首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Grey wolves (Canis lupus) are one of the few large terrestrial carnivores that have maintained a wide geographical distribution across the Northern Hemisphere throughout the Pleistocene and Holocene. Recent genetic studies have suggested that, despite this continuous presence, major demographic changes occurred in wolf populations between the Late Pleistocene and early Holocene, and that extant wolves trace their ancestry to a single Late Pleistocene population. Both the geographical origin of this ancestral population and how it became widespread remain unknown. Here, we used a spatially and temporally explicit modelling framework to analyse a data set of 90 modern and 45 ancient mitochondrial wolf genomes from across the Northern Hemisphere, spanning the last 50,000 years. Our results suggest that contemporary wolf populations trace their ancestry to an expansion from Beringia at the end of the Last Glacial Maximum, and that this process was most likely driven by Late Pleistocene ecological fluctuations that occurred across the Northern Hemisphere. This study provides direct ancient genetic evidence that long‐range migration has played an important role in the population history of a large carnivore, and provides insight into how wolves survived the wave of megafaunal extinctions at the end of the last glaciation. Moreover, because Late Pleistocene grey wolves were the likely source from which all modern dogs trace their origins, the demographic history described in this study has fundamental implications for understanding the geographical origin of the dog.  相似文献   

2.
The caves at Klasies River contain abundant archaeological evidence relating to human evolution in the late Pleistocene of southern Africa. Along with Middle Stone Age artifacts, animal bones, and other food waste, there are hominin cranial fragments, mandibles with teeth, and a few postcranial remains. Three foot bones can now be added to this inventory. An adult first metatarsal is similar in size and discrete anatomical features to those from Holocene burials in the Cape Province. A complete and well-preserved second metatarsal is especially long and heavy at midshaft in comparison to all Holocene and more recent South African homologues. A large fifth metatarsal is highly distinctive in its morphology. In overall size, these pedal elements resemble specimens from late Pleistocene sites in western Asia, but there are some differences in proportions. The fossils support earlier suggestions concerning a relatively high level of sexual dimorphism in the African Middle Stone Age population. Squatting facets on the two lateral metatarsals appear to indicate a high frequency of kneeling among members of this group. The new postcranial material also underlines the fact that the morphology of particular skeletal elements of some of the 100,000-year-old Klasies River individuals falls outside the range of modern variation.  相似文献   

3.
1957年,在辽宁省建平县发现了一根古人类肱骨化石,编号PA103。通过同一批龙骨中筛选的哺乳动物化石,吴汝康推断PA103应该为更新世晚期古人类,并对该化石进行了表面形态特征观察和描述。为了对PA103化石的内外结构进行更全面的了解,除了线性测量数据的对比,本文还通过计算机断层扫描技术,结合生物力学和形态示量图分析对建平古人类右侧肱骨化石PA103进行了分析。通过本研究发现,PA103骨干横断面的生物力学粗壮度和力学形状指数明显小于尼安德特人,而与同时期欧亚大陆古人类不利手侧最为接近,这说明建平人右侧肱骨可能不是惯用手,同时,建平人的行为活动应该与同时期同地区的古人类处于同一水平,而小于尼安德特人。整体来看,PA103骨干骨密质厚度和截面惯性矩与近现代人的分布模式较为接近,除局部数值增大外,其整体数值小于近现代人的平均水平,这可能与遗传或行为活动有关,由于缺少古人类化石对比数据,更详细的了解还需后期开展更多相关的研究。  相似文献   

