首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
非亲缘脐带血移植是治疗造血系统疾病的重要移植方式之一,但脐带血移植面临的最大挑战是造血干细胞(HSCs)数量不足,特别是成人患者受到脐带血干细胞数量的限制,导致造血及免疫恢复延迟,非复发死亡率升高。体外扩增脐带血HSCs(UCB-HSCs)是解决该问题的途径之一。研究发现可以通过模拟骨髓造血龛(niche)这一生态位使HSCs在体外进行自我更新增殖,而间充质干细胞(MSCs)正是造血龛的重要的组成细胞之一。本文将探讨MSCs在UCB-HSCs体外扩增中的应用。重点以MSCs促造血的特点、机制,促进脐带血干细胞增殖的各种策略以及其临床应用和前景做一综述。  相似文献   

2.
造血干细胞(HSCs)是血液系统中的一类成体干细胞群,具有自我更新和多谱系分化两个基本特征。造血干细胞移植(HSCT)可以治疗退行性疾病和多种血液系统疾病。脐带血来源造血干细胞(CB HSCs)是降低HLA配型要求的突破点,但单份脐带血中HSCs数量不能满足使用要求,为了获得足够数量的CB HSCs,体外扩增是一种可行的方法。近几年,学者们探索了多种体外扩增方法,包括优化细胞生长因子混合物、与基质细胞共培养及加入小分子化合物(SMCs)激动剂等。目前应用细胞因子联合小分子的扩增方法在多个临床试验中获得成功。本文对目前体外扩增CB HSCs的研究进展做一综述。  相似文献   

3.
Hematopoietic stem cells (HSCs) are capable to self-renew with multi-potency which generated much excitement in clinical therapy. However, the main obstacle of HSCs in clinical application was insufficient number of HSCs which were derived from either bone marrow, peripheral blood or umbilical cord blood. This review briefly discusses the indispensable utility of growth factors and cytokines, stromal cells, extracellular matrix, bionic scaffold and microenvironment aiming to control the hematopoiesis in all directions and provide a better and comprehensive understanding for in vitro expansion of hematopoietic stem cells.  相似文献   

4.
Hematopoietic stem cells (HSCs) are used in transplantation therapy to reconstitute the hematopoietic system. Human cord blood (hCB) transplantation has emerged as an attractive alternative treatment option when traditional HSC sources are unavailable; however, the absolute number of hCB HSCs transplanted is significantly lower than bone marrow or mobilized peripheral blood stem cells (MPBSCs). We previously demonstrated that dimethyl-prostaglandin E2 (dmPGE2) increased HSCs in vertebrate models. Here, we describe preclinical analyses of the therapeutic potential of dmPGE2 treatment by using human and nonhuman primate HSCs. dmPGE2 significantly increased total human hematopoietic colony formation in?vitro and enhanced engraftment of unfractionated and CD34(+) hCB after xenotransplantation. In nonhuman primate autologous transplantation, dmPGE2-treated CD34(+) MPBSCs showed stable multilineage engraftment over 1 year postinfusion. Together, our analyses indicated that dmPGE2 mediates conserved responses in HSCs from human and nonhuman primates and provided sufficient preclinical information to support proceeding to an FDA-approved phase 1 clinical trial.  相似文献   

5.
Full-term cord blood (TCB) hematopoietic stem/progenitor cells (HSC/HPCs) are used for stem cell transplantation and are well characterized. However, the properties of preterm cord blood (PCB) HSC/HPCs remain unclear. In the present study, we compared HSC/HPCs from TCB and PCB with respect to their expression of surface markers, homing capacity and ability to repopulate HSCs in the NOD/Shi-scid mice bone marrow. The proportion of CD34+CD38− cells was significantly higher in PCB. On the other hand, the engraftment rate of TCB CD34+ cells into NOD/Shi-scid mice was significantly higher than PCB CD34+ cells. The expression of VLA4 was stronger among TCB CD34+ cells than PCB CD34+ cells. Moreover, there was a positive correlation between the proportion of CD34+CXCR4+ cells and gestational age. These data suggest that the homing ability of HSCs increases during gestation, so that TCB may be a better source of HSCs for transplantation than PCB.  相似文献   

