首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Dengue occurs throughout the year in Hanoi, Vietnam, despite winter low temperatures <10°C. During July 2010 to March 2012, we surveyed monthly for Aedes larvae and pupae in 120 houses in 8 Hanoi districts. Aedes albopictus preferred discarded containers in summer and pupal density drastically decreased in winter. Aedes aegypti preferred concrete tanks and this preference increased in winter. Even in winter, the lowest water temperature found in concrete tanks was >14°C, exceeding the developmental zero point of Ae. aegypti. Although jars, drums and concrete tanks were the dominant containers previously (1994–97) in Hanoi, currently the percentage of residences with concrete tanks was still high while jars and drums were quite low. Our study showed that concrete tanks with broken lids allowing mosquitoes access were important winter refuge for Ae. aegypti. We also indicate a concern about concrete tanks serving as foci for Ae. aegypti to expand their distribution in cooler regions.  相似文献   

2.
The influence of predators on mosquito populations may be direct through predation or indirect through sub‐lethal responses of adult mosquitoes in life history traits such as oviposition behavior. In New Zealand, the backswimmer, Anisops wakefieldi, is a common predator of mosquito larvae found in temporary and permanent water bodies. We predicted that the New Zealand native mosquito, Culex pervigilans, whose larvae are vulnerable to predation of Anisops, would likely avoid the containers with the presence of Anisops or its kairomone. We established temporary water containers without predators, free‐roaming predators, caged predators (which were unable to eat mosquitoes), or containers from which predators were removed immediately prior to the experiment (these containers would have remnant kairomones from the predators). Each treatment with Anisops had predator densities of one, three, or nine Anisops. Contrary to our predictions, when choosing oviposition habitats, Cx. pervigilans appeared to ignore the presence of free‐roaming Anisops, caged Anisops, and water with Anisops kairomone. We thus observed no significant differences between the numbers of egg rafts laid by Cx. pervigilans in the different predator treatments nor were the number of egg rafts significantly affected by the density of predators. Rather than the presence of predators, environmental factors including temperature, humidity, and pressure were significantly correlated with mosquito oviposition. These mosquitoes appeared to either ignore the presence of the predator, had no ability to detect the presence of predators, or perhaps the cues from Anisops predators were not sufficiently strong enough to alarm these mosquitoes. We argue that the mosquito has not evolved the ability to detect the presence of these predators while ovipositing.  相似文献   

3.
Aedes aegypti and Culex pipiens are container-dwelling mosquito species that are vectors of important diseases to man, such as dengue and lymphatic filariasis, respectively. Predators of these pests are an interesting alternative to be incorporated to biological control measures. We tested the consequences of introducing individuals of Girardia anceps, a native freshwater flatworm species, within artificial water containers where larvae of these mosquitoes thrive. Our goals were to ascertain if mosquito species, density of larvae (high or low), type of water container (tires or ovitraps), and presence or absence of planarians affected mosquito survivorship (measured as number of individuals reaching the pupa stage) in manipulated artificial containers. Furthermore, we monitored ovitraps in the field along several months in order to explore the long-term effect of the presence of planarian on the colonization of these containers by feral mosquitoes under natural conditions. We found that the presence of planarians reduced the number of mosquitoes reaching pupation and that such reduction depends on the initial density of larvae. Reduction of populations of A. aegypti was high along the breeding season of this mosquito, being the effect less evident in C. pipiens. G. anceps could be an agent of control against container-breeding mosquitoes if its release in small water containers is complemented with other suitable management strategies.  相似文献   

4.
We conducted a field survey for flatworms to select species as potential biological control agents against Aedes aegypti and Culex pipiens (Diptera, Culicidae) breeding in artificial containers. Laboratory experiments were performed to determine the daily predation rate, differential predation on each mosquito larval instar, selective predation on either A. aegypti or C. pipiens, and predator tolerance to water from artificial containers. Girardia anceps (Tricladida, Paludicola, Dugesiidae), Mesostoma ehrenbergii and Bothromesostoma cf. evelinae (Rhabdocoela, Typhloplanoida, Typhloplanidae) were found in temporary puddles and permanent pools. In the laboratory, they killed between 52% and 100% of immature mosquitoes coexisting in the same habitat. No preference of flatworms for mosquito preys was detected. Predation rate was related to predator size and instar of preys. Girardia anceps and B. evelinae survived after a dry period and when re-flooding occurred, they laid eggs. Tolerance to water from artificial containers was highest in G. anceps and this species could be a suitable predator to reduce mosquito populations from artificial containers using an inoculative approach.  相似文献   