4.
To date, differences in craniofacial robusticity among modern and fossil humans have been primarily addressed by analyzing adult individuals; thus, the developmental basis of such differentiation remains poorly understood. This article aims to analyze the ontogenetic development of craniofacial robusticity in human populations from South America. Geometric morphometric methods were used to describe cranial traits in lateral view by using landmarks and semilandmarks. We compare the patterns of variation among populations obtained with subadults and adults to determine whether population‐specific differences are evident at early postnatal ontogeny, compare ontogenetic allometric trajectories to ascertain whether changes in the ontogeny of shape contribute to the differentiation of adult morphologies, and estimate the amount of size change that occurs during growth along each population‐specific trajectory. The results obtained indicate that the pattern of interpopulation variation in shape and size is already established at the age of 5 years, meaning that processes acting early during ontogeny contribute to the adult variation. The ontogenetic allometric trajectories are not parallel among all samples, suggesting the divergence in the size‐related shape changes. Finally, the extension of ontogenetic trajectories also seems to contribute to shape variation observed among adults. Am J Phys Anthropol 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
The origin and evolutionary history of modern humans is of considerable interest to paleoanthropologists and geneticists alike. Paleontological evidence suggests that recent humans originated and expanded from an African lineage that may have undergone demographic crises in the Late Pleistocene according to archaeological and genetic data. This would suggest that extant human populations derive from, and perhaps sample a restricted part of the genetic and morphological variation that was present in the Late Pleistocene. Crania that date to Marine Isotope Stage 3 should yield information pertaining to the level of Late Pleistocene human phenotypic diversity and its evolution in modern humans. The Nazlet Khater (NK) and Hofmeyr (HOF) crania from Egypt and South Africa, together with penecontemporaneous specimens from the Pe?tera cu Oase in Romania, permit preliminary assessment of variation among modern humans from geographically disparate regions at this time. Morphometric and morphological comparisons with other Late Pleistocene modern human specimens, and with 23 recent human population samples, reveal that elevated levels of variation are present throughout the Late Pleistocene. Comparison of Holocene and Late Pleistocene craniometric variation through resampling analyses supports hypotheses derived from genetic data suggesting that present phenotypic variation may represent only a restricted part of Late Pleistocene human diversity. The Nazlet Khater, Hofmeyr, and Oase specimens provide a unique glimpse of that diversity. Am J Phys Anthropol, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
Measures of diaphyseal robusticity have commonly been used to investigate differences in bone strength related to body size, behavior, climate, and other factors. The most common methods of quantifying robusticity involve external diameters, or cross-sectional geometry. The data derived from these different methods are often used to address similar research questions, yet the compatibility of the resulting data has not been thoroughly tested. This study provides the first systematic comparison of externally derived measures of postcranial robusticity, with those based upon cross-sectional geometry. It includes sections taken throughout the skeleton, comparisons of prediction errors associated with different measurements, and analysis of the implications of different methods of body size standardization on the prediction of relative bone strength. While the results show reasonable correlations between diaphyseal diameters and strengths derived from cross-sectional geometry, considerable prediction errors are found in many cases. A new approach to externally based quantification of diaphyseal robusticity based upon moulding of sub-periosteal contours is proposed. This method maximizes correlation with cross-sectional geometry (r(2) = .998) and minimizes prediction errors in all cases. The results underscore the importance of accurate periosteal measurement in the quantification of bone strength, and suggest that, regardless of theoretical scaling predictions, external area based robusticity estimates involving the product of diaphyseal diameters are most directly comparable to cross-sectional geometric properties when they are standardized using the product of body mass and bone length.  相似文献   

7.
Throughout much of prehistory, humans practiced a hunting and gathering subsistence strategy. Elevated postcranial robusticity and sexually dimorphic mobility patterns are presumed consequences of this strategy, in which males are attributed greater robusticity and mobility than females. Much of the basis for these trends originates from populations where skeletal correlates of activity patterns are known (e.g., cross-sectional geometric properties of long bones), but in which activity patterns are inferred using evidence such as archaeological records (e.g., Pleistocene Europe). Australian hunter-gatherers provide an opportunity to critically assess these ideas since ethnographic documentation of their activity patterns is available. We address the following questions: do skeletal indicators of Australian hunter-gatherers express elevated postcranial robusticity and sexually dimorphic mobility relative to populations from similar latitudes, and do ethnographic accounts support these findings. Using computed tomography, cross-sectional images were obtained from 149 skeletal elements including humeri, radii, ulnae, femora, and tibiae. Cross-sectional geometric properties were calculated from image data and standardized for body size. Australian hunter-gatherers often have reduced robusticity at femoral and humeral midshafts relative to forager (Khoi-San), agricultural/industrialized (Zulu), and industrialized (African American) groups. Australian hunter-gatherers display more sexual dimorphism in upper limb robusticity than lower limb robusticity. Attributing specific behavioral causes to upper limb sexual dimorphism is premature, although ethnographic accounts support sex-specific differences in tool use. Virtually absent sexual dimorphism in lower limb robusticity is consistent with ethnographic accounts of equivalently high mobility among females and males. Thus, elevated postcranial robusticity and sexually dimorphic mobility do not always characterize hunter-gatherers.  相似文献   