6.
Hematopoietic stem cells (HSCs) can self-renew extensively after transplantation. The conditions supporting their in vitro expansion are still being defined. Retroviral overexpression of the human homeobox B4 (HOXB4) gene in mouse bone marrow cells enables over 40-fold expansion of HSCs in vitro. To circumvent the requirement for retroviral infection, we used recombinant human TAT-HOXB4 protein carrying the protein transduction domain of the HIV transactivating protein (TAT) as a potential growth factor for stem cells. HSCs exposed to TAT-HOXB4 for 4 d expanded by about four- to sixfold and were 8-20 times more numerous than HSCs in control cultures, indicating that HSC expansion induced by TAT-HOXB4 was comparable to that induced by the human HOXB4 retrovirus during a similar period of observation. Our results also show that TAT-HOXB4-expanded HSC populations retain their normal in vivo potential for differentiation and long-term repopulation. It is thus feasible to exploit recombinant HOXB4 protein for rapid and significant ex vivo expansion of normal HSCs.  相似文献   

7.
We have recently demonstrated through a chemical screen in the zebrafish embryo that prostaglandin E2 (PGE2) is an evolutionarily conserved regulator of hematopoietic stem cell (HSC) number. These results have further been confirmed by in vitro and in vivo studies in the murine model. Bioactive PGE2 derivatives have potential clinical application to accelerate recovery of the hematopoietic system following chemotherapy or irradiation. Ex vivo expansion of HSCs prior to stem cell transplantation may improve reconstitution of hematopoiesis and immune function. This article aims to summarize current knowledge of PGE2-mediated regulation of blood cell homeostasis as well as to discuss the proposed use of PGE2 to expand hematopoietic stem cells for transplantation in the clinical setting.  相似文献   

8.
The good outcome of hematopoietic stem cell (HSC) transplantation is hampered by low doses of CD34+ cell infusion. Transplanted HSCs undergo a replicative stress that causes accelerated senescence due to rapid telomere shortening. The expansion of human cord blood HSCs is instrumental in obtaining a large number of "good quality" cells, in terms of telomere length and telomerase activity compared to adult HSCs.  相似文献   

9.
Increasing demand for human hematopoietic stem cells (HSCs) in clinical and research applications necessitates expansion of HSCs in vitro. Before these cells can be used they must be carefully evaluated to assess their stem cell activity. Here, we expanded cord blood CD34(+) CD133(+) cells in a defined medium containing angiopoietin like 5 and insulin-like growth factor binding protein 2 and evaluated the cells for stem cell activity in NOD-SCID Il2rg(-/-) (NSG) mice by multi-lineage engraftment, long term reconstitution, limiting dilution and serial reconstitution. The phenotype of expanded cells was characterized by flow cytometry during the course of expansion and following engraftment in mice. We show that the SCID repopulating activity resides in the CD34(+) CD133(+) fraction of expanded cells and that CD34(+) CD133(+) cell number correlates with SCID repopulating activity before and after culture. The expanded cells mediate long-term hematopoiesis and serial reconstitution in NSG mice. Furthermore, they efficiently reconstitute not only neonate but also adult NSG recipients, generating human blood cell populations similar to those reported in mice reconstituted with uncultured human HSCs. These findings suggest an expansion of long term HSCs in our culture and show that expression of CD34 and CD133 serves as a marker for HSC activity in human cord blood cell cultures. The ability to expand human HSCs in vitro should facilitate clinical use of HSCs and large-scale construction of humanized mice from the same donor for research applications.  相似文献   

