首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Cancer cells show increased glycolysis and take advantage of this metabolic pathway to generate ATP. The TP53-induced glycolysis and apoptosis regulator (TIGAR) inhibits aerobic glycolysis and protects tumor cells from intracellular reactive oxygen species (ROS)-associated apoptosis. However, the function of TIGAR in glycolysis and survival of acute myeloid leukemia cells remains unclear.

Methods

We analyzed TIGAR expression in cytogenetically normal (CN-) AML patients and the correlations with clinical and biological parameters. In vivo and in vitro, we tested whether glycolysis may induce TIGAR expression and evaluated the combination effect of glycolysis inhibitor and TIGAR knockdown on human leukemia cell proliferation.

Results

High TIGAR expression was an independent predictor of poor survival and high incidence of relapse in adult patients with CN-AML. TIGAR also showed high expression in multiple human leukemia cell lines and knockdown of TIGAR activated glycolysis through PFKFB3 upregulation in human leukemia cells. Knockdown of TIGAR inhibited the proliferation of human leukemia cells and sensitized leukemia cells to glycolysis inhibitor both in vitro and in vivo. Furthermore, TIGAR knockdown in combination with glycolysis inhibitor 2-DG led leukemia cells to apoptosis. In addition, the p53 activator Nutlin-3α showed a significant combinational effect with TIGAR knockdown in leukemia cells. However, TIGAR expression and its anti-apoptotic effects were uncoupled from overexpression of exogenous p53 in leukemia cells.

Conclusions

TIGAR might be a predictor of poor survival and high incidence of relapse in AML patients, and the combination of TIGAR inhibitors with anti-glycolytic agents may be novel therapies for the future clinical use in AML patients.
  相似文献   

2.
3.

Background

Human T-cell leukemia virus type 1 (HTLV-1) infection is associated with adult T-cell leukemia/lymphoma (ATLL), a lymphoproliferative malignancy with a dismal prognosis and limited therapeutic options. Recent evidence shows that HTLV-1-transformed cells present defects in both DNA replication and DNA repair, suggesting that these cells might be particularly sensitive to treatment with a small helicase inhibitor. Because the “Werner syndrome ATP-dependent helicase” encoded by the WRN gene plays important roles in both cellular proliferation and DNA repair, we hypothesized that inhibition of WRN activity could be used as a new strategy to target ATLL cells.

Methods

Our analysis demonstrates an apoptotic effect induced by the WRN helicase inhibitor in HTLV-1-transformed cells in vitro and ATL-derived cell lines. Inhibition of cellular proliferation and induction of apoptosis were demonstrated with cell cycle analysis, XTT proliferation assay, clonogenic assay, annexin V staining, and measurement of mitochondrial transmembrane potential.

Results

Targeted inhibition of the WRN helicase induced cell cycle arrest and apoptosis in HTLV-1-transformed leukemia cells. Treatment with NSC 19630 (WRN inhibitor) induces S-phase cell cycle arrest, disruption of the mitochondrial membrane potential, and decreased expression of anti-apoptotic factor Bcl-2. These events were associated with activation of caspase-3-dependent apoptosis in ATL cells. We identified some ATL cells, ATL-55T and LMY1, less sensitive to NSC 19630 but sensitive to another WRN inhibitor, NSC 617145.

Conclusions

WRN is essential for survival of ATL cells. Our studies suggest that targeting the WRN helicase with small inhibitors is a novel promising strategy to target HTLV-1-transformed ATL cells.
  相似文献   

4.

Background

Metformin is the most commonly used first-line medicine for type II diabetes mellitus. Acting via AMP-activated protein kinase, it has been used for more than 60 years and has an outstanding safety record. Metformin also offers protection against cancer, but its precise mechanisms remain unclear.

Methods

We first examined the cytotoxic effects of metformin in the HeLa human cervical carcinoma and ZR-75-1 breast cancer cell lines using assays of cell viability, cleaved poly-ADP-ribose polymerase, and Annexin V-fluorescein isothiocyanate apoptosis, as well as flow cytometric analyses of the cell cycle profile and reactive oxygen species (ROS). We later clarified the effect of metformin on p53 protein stability using transient transfection and cycloheximide chase analyses.