8.
Variation in upper limb long bone cross‐sectional properties may reflect a phenotypically plastic response to habitual loading patterns. Structural differences between limb bones have often been used to infer past behavior from hominin remains; however, few studies have examined direct relationships between behavioral differences and bone structure in humans. To help address this, cross‐sectional images (50% length) of the humeri and ulnae of university varsity‐level swimmers, cricketers, and controls were captured using peripheral quantitative computed tomography. High levels of humeral robusticity were found in the dominant arms of cricketers, and bilaterally among swimmers, whereas the most gracile humeri were found in both arms of controls, and the nondominant arms of cricketers. In addition, the dominant humeri of cricketers were more circular than controls. The highest levels of ulnar robusticity were also found in the dominant arm of cricketers, and bilaterally amongst swimmers. Bilateral asymmetry in humeral rigidity among cricketers was greater than swimmers and controls, while asymmetry for ulnar rigidity was greater in cricketers than controls. The results suggest that more mechanically loaded upper limb elements––unilaterally or bilaterally––are strengthened relative to less mechanically loaded elements, and that differences in mechanical loading may have a more significant effect on proximal compared to distal limb segments. The more circular humerus in the dominant arm in cricketers may be an adaptation to torsional strain associated with throwing activities. The reported correspondence between habitual activity patterns and upper limb diaphyseal properties may inform future behavioral interpretations involving hominin skeletal remains. Am J Phys Anthropol 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
Temporal trends in postcranial robusticity within the genus Homo are explored by comparing cross-sectional diaphyseal and articular properties of the femur, and to a more limited extent, the humerus, in samples of Recent and earlier Homo. Using both theoretical mechanical models and empirical observations within Recent humans, scaling relationships between structural properties and bone length are developed. The influence of body shape on these relationships is considered. These scaling factors are then used to standardize structural properties for comparisons with pre-Recent Homo (Homo sp. and H. erectus, archaic H. sapiens, and early modern H. sapiens). Results of the comparisons lead to the following conclusions: 1) There has been a consistent, exponentially increasing decline in diaphyseal robusticity within Homo that has continued from the early Pleistocene through living humans. Early modern H. sapiens are closer in shaft robusticity to archaic H. sapiens than they are to Recent humans. The increase in diaphyseal robusticity in earlier Homo is a result of both medullary contraction and periosteal expansion relative to Recent humans. 2) There has been no similar temporal decline in articular robusticity within Homo–relative femoral head size is similar in all groups and time periods. Thus, articular to shaft proportions are different in pre-Recent and Recent Homo. 3) These findings are most consistent with a mechanical explanation (declining mechanical loading of the postcranium), that acted primarily through developmental rather than genetic means. The environmental (behavioral) factors that brought about the decline in postcranial robusticity in Homo are ultimately linked to increases in brain size and cultural-technological advances, although changes in robusticity lag behind changes in cognitive capabilities. © 1993 Wiley-Liss, Inc.  相似文献   

10.
Postcranial robusticity--the massiveness of the skeleton--figures prominently in the debate over the origin of modern humans. Anthropologists use postcranial robusticity to infer the activity levels of prehistoric populations, and changes in robusticity are often used to support scenarios of adaptive change. These scenarios explain differences in morphology as the result of a change in lifestyle (habitual activity). One common scenario posits that early modern humans were more gracile than Neandertals because the modern humans' complex culture required less physical exertion. However, lifestyle is only one of many influences on morphology. Climate has clear correlations with physique and skeletal proportions. Analysis of recent humans that differ in terms of lifestyle and climatic adaptations reveals that limb bone robusticity varies with climate as much as or more than with lifestyle. Many of the differences in robusticity between Neandertals and early modern humans appear to be related to climatic adaptations. The results support the single-recent origin model of modern human origins. The differences in robusticity between Neandertals and early modern humans suggest that population replacement rather than local evolution best explains the emergence of modern humans in Europe. Both climatic adaptations (primarily body proportions) and lifestyle should be considered in analyses of robusticity.  相似文献   