10.
New sources of red blood cells (RBCs) would improve the transfusion capacity of blood centers. Our objective was to generate cells for transfusion by inducing a massive proliferation of hematopoietic stem and progenitor cells, followed by terminal erythroid differentiation. We describe here a procedure for amplifying hematopoietic stem cells (HSCs) from human cord blood (CB) by the sequential application of specific combinations of growth factors in a serum-free culture medium. The procedure allowed the ex vivo expansion of CD34+ progenitor and stem cells into a pure erythroid precursor population. When injected into nonobese diabetic, severe combined immunodeficient (NOD/SCID) mice, the erythroid cells were capable of proliferation and terminal differentiation into mature enucleated RBCs. The approach may eventually be useful in clinical transfusion applications.  相似文献   

11.
Hematopoietic stem cells (HSCs) are self-renewing bone marrow cells that give rise to all blood lineages and retain a remarkable capacity to proliferate in response to insult. Although some controls on HSC activation are known, little is understood about how this process is linked to natural signals. We report that the interferon-inducible GTPase Lrg-47 (Irgm1), previously shown to play a critical role in host defense, inhibits baseline HSC proliferation and is required for a normal HSC response to chemical and infectious stimuli. Overproliferating Lrg-47(-/-) HSCs are severely impaired in functional repopulation assays, and when challenged with hematopoietic ablation by 5-fluorouracil or infection with Mycobacterium avium, Lrg-47(-/-) mice fail to achieve the expected expansion response in stem and progenitor cell populations. Our results establish a link between the response to infection and HSC activation and demonstrate a novel function for a member of the p47 GTPase family.  相似文献   

12.
The long-term repopulating hematopoietic stem cell (HSC) population can self-renew in vivo, support hematopoiesis for the lifetime of the individual, and is of critical importance in the context of bone marrow stem cell transplantation. The mechanisms that regulate the expansion of HSCs in vivo and in vitro remain unclear to date. Since the current set of surface markers only allow for the identification of a population of cells that is highly enriched for HSC activity, we will refer to the population of cells we expand as Hematopoietic Stem and Progenitor cells (HSPCs). We describe here a novel approach to expand a cytokine-dependent Hematopoietic Stem and Progenitor Cell (HSPC) population ex vivo by culturing primary adult human or murine HSPCs with fusion proteins including the protein transduction domain of the HIV-1 transactivation protein (Tat) and either MYC or Bcl-2. HSPCs obtained from either mouse bone marrow, human cord blood, human G-CSF mobilized peripheral blood, or human bone marrow were expanded an average of 87 fold, 16.6 fold, 13.6 fold, or 10 fold, respectively. The expanded cell populations were able to give rise to different types of colonies in methylcellulose assays in vitro, as well as mature hematopoietic populations in vivo upon transplantation into irradiated mice. Importantly, for both the human and murine case, the ex vivo expanded cells also gave rise to a self-renewing cell population in vivo, following initial transplantation, that was able to support hematopoiesis upon serial transplantation. Our results show that a self-renewing cell population, capable of reconstituting the hematopoietic compartment, expanded ex vivo in the presence of Tat-MYC and Tat-Bcl-2 suggesting that this may be an attractive approach to expand human HSPCs ex vivo for clinical use.  相似文献   

13.
Hematopoietic stem and progenitor cells (HSPCs) are a small population of undifferentiated cells that have the capacity for self-renewal and differentiate into all blood cell lineages. These cells are the most useful cells for clinical transplantations and for regenerative medicine. So far, it has not been possible to expand adult hematopoietic stem cells (HSCs) without losing their self-renewal properties. CD74 is a cell surface receptor for the cytokine macrophage migration inhibitory factor (MIF), and its mRNA is known to be expressed in HSCs. Here, we demonstrate that mice lacking CD74 exhibit an accumulation of HSCs in the bone marrow (BM) due to their increased potential to repopulate and compete for BM niches. Our results suggest that CD74 regulates the maintenance of the HSCs and CD18 expression. Its absence leads to induced survival of these cells and accumulation of quiescent and proliferating cells. Furthermore, in in vitro experiments, blocking of CD74 elevated the numbers of HSPCs. Thus, we suggest that blocking CD74 could lead to improved clinical insight into BM transplant protocols, enabling improved engraftment.

Hematopoietic stem and progenitor cells (HSPCs) can self-renew and differentiate into all blood cell lineages, making them useful for clinical transplantations and regenerative medicine. This study shows that blocking the MIF receptor CD74 increases the accumulation of HSPCs and could improve the efficacy of bone marrow transplantation protocols.  相似文献   

14.
Hematopoietic stem cells (HSCs) undergo self-renewing cell divisions and maintain blood production for their lifetime. Appropriate control of HSC self-renewal is crucial for the maintenance of hematopoietic homeostasis. Here we show that activation of p38 MAPK in response to increasing levels of reactive oxygen species (ROS) limits the lifespan of HSCs in vivo. In Atm(-/-) mice, elevation of ROS levels induces HSC-specific phosphorylation of p38 MAPK accompanied by a defect in the maintenance of HSC quiescence. Inhibition of p38 MAPK rescued ROS-induced defects in HSC repopulating capacity and in the maintenance of HSC quiescence, indicating that the ROS-p38 MAPK pathway contributes to exhaustion of the stem cell population. Furthermore, prolonged treatment with an antioxidant or an inhibitor of p38 MAPK extended the lifespan of HSCs from wild-type mice in serial transplantation experiments. These data show that inactivation of p38 MAPK protects HSCs against loss of self-renewal capacity. Our characterization of molecular mechanisms that limit HSC lifespan may lead to beneficial therapies for human disease.  相似文献   

15.
The lack of understanding of the interplay between hematopoietic stem cells (HSCs) and the immune system has severely hampered the stem cell research and practice of transplantation. Major problems for allogeneic transplantation include low levels of donor engraftment and high risks of graft-versus-host disease (GVHD). Transplantation of purified allogeneic HSCs diminishes the risk of GVHD but results in decreased engraftment. Here we show that ex?vivo expanded mouse HSCs efficiently overcame the major histocompatibility complex barrier and repopulated allogeneic-recipient mice. An 8-day expansion culture led to a 40-fold increase of the allograft ability of HSCs. Both increased numbers of HSCs and culture-induced elevation of expression of the immune inhibitor CD274 (B7-H1 or PD-L1) on the surface of HSCs contributed to the enhancement. Our study indicates the great potential of utilizing ex?vivo expanded HSCs for allogeneic transplantation and suggests that the immune privilege of HSCs can be modulated.  相似文献   

16.
Hematopoietic stem cells transplantation (HSCT) causes endothelial cell damage, disrupting hematopoietic microenviroment and leading to various complications. We hypothesized that infusion of endothelial progenitor cells (EPCs) may improve endothelium repair, facilitate hematopoietic reconstitution, and alleviate complications associated with HSCT. C57Bl6, and BALB/c mice received total body irradiation followed by infusion of C57Bl6-derived bone marrow (BM) cells, with or without concomitant infusion of C57Bl6-derived EPCs. The time course of hematopoietic and immune reconstitution and the severity of the graft-versus-host disease (GVHD) were monitored. Further, to confirm that EPCs promote endothelial cell recovery, HSCT mice were treated with anti-VE-cadherin antibody targeting the endothelium. The EPCs-treated mice exhibited accelerated recovery of BM vasculature, cellularity, hematopoietic stem and progenitor cell recovery, improved counts of lymphocyte subsets in peripheral blood, and facilitated spleen structure reconstruction. EPCs infusion also ameliorated the GVHD in the C57Bl6????BALB/c allo-HSCT model. Systemic administration of anti-VE-cadherin antibody significantly delayed hematological and immune reconstitution in the EPCs-infused mice. In conclusion, our data demonstrate that infusion of EPCs augments the hematopoietic and immune reconstitution, and alleviates the GVHD. These findings further highlight the relationship between the microvascular recovery, hematopoietic and immune reconstitution, and the GVHD.  相似文献   

17.
Cord blood is a source of hematopoietic stem cells used in transplantation in which hematopoietic reconstitution is necessary. This transplant modality requires the cryopreservation of hematopoietic stem cells (HSCs). Dimethyl sulfoxide has been used as a cryoprotectant (CPA) in the cryopreservation of HSCs; however, it has been demonstrated that Me2SO exhibits toxic side effects to the human body. Due to its stability upon freezing, disaccharides such as trehalose have been investigated as a cryoprotectant. This study investigated the hypothesis that a cryopreservation solution containing intracellular and extracellular trehalose improves the recovery of stem cells after cryopreservation. After thawing, the cells were tested for their viability using the 7AAD stain, CD45+/CD34+ cells were assessed using flow cytometry and the MTT viability assay, and the proportion of hematopoietic progenitor cells was measured using the CFU assay. Our results showed the effectiveness of the solution containing intracellular and extracellular trehalose in the cryopreservation of cord blood cells, demonstrating that trehalose may be an optimal cryoprotectant when present both inside and outside of cells.  相似文献   

18.
Hematopoietic stem cell transplantation (HSCT) has been widely used for the treatment of hematologi-cal malignancies and congenital deficiencies. In recent years, non-myeloablative and reduced-intensity condi-tioning regimens have significantly expanded t…  相似文献   

19.
Hematopoietic stem cells (HSCs) are known to reside in a bone marrow (BM) niche, which is associated with relatively higher calcium content. HSCs sense and respond to calcium changes. However, how calcium-sensing components modulate HSC function and expansion is largely unknown. We investigated temporal modulation of calcium sensing and Ca2+ homeostasis during ex vivo HSC culture and in vivo. Murine BM-HSCs, human BM, and umbilical cord blood (UCB) mononuclear cells (MNCs) were treated with store-operated calcium entry (SOCE) inhibitors SKF 96365 hydrochloride (abbreviated as SKF) and 2-aminoethoxydiphenyl borate (2-APB). Besides, K+ channel inhibitor TEA chloride (abbreviated as TEA) was used to compare the relationship between calcium-activated potassium channel activities. Seven days of SKF treatment induced mouse and human ex vivo BM-HSC expansion as well as UCB-derived primitive HSC expansion. SKF treatment induced the surface expression of CaSR, CXCR4, and adhesion molecules on human hematopoietic stem and progenitor cells. HSCs expanded with SKF successfully differentiated into blood lineages in recipient animals and demonstrated a higher repopulation capability. Furthermore, modulation of SOCE in the BM-induced HSC content and differentially altered niche-related gene expression profile in vivo. Intriguingly, treatments with SOCE inhibitors SKF and 2-APB boosted the mouse BM mesenchymal stem cell (MSC) and human adipose-derived MSCs proliferation, whereas they did not affect the endothelial cell proliferation. These findings suggest that temporal modulation of calcium sensing is crucial in expansion and maintenance of murine HSCs, human HSCs, and mouse BM-MSCs function.  相似文献   

20.
Umbilical cord blood collected from the postpartum placenta and cord is a rich source of hematopoietic stem cells (HSCs) and is an alternative to bone marrow transplantation. In this review we wanted to describe the differences (in phenotype, cytokine production, quantity and quality of cells) between stem cells from umbilical cord blood, bone marrow and peripheral blood. HSCs present in cord blood are more primitive than their counterparts in bone marrow or peripheral blood, and have several advantages including high proliferation. With using proper cytokine combination, HSCs can be effectively developed into different cell lines. This process is used in medicine, especially in hematology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号