and believed to play central roles in genomic stability of organisms ranging from prokaryotes to mammals. Interestingly, WRN is a bifunctional protein that is exceptional among RecQ helicases in that it also harbors an exonuclease activity. Furthermore, it preferentially operates on aberrant DNA structures believed to exist in vivo as intermediates in specific DNA transactions such as replication (forked DNA), recombination (Holliday junction, triplex and tetraplex DNA), and repair (partial duplex with single stranded bubble). In addition, WRN has been shown to physically and functionally interact with a variety of DNA-processing proteins, including those that are involved in resolving alternative DNA structures, repair DNA damage, and provide checkpoints for genomic stability. Despite significant research activity and considerable progress in understanding the biochemical and molecular genetic function of WRN, the in vivo molecular pathway(s) of WRN remain elusive. The following review focuses on the recent advances in the biochemistry of WRN and considers the putative in vivo functions of WRN in light of its many protein partners.  相似文献   

19.
Werner syndrome (WS) is characterized by the early onset of symptoms of premature aging, cancer, and genomic instability. The molecular basis of the defects is not understood but presumably relates to the DNA helicase and exonuclease activities of the protein encoded by the WRN gene that is mutated in the disease. The attenuation of p53-mediated apoptosis in WS cells and reported physical interaction between WRN and the tumor suppressor p53 suggest that p53 and WRN functionally interact in a pathway necessary for the normal cellular response. In this study, we have demonstrated that p53 inhibits the exonuclease activity of the purified full-length recombinant WRN protein. p53 did not have an effect on a truncated amino-terminal WRN fragment that retains exonuclease activity but lacks the physical interaction domain for p53 located in the carboxyl terminus. Two naturally occurring p53 mutants found in human cancer displayed a reduced ability to inhibit WRN exonuclease activity. In cells arrested in S phase with hydroxyurea, WRN exits the nucleolus and colocalizes with p53 in the nucleoplasm. The regulation of WRN function by p53 is likely to play an important role in the maintenance of genomic integrity and prevention of cancer and other clinical symptoms associated with WS.  相似文献   

20.
Werner syndrome (WS) is an adult onset segmental progeroid syndrome caused by mutations in the WRN gene. The WRN gene encodes a 180 kDa nuclear protein that possesses helicase and exonuclease activities. The absence of WRN protein leads to abnormalities in various DNA metabolic pathways such as DNA repair, replication and telomere maintenance. Individuals with WS generally develop normally until the third decade of life, when premature aging phenotypes and a series of age-related disorders begin to manifest. In Japan, where a founder effect has been described, the frequency of Werner heterozygotes appears to be as high as 1/180 in the general population. Due to the relatively non-specific nature of the symptoms and the lack of awareness of the condition, this disease may be under-diagnosed in other parts of the world. Genetic counseling of WS patients follows the path of other autosomal recessive disorders, with special attention needed for cancer surveillance in relatives. Molecular diagnosis of WS is made by nucleotide sequencing and, in some cases, protein analysis. It is also of potential interest to measure WRN activities in WS patients. More than 50 different disease-causing mutations in the WRN gene have been identified in WS patients from all over the world. All but one of these cases has mutations that result in the premature termination of the protein. Here we describe the clinical, molecular and biochemical characteristics of WS for use by medical professionals in a health care setting. Additional information is available through the International Registry of WS ().  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号