11.
The Late Pleistocene hominin fossil assemblage from Liujiang, South China include a fairly well-preserved cranium, a right os coxa, a complete sacrum, and other postcranial elements all belonging to a single individual. This rare discovery offers us a unique and singular opportunity in understanding this Late Pleistocene hominin's body proportion and relative cranial capacity (encephalization quotient [EQ]), and also pelvic morphology. Using the available right innominate and its mirror-imaged left side, we reconstruct Liujiang hominin's pelvis. Our analysis of the pelvis indicates that the Liujiang hominin has a very gracile and modern-like pelvic morphology. Indeed, all of the pelvic dimensions are smaller than those of other Pleistocene hominins. Moreover, the pelvic characteristics typical of Middle and Late Pleistocene hominins including Neanderthals cannot be identified in the Liujiang pelvis. In contrast, both Liujiang's metric and non-metric features indicate affinities to more recent human populations including our modern Chinese collections from Guangxi of south China. Further support of this assessment comes from the EQ value of 5.754 for Liujiang which is closer to Minatogawa 2 and modern Chinese populations than to Middle and Late Pleistocene fossil hominins. Our analysis of body shape shows that Liujiang has body proportion (i.e. body height relative to body breadth) typical of warm-adapted populations. Based on these findings, we reason that the modern physical characteristics of Liujiang may allude to a more recent geological age. Alternatively, its morphological “modernity” could also point to a much higher degree of skeletal variation within Late Pleistocene hominins in East Asia.  相似文献   

12.
Early modern humans from the European Upper Paleolithic (UP) demonstrate trends in postcranial biomechanical features that coincide with the last glacial maximum (LGM). These features have been interpreted as evidence that ecological changes of the LGM played a critical role in cultural and biological adaptation in European UP populations. In areas outside of Europe, similar environmental changes occurred with the LGM. This analysis introduces postcranial material from the Late Upper Paleolithic (LUP) of North Africa and Southeast Asia and tests two related hypotheses: 1) LUP samples across the Old World had similar patterns of postcranial robusticity and 2) relative to an available Early Upper Paleolithic (EUP) sample, regional LUP samples demonstrate similar trends in robusticity that may be attributable to climatic effects of the LGM. Cross-sectional geometric data of the humeri and femora were obtained for 26 EUP and 100 LUP humans from Europe, Africa, and Asia. Despite regional differences, LUP samples are similar relative to the EUP sample. In the humerus, bilateral asymmetry decreases in all LUP samples relative to the EUP sample. In the femur, LUP samples demonstrate increasingly circular femoral midshaft sections, reflecting reduced anteroposterior bending strength relative to the EUP sample. These patterns suggest changes in subsistence behavior and mobility after the LGM across the Old World that are most consistent with reduced mobility and broad-spectrum resource exploitation.  相似文献   

13.
The Pleistocene glacial cycles resulted in significant changes in species distributions, and it has been discussed whether this caused increased rates of population divergence and speciation. One species that is likely to have evolved during the Pleistocene is the Norwegian lemming (Lemmus lemmus). However, the origin of this species, both in terms of when and from what ancestral taxon it evolved, has been difficult to ascertain. Here, we use ancient DNA recovered from lemming remains from a series of Late Pleistocene and Holocene sites to explore the species' evolutionary history. The results revealed considerable genetic differentiation between glacial and contemporary samples. Moreover, the analyses provided strong support for a divergence time prior to the Last Glacial Maximum (LGM), therefore likely ruling out a postglacial colonization of Scandinavia. Consequently, it appears that the Norwegian lemming evolved from a small population that survived the LGM in an ice‐free Scandinavian refugium.  相似文献   