Results

We observed that metformin represses cell cycle progression, thereby inducing subG1 populations, and had induced apoptosis through downregulation of p53 protein and a target gene, differentiated embryo chondrocyte 1 (DEC1). In addition, metformin increased intracellular ROS levels, but N-acetyl cysteine, a ROS scavenger, failed to suppress metformin-induced apoptosis. Further results showed that metformin disrupted the electron transport chain and collapsed the mitochondrial membrane potential, which may be the cause of the elevated ROS levels. Examination of the mechanisms underlying metformin-induced HeLa cell death revealed that reduced stability of p53 in metformin-treated cells leads to decreases in DEC1 and induction of apoptosis.

Conclusion

The involvement of DEC1 provides new insight into the positive or negative functional roles of p53 in the metformin-induced cytotoxicity in tumor cells.
  相似文献   

5.
6.

Background

Bone marrow mesenchymal stromal cells (BM-MSCs) are an essential cell type in the hematopoietic microenvironment. The question of whether MSCs from patients with different leukemias have cytogenetic abnormalities is controversial. In this study, we attempted to review the cytogenetic profiles of MSCs in patients with leukemia, and verify whether these profiles were related to different ex vivo culture conditions or to chronic or acute disease states. This information could be useful in clarifying the origin of MSCs and developing clinical applications for this cell type.

Methods

A systematic literature search was performed using the PubMed search engine. Studies published over the past 15 years, i.e., between 1995 and January 2015, were considered for review. The following keywords were used: “cytogenetic,” “leukemia,” “bone marrow,” and “mesenchymal stromal cells.”

Results

Some studies demonstrated that BM-MSCs are cytogenetically normal, whereas others provided evidence of aberrations in these cells

Conclusions

Studying cytogenetic changes of MSCs in a variety of leukemias will help researchers understand the nature of these tumors and ensure the safety of human stem cells in clinical applications.
  相似文献   

7.

Background

The identification of suitable patients is a common problem in clinical trials that is especially evident in tertiary care hospitals.

Methods

We developed and analysed a workflow, which uses routine data captured during patient care in a hospital information system (HIS), to identify potential trial subjects. Study nurses or physicians are notified automatically by email and verify eligibility.

Results

As a case study we implemented the system for acute myeloid leukemia (AML) trials in Münster. During a test period of 50 days 41 patients were identified by the system. 13 could be included as new trial patients, 7 were already included during earlier visits. According to review of paper records no AML trial patient was missed by the system. In addition, the hospital information system further allowed to preselect patients for specific trials based on their disease status and individual characteristics.

Conclusion

Routine HIS data can be used to support patient recruitment for clinical trials by means of an automated notification workflow.
  相似文献   

8.

Purpose of the review

The purpose of this study was to summarize data on available antifungal prophylaxis of invasive fungal disease (IFD) in children and when it should be administered during antineoplastic chemotherapy.

Recent findings

Antifungal prophylaxis should be considered when incidence of IFD is ≥?10%, as acute myeloblastic leukemia, high-risk acute lymphoblastic leukemia, and second-line therapy for any relapsing leukemia. In absence of specific pediatric studies, data from adults indicate that triazoles, especially posaconazole tablets, could represent the most attractive option, even if some troubles (mainly regarding drug interactions and intestinal absorption) must be underlined. Echinocandins and liposomal amphotericin B (intravenous or nebulized) can represent alternatives in specific conditions. Other infection control measures (hand hygiene, respiratory masks) can represent adjunctive and effective measures.

Summary

Antifungal prophylaxis should be implemented in children receiving aggressive chemotherapy for acute leukemia, and triazoles represent the first choice for this purpose.
  相似文献   

9.

Background

In acute myeloid leukemia (AML), the leukemia initiating cells (LICs) or leukemia stem cells (LSCs) is found within the CD34+CD38- cell compartment. The LICs subpopulation survives chemotherapy and is most probable the cause of minimal residual disease (MRD), which in turn is thought to cause relapse. The aim of this study was to determine the prognostic value of the percentage of LICs in blasts at diagnosis.

Design and methods

The percentage of LICs in the blast population was determined at diagnosis using a unique Flow-FISH analysis, which applies fluorescent in situ hybridization (FISH) analysis on flow cytometry sorted cells to distinguish LICs within the CD34+CD38- cell compartment. Fourty-five AML patients with FISH-detectable cytogenetic abnormalities treated with standardized treatment program were retrospectively included in the study. Correlations with overall survival (OS), events-free survival (EFS) and cumulative incidence of relapse (CIR) were evaluated with univariate and multivariate analysis.

Results

The percentage of LICs is highly variable in patients with acute myeloid leukemia, ranged from 0.01% to 52.8% (median, 2.1%). High LIC load (≥1%) negatively affected overall survival (2-year OS: 72.57% vs. 16.75%; P?=?0.0037) and events-free survival (2-year EFS: 67.23% vs. 16.33%; P?=?0.0018), which was due to an increased cumulative incidence of relapse (2-year CIR: 56.7% vs. 18.0%; P?=?0.021). By multivariate analysis, high LIC load retained prognostic significance for OS and EFS.

Conclusions

In the present study, we established the Flow-FISH protocol as a useful method to distinguish normal and leukemic cells within the CD34+CD38- cell subpopulation. The high percentage of LICs at diagnosis was significantly correlated with increased risk of poor clinical outcome.
  相似文献   

10.

Background

Dasatinib (Sprycel) was developed as a tyrosine kinase inhibitor targeting Bcr-Abl and the family of Src kinases. Dasatinib is commonly used for the treatment of acute lymphoblastic and chronic myelogenous leukemia. Previous clinical studies in melanoma returned inconclusive results and suggested that patients respond highly heterogeneously to dasatinib as single agent or in combination with standard-of-care chemotherapeutic dacarbazine. Reliable biomarkers to predict dasatinib responsiveness in melanoma have not yet been developed.

Results

Here, we collected comprehensive in vitro data from experimentally well-controlled conditions to study the effect of dasatinib, alone and in combination with dacarbazine, on cell proliferation and cell survival. Sixteen treatment conditions, covering therapeutically relevant concentrations ranges of both drugs, were tested in 12 melanoma cell lines with diverse mutational backgrounds. Melanoma cell lines responded heterogeneously and, importantly, dasatinib and dacarbazine did not synergize in suppressing proliferation or inducing cell death. Since dasatinib is a promiscuous kinase inhibitor, possibly affecting multiple disease-relevant pathways, we also determined if basal phospho-protein amounts and treatment-induced changes in phospho-protein levels are indicative of dasatinib responsiveness. We found that treatment-induced de-phosphorylation of p53 correlates with dasatinib responsiveness in malignant melanoma.

Conclusions

Loss of p53 phosphorylation might be an interesting candidate for a kinetic marker of dasatinib responsiveness in melanoma, pending more comprehensive validation in future studies.
  相似文献   

11.

Background

CD274 (programmed death ligand 1, also known as B7H1) is expressed in both solid tumors and hematologic malignancies and is of critical importance for the escape of tumor cells from immune surveillance by inhibiting T cell function via its receptor, programmed death 1 (PD-1). Increasing evidence indicates that functional monoclonal antibodies of CD274 may potently enhance the antitumor effect in many cancers. However, the role of CD274 in leukemia-initiating cells (LICs) remains largely unknown.

Methods

We established an MLL-AF9-induced acute myeloid leukemia (AML) model with wild-type (WT) and CD274-null mice to elucidate the role of CD274 in the cell fates of LICs, including self-renewal, differentiation, cell cycle, and apoptosis. RNA sequencing was performed to reveal the potential downstream targets, the results of which were further validated both in vitro and in vivo.

Results

In silico analysis indicated that CD274 level was inversely correlated with the overall survival of AML patients. In Mac-1+/c-Kit+ mouse LICs, CD274 was expressed at a much higher level than in the normal hematopoietic stem cells (HSCs). The survival of the mice with CD274-null leukemia cells was dramatically extended during the serial transplantation compared with that of their WT counterparts. CD274 deletion led to a significant decrease in LIC frequency and arrest in the G1 phase of the cell cycle. Interestingly, CD274 is not required for the maintenance of HSC pool as shown in our previous study. Mechanistically, we demonstrated that the levels of both phospho-JNK and Cyclin D2 were strikingly downregulated in CD274-null LICs. The overexpression of Cyclin D2 fully rescued the loss of function of CD274. Moreover, CD274 was directly associated with JNK and enhanced the downstream signaling to increase the Cyclin D2 level, promoting leukemia development.

Conclusions

The surface immune molecule CD274 plays a critical role in the proliferation of LICs. The CD274/JNK/Cyclin D2 pathway promotes the cell cycle entry of LICs, which may serve as a novel therapeutic target for the treatment of leukemia.
  相似文献   

12.

Objectives

To investigate the biological functions of microRNA-144-3p with respect to proliferation and apoptosis of human salivary adenoid carcinoma cell lines via mTOR.

Results

After transfection of microRNA-144-3p agomir, cell viability assays confirmed that the salivary adenoid carcinoma cell (SACC) proliferation was inhibited and apoptosis was induced. Dual luciferase reporter assay validated that the mammalian target of rapamycin (mTOR) was a direct target of miR-144-3p. Western blot, immunofluorescent analysis and a xenograft mouse model of adenoid cystic carcinoma indicated that miR-144-3p was a tumor suppressor and repressed mTOR expression and signaling in SACCs.

Conclusions

MicroRNA-144-3p inhibits proliferation and induces apoptosis of human salivary adenoid carcinoma cells by downregulating mTOR expression in vitro and in vivo.
  相似文献   

13.

Objectives

Copper oxide nanoparticles (CuO NPs) promoting anticancer activity may be due to the regulation of various classes of histone deacetylases (HDACs).

Results

Green-synthesized CuO NPs significantly arrested total HDAC level and also suppressed class I, II and IV HDACs mRNA expression in A549 cells. A549 cells treated with CuO NPs downregulated oncogenes and upregulated tumor suppressor protein expression. CuO NPs positively regulated both mitochondrial and death receptor-mediated apoptosis caspase cascade pathway in A549 cells.

Conclusion

Green-synthesized CuO NPs inhibited HDAC and therefore shown apoptosis mediated anticancer activity in A549 lung cancer cell line.
  相似文献   

14.
15.

Objectives

To explore the functional effects of miR-1284 on gastric cancer cells.

Results

Overexpression of miR-1284 significantly reduced SGC-7901 cell proliferation, but improved apoptosis. However, miR-1284 suppression displayed the inversed impacts. Furthermore, the protein levels of p27, Bax, procaspase-3 and active caspase-3 were up-regulated by miR-1284 overexpression, but were down-regulated by miR-1284 suppression. The level of Bcl-2 was down-regulated by miR-1284 overexpression, while it was up-regulated by miR-1284 suppression. The level of p21 was unaffected.

Conclusion

These results suggest that miR-1284 overexpression might be a suppressor for gastric cancer via controlling of cell proliferation and apoptosis.
  相似文献   

16.

Background

Botulism is a potentially fatal infection characterized by progressive muscle weakness, bulbar paralysis, constipation and other autonomic dysfunctions. A recent report suggested that cancer chemotherapy might increase the risk for the intestinal toxemia botulism in both adults and children.

Case presentation

We report a 5-year-old boy, who developed general muscle weakness, constipation, ptosis and mydriasis during the third induction therapy for relapsed acute myeloid leukemia. He had recent histories of multiple antibiotic therapy for bacteremia and intake of well water at home. Repeated bacterial cultures identified Clostridium botulinum producing botulinum neurotoxin A. Botulinum toxin A was isolated from his stools at 17, 21, and 23 days after the onset. Symptoms were self-limiting, and were fully recovered without anti-botulinum toxin globulin therapy.

Conclusion

This is the second report of a pediatric case with cancer chemotherapy-associated intestinal toxemia botulism. Our case provides further evidence that the immunocompromised status due to anti-cancer treatments increases the risk for the development of botulism at all ages in childhood.
  相似文献   

17.

Objectives

To investigate the functional roles of bone marrow stromal cell antigen 2 (BST2) in gastric cancer (GC) cells and its implications in the development of GC patients.

Results

BST2 was frequently overexpressed in GC tissues compared with the adjacent non-tumorous tissues, and high BST2 expression was correlated with tumor stage and lymphatic metastasis. Furthermore, in vitro experiments demonstrated that knockdown of BST2 by siRNA inhibited cell proliferation, induced apoptosis and repressed cell motility in GC cells. In addition, the pro-tumor function of BST2 in GC was mediated partly through the NF-κB signaling.

Conclusion

BST2 possesses the oncogenic potential in GC by regulating the proliferation, apoptosis, and migratory ability of GC cells, thereby BST2 could be a potential therapeutic target for the treatment of GC.
  相似文献   

18.

Objectives

We evaluated the potential effects of aspirin combined with vitamin D3 on cell proliferation and apoptosis in oral cancer cells.

Results

Compared to the untreated control or individual drug, the combinations of aspirin and vitamin D3 significantly decreased the rates of cell proliferation by CCK-8 assay, and caused higher rates of cell apoptosis in both CAL-27 and SCC-15 cells by Annexin V-FITC apoptosis assay and flow cytometry. Remarkably, the combined treatment with aspirin and vitamin D3 significantly suppressed the expression of Bcl-2 protein and p-Erk1/2 protein, examined by western blot analysis.

Conclusions

Our study demonstrates that aspirin and vitamin D3 have biological activity against two human OSCC cell lines and their activity is synergistic or additive when two drugs used in combination with therapeutic concentrations. The combination of aspirin and vitamin D3 may be an effective approach for inducing cell death in OSCC.
  相似文献   

19.

Background

Apoptosis, the most well-known type of programmed cell death, can induce in a paracrine manner a proliferative response in neighboring surviving cells called apoptosis-induced proliferation (AiP). While having obvious benefits when triggered in developmental processes, AiP is a serious obstacle in cancer therapy, where apoptosis is frequently induced by chemotherapy. Therefore, in this study, we evaluated the capacity of an alternative type of cell death, called caspase-independent cell death, to promote proliferation.

Results

Using a novel in vitro isogenic cellular model to trigger either apoptosis or caspase-independent cell death, we found that the later has no obvious compensatory proliferation effects on neighboring cells.

Conclusions

This study enforces the idea that alternative types of cell death such as caspase-independent cell death could be considered to replace apoptosis in the context of cancer treatment.
  相似文献   

20.

Background

Gliomas are commonly malignant tumors that arise in the human central nervous system and have a low overall five-year survival rate. Previous studies reported that several members of Rab GTPase family are involved in the development of glioma, and abnormal expression of Rab small GTPases is known to cause aberrant tumor cell behavior. In this study, we characterized the roles of Rab21 (Rab GTPase 21), a member of Rab GTPase family, in glioma cells.

Methods

The study involved downregulation of Rab21 in two glioma cell lines (T98G and U87) through transfection with specific-siRNA. Experiments using the MTT assay, cell cycle analysis, apoptosis assay, real-time PCR and western blot were performed to establish the expression levels of related genes.

Results

The results show that downregulation of Rab21 can significantly inhibit cell growth and remarkably induce cell apoptosis in T98G and U87 cell lines. Silencing Rab21 resulted in significantly increased expression of apoptosis-related proteins (caspase7, Bim and Bax) in glioma cells.

Conclusions

We inferred that Rab21 silencing can induce apoptosis and inhibit proliferation in human glioma cells, indicating that Rab21 might act as an oncogene and serve as a novel target for glioma therapy.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号