5.
Aedes albopictus (Diptera: Culicidae) was first reported in Central Africa in 2000, together with the indigenous mosquito species Aedes aegypti (Diptera: Culicidae). Because Ae. albopictus can also transmit arboviruses, its introduction is a public health concern. We undertook a comparative study in three Cameroonian towns (Sahelian domain: Garoua; equatorial domain: Douala and Yaoundé) in order to document infestation by the two species and their ecological preferences. High and variable levels of pre‐imaginal Ae. aegypti and Ae. albopictus infestation were detected. Only Ae. aegypti was encountered in Garoua, whereas both species were found in Douala and Yaoundé, albeit with significant differences in their relative prevalence. Peridomestic water containers were the most strongly colonized and productive larval habitats for both species. No major differences in types of larval habitat were found, but Ae. albopictus preferentially bred in containers containing plant debris or surrounded by vegetation, whereas Ae. aegypti tended to breed in containers located in environments with a high density of buildings. These findings may have important implications for vector control strategies.  相似文献   

6.
Abstract The aim of this study was to assess whether certain attributes of larval breeding sites are correlated with pupal productivity (i.e. numbers of pupae collected per sampling period), so that these could be used as the focus for control measures to enhance control efficiency. Therefore, the objectives were to identify the months of highest pupal productivity of Aedes aegypti (L.) and Culex pipiens L. (Diptera: Culicidae) in an urban temperate cemetery in Argentina where artificial containers of < 6 L (flower vases) were the predominant breeding habitats, to compare various measures of the productivity of sunlit and shaded containers and to determine whether the composition of the containers affected pupal productivity. Over a period of 9 months, 200 randomly chosen water‐filled containers (100 sunlit and 100 shaded), out of ~ 3738 containers present (~ 54% in shade), were examined each month within a cemetery (5 ha) in Buenos Aires (October 2006 to June 2007). In total, 3440 immatures of Cx pipiens and 1974 of Ae. aegypti were collected. The larvae : pupae ratio was 10 times greater for the former, indicating that larval mortality was greater for Cx pipiens. Both mosquito species showed a higher container index (CI) in shaded than in sunlit containers (Ae. aegypti: 12.8% vs. 6.9% [χ2 = 17.6, P < 0.001]; Cx pipiens: 6.3% vs. 1.8% [χ2 = 24, P < 0.001]). However, the number and the density of immatures per infested container and the number of pupae per pupa‐positive container did not differ significantly between sunlit and shaded containers for either species. Therefore, the overall relative productivity of pupae per ha of Ae. aegypti and Cx pipiens was 2.3 and 1.8 times greater, respectively, in shaded than in sunlit areas as a result of the greater CIs of containers in shaded areas. Neither the CI nor the number of immatures per infested container differed significantly among container types of different materials in either lighting condition. The maximum CI and total pupal counts occurred in March for Ae. aegypti and in January and February for Cx pipiens. The estimated peak abundance of pupae in the whole cemetery reached a total of ~ 4388 in the middle of March for Ae. aegypti and ~ 1059 in the middle of January for Cx pipiens. Spearman’s correlations between monthly total productivity and monthly CI were significant at P < 0.001 for Ae. aegypti (rs = 0.975) and P < 0.01 for Cx pipiens (rs = 0.869). Our findings indicate that the efficacy of control campaigns against the two most important mosquito vectors in temperate Argentina could be improved by targeting containers in shaded areas, with maximum effort during species‐specific times of year when pupal productivity is at its peak.  相似文献   

7.
Aedes aegypti and Culex pipiens s.l. (Linnaeus, 1762 and 1758, respectively) (Diptera: Culicidae) are important vectors of diseases to humans and a growing public health concern. In order to contribute to the control of mosquito vectors by low environmental impact approaches we assessed the susceptibility of natural populations of container-breeding mosquitoes to triflumuron, an insect growth regulator, in temperate Argentina. A field trial was conducted to evaluate the efficacy of two doses (0.5 ppm and 1 ppm) of triflumuron (SC 48%) against natural populations of Ae. aegypti and Culex spp. immatures in flower vases of four cemeteries. The results demonstrated the susceptibility of both target mosquitoes to triflumuron in field conditions. For Ae. aegypti, dose-dependent reductions were achieved in the presence of pupae and the percentage of water-holding containers harbouring L3–4 and/or pupae, whereas the larvae abundance was equally reduced for both doses. For Culex spp., similar levels of reduction of larvae abundance and pupae presence were achieved with both doses. Significant effects on the response variables measured were recorded up to six to eight weeks post-intervention. Bimonthly applying 1 ppm triflumuron in the context of an integrated mosquito management should achieve a lasting control of Ae. aegypti and Culex spp. in small artificial containers with minimal environmental impacts.  相似文献   