14.
2011年在福建漳平奇和洞发现的距今1万年左右的新石器时代早期人类遗骸"奇和洞III号",是迄今在福建地区发现的最早、最完整的古人类头骨,为探讨华南更新世晚期向全新世过渡阶段人类的体质特征及现代人群的形成与分化提供了重要的研究材料。本文对这件头骨进行了研究,奇和洞III号为35岁左右的男性个体,牙齿龋病严重,推测当时人类的经济模式主要以农耕为主。通过与更新世晚期柳江、山顶洞101号及14组新石器时代人类头骨的比较,发现奇和洞III号头骨兼有更新世晚期人类及新石器南、北方居民的混合体质特征:奇和洞III号头骨长而脑量大,似更新世晚期人类;其高而狭窄的面部、宽阔而低矮的鼻部,呈现出不同于南、北方人群的特殊体质特征。主成分分析显示,奇和洞III号与对比的新石器时代各组在头骨的测量数据上没有表现为明显的南、北地区间差异,但在头骨的测量指数或形状上存在时代和地区间的不同。本文研究为新旧石器过渡阶段人类体质特征的变异提供了进一步证据。  相似文献   

15.
Evidence is accumulating that bone material stiffness increases during ontogeny, and the role of elastic modulus in conditioning attributes of strength and toughness is therefore a focus of ongoing investigation. Developmental changes in structural properties of the primate mandible have been documented, but comparatively little is known about changes in material heterogeneity and their impact on biomechanical behavior. We examine a cross‐sectional sample of Macaca fascicularis (N = 14) to investigate a series of hypotheses that collectively evaluate whether the patterning of material stiffness (elastic modulus) heterogeneity in the mandible differs among juvenile, subadult and adult individuals. Because differences in age‐related activity patterns are known to influence bone stiffness and strength, these data are potentially useful for understanding the relationship between feeding behavior on the one hand and material and structural properties of the mandible on the other. Elastic modulus is shown to be spatially dependent regardless of age, with this dependence being explicable primarily by differences in alveolar versus basal cortical bone. Elastic modulus does not differ consistently between buccal and lingual cortical plates, despite likely differences in the biomechanical milieu of these regions. Since we found only weak support for the hypothesis that the spatial patterning of heterogeneity becomes more predictable with age, accumulated load history may not account for regional differences in bone material properties in mature individuals with respect to the mandibular corpus. Am J Phys Anthropol 153:297–304, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

16.
The KNM-ER 999 hominid femur, in light of improved knowledge of later Pleistocene human postcranial morphology and ongoing reassessments of the emergence of modern humans in Africa, appears morphologically aligned with early modern humans rather than with late archaic humans. This is reflected especially in its having a clear pilaster, a proximally positioned minimum diaphyseal breadth (thereby lacking a proximo-medial diaphyseal buttress) and an exceptionally high neck-shaft angle. In these features, and especially the fast, it shows affinities to the Levantine Qafzeh-Skhul early modern human sample. However, the uncertainty regarding its stratigraphic provenience (early Late Pleistocene versus early Holocene) makes its relevance to the emergence of modern humans in Africa tenuous.  相似文献   

17.
Over the past two decades, an increasing amount of phylogeographic work has substantially improved our understanding of African biogeography, in particular the role played by Pleistocene pluvial–drought cycles on terrestrial vertebrates. However, still little is known on the evolutionary history of semi‐aquatic animals, which faced tremendous challenges imposed by unpredictable availability of water resources. In this study, we investigate the Late Pleistocene history of the common hippopotamus (Hippopotamus amphibius), using mitochondrial and nuclear DNA sequence variation and range‐wide sampling. We documented a global demographic and spatial expansion approximately 0.1–0.3 Myr ago, most likely associated with an episode of massive drainage overflow. These events presumably enabled a historical continent‐wide gene flow among hippopotamus populations, and hence, no clear continental‐scale genetic structuring remains. Nevertheless, present‐day hippopotamus populations are genetically disconnected, probably as a result of the mid‐Holocene aridification and contemporary anthropogenic pressures. This unique pattern contrasts with the biogeographic paradigms established for savannah‐adapted ungulate mammals and should be further investigated in other water‐associated taxa. Our study has important consequences for the conservation of the hippo, an emblematic but threatened species that requires specific protection to curtail its long‐term decline.  相似文献   

18.
Little has been described of the Holocene populations of South‐Central Africa, despite the region demonstrating major subsistence shifts relating to dispersals of agriculturalists at least 2,000 years ago. Seven sites with associated human skeletal remains were selected. Hora, Chencherere, Fingura, and Mtuzi represent the Middle Holocene (2,000–5,000 years ago), and Phwadze, Mtemankhokwe, and Nkudzi Bay represent the Late Holocene and the arrival of agriculturalists between 500–2,000 years ago. Focusing on the identity of Hora and Chencherere specimens, two questions were addressed: are the various Holocene Malawians similar to each other, or do they suggest morphological change over time? What modern populations are closest to the prehistoric specimens? The archaeological sample was compared to modern sub‐Saharan Africans from four regions, plus a historic Khoi‐San foraging group. Factor analyses were performed in order to identify complex patterns of variation in metric traits of the skull. According to the results, prehistoric Malawians showed only slight differences between the Late and Middle Holocene, suggesting a population change without any major discontinuity. Later Stone Age skulls did not exclusively show similarities with the Khoi‐San, as they frequently fit well within the variation of modern Bantu‐speaking groups, especially West‐Central Africa. Therefore, we reject the hypothesis that Middle Holocene South‐Central Africans have an exclusively Khoi‐San ancestry, and support an alternative hypothesis that both Middle and Late Holocene groups share a common biological heritage originating in West‐Central Africa in earlier times. Am J Phys Anthropol, 2006. © 2005 Wiley‐Liss, Inc.  相似文献   

19.
Here we present and describe comparatively 25 talus bones from the Middle Pleistocene site of the Sima de los Huesos (SH) (Sierra de Atapuerca, Burgos, Spain). These tali belong to 14 individuals (11 adult and three immature). Although variation among Middle and Late Pleistocene tali tends to be subtle, this study has identified unique morphological characteristics of the SH tali. They are vertically shorter than those of Late Pleistocene Homo sapiens, and show a shorter head and a broader lateral malleolar facet than all of the samples. Moreover, a few shared characters with Neanderthals are consistent with the hypothesis that the SH population and Neanderthals are sister groups. These shared characters are a broad lateral malleolar facet, a trochlear height intermediate between modern humans and Late Pleistocene H. sapiens, and a short middle calcaneal facet. It has been possible to propose sex assignment for the SH tali based on their size. Stature estimates based on these fossils give a mean stature of 174.4 cm for males and 161.9 cm for females, similar to that obtained based on the long bones from this same site.  相似文献   

20.
鲁可 《人类学学报》2019,38(3):362-372
在最近的一篇文章中,由d’Errico教授率领的来自中国、法国、德国研究者的工作表明,世界上最早的骨针出现于西伯利亚和中国北方地区,且这两个地区的骨针可能是独立起源。中国考古学的纪录为这一观点提供了更多的新证据。本文将这一工具类型与石器技术和环境背景结合考察,探讨更新世晚期后半段发生的人群的扩散。我们通过材料的梳理证明,中国北方地区的骨针,是出现于距今31000年前的一次技术创新,这一技术创新以石核-石片技术为代表的中国旧石器晚期的到来为背景。距今25000年,一种新形制的骨针出现。这些骨针形制扁平,与细石叶技术同时出现。这可能反映了欧亚大陆西方人群的东迁,这些人群带来了细石叶技术。更新世末,骨针更加多样化,这意味着他们可能有多种用途。在晚冰期末段,中国北方地区的骨针不仅与细石叶技术共出,同时也与石核、石片和陶器共出。在中国南方地区,在距今12000年前,骨针的出现与石核-石片技术同时出现。南方地区的骨针或是本地的的发明,或由末次冰期前北方人群的南迁带来的。长江以南地区,骨针与石核、石片和陶器在更新世晚期同时出现。更新世晚期中国南北方地区同时出现的这一工具组合,即石核、石片、陶器和骨针,预示着南北方地区在更新世晚期和全新世早期可能存在着长距离的人群的移动和文化的交流。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号