8.
In order to elucidate the poorly understood relationships between mosquito larvae and their predatory aquatic insects in urban and suburban areas of tropical Southeast Asia, where vector‐borne diseases are prevalent, aquatic insects were sampled from 14 aquatic habitats in residential areas of Chiang Mai, northern Thailand, during the rainy season (July to November) in 2016. Correlations among biological variables, densities of major predatory aquatic insect groups (i.e., Odonata, Coleoptera, and Hemiptera: OCH group) in wetlands and artificial lentic habitats, and the density of mosquito larvae were analyzed. Among the sampled mosquito larvae, Culex spp. were the most abundant, and both OCH density and water quality were major determinants of Culex spp. density (rs = ?0.302 and ?0.396, respectively). Logistic regression analyses indicated that the probability of Culex spp. occurrence was significantly and negatively correlated with OCH density. Furthermore, high macrophyte abundance was associated with higher predator density, potentially reducing mosquito density. Hemipteran predators were most negatively correlated with Culex spp. density, regardless of whether macrophyte abundance was high or low (rs = ?0.547 and ?0.533, respectively). Therefore, hemipteran predators were the most important aquatic insect predators in the urban and suburban residential areas of Chiang Mai, Thailand, and OCH species, such as the hemipteran Micronecta scutellaris, could be used as biological control agents against mosquitoes in the region.  相似文献   

9.
Chikungunya virus (CHIKV) is primarily transmitted by Aedes spp. mosquitoes. The present study investigated vector competence for CHIKV in Aedes aegypti and Aedes albopictus mosquitoes found in Madurai, South India. The role of receptor proteins on midguts contributing to permissiveness of CHIKV to Aedes spp. mosquitoes was also undertaken. Mosquitoes were orally infected with CHIKV DRDE‐06. Infection of midguts and dissemination to heads was confirmed by immunofluorescence assay at different time points. A plaque assay was performed from mosquito homogenates at different time points to study CHIKV replication. Presence of putative CHIKV receptor proteins on mosquito midgut epithelial cells was detected by virus overlay protein binding assay (VOPBA). The identity of these proteins was established using mass spectrometry. CHIKV infection of Ae. aegypti and Ae. albopictus midguts and dissemination to heads was observed to be similar. A plaque assay performed with infected mosquito homogenates revealed that CHIKV replication dynamics was similar in Aedes sp. mosquitoes until 28 days post infection. VOPBA performed with mosquito midgut membrane proteins revealed that prohibitin could serve as a putative CHIKV receptor on Aedes mosquito midguts, whereas an absence of CHIKV binding protein/s on Culex quinquefasciatus midguts can partially explain the non‐permissiveness of these mosquitoes to infection.  相似文献   

10.
Dengue is the most important mosquito-borne viral disease. No specific treatment or vaccine is currently available; traditional vector control methods can rarely achieve adequate control. Recently, the RIDL (Release of Insect carrying Dominant Lethality) approach has been developed, based on the sterile insect technique, in which genetically engineered ‘sterile’ homozygous RIDL male insects are released to mate wild females; the offspring inherit a copy of the RIDL construct and die. A RIDL strain of the dengue mosquito, Aedes aegypti, OX513A, expresses a fluorescent marker gene for identification (DsRed2) and a protein (tTAV) that causes the offspring to die. We examined whether these proteins could adversely affect predators that may feed on the insect. Aedes aegypti is a peri-domestic mosquito that typically breeds in small, rain-water-filled containers and has no specific predators. Toxorhynchites larvae feed on small aquatic organisms and are easily reared in the laboratory where they can be fed exclusively on mosquito larvae. To evaluate the effect of a predator feeding on a diet of RIDL insects, OX513A Ae. aegypti larvae were fed to two different species of Toxorhynchites (Tx. splendens and Tx. amboinensis) and effects on life table parameters of all life stages were compared to being fed on wild type larvae. No significant negative effect was observed on any life table parameter studied; this outcome and the benign nature of the expressed proteins (tTAV and DsRed2) indicate that Ae. aegypti OX513A RIDL strain is unlikely to have any adverse effects on predators in the environment.  相似文献   

11.
Aedes aegypti is the primary mosquito vector of dengue, yellow fever, Zika and chikungunya. Current strategies to control Ae. aegypti rely heavily on insecticide interventions. Pyrethroids are a major class of insecticides used for mosquito control because of their fast acting, highly insecticidal activities and low mammalian toxicity. However, Ae. aegypti populations around the world have begun to develop resistance to pyrethroids. So far, more than a dozen mutations in the sodium channel gene have been reported to be associated with pyrethroid resistance in Ae. aegypti. Co-occurrence of resistance-associated mutations is common in pyrethroid-resistant Ae. aegypti populations. As global use of pyrethroids in mosquito control continues, new pyrethroid-resistant mutations keep emerging. In this microreview, we compile pyrethroid resistance-associated mutations in Ae. aegypti in a chronological order, as they were reported, and summarize findings from functional evaluation of these mutations in an in vitro sodium channel expression system. We hope that the information will be useful for tracing possible evolution of pyrethroid resistance in this important human disease vector, in addition to the development of methods for global monitoring and management of pyrethroid resistance in Ae. aegypti.  相似文献   

12.
Adaptations to anthropogenic domestic habitats contribute to the success of the mosquito Aedes aegypti as a major global vector of several arboviral diseases. The species inhabited African forests before expanding into domestic habitats and spreading to other continents. Despite a well‐studied evolutionary history, how this species initially moved into human settlements in Africa remains unclear. During this initial habitat transition, African Ae. aegypti switched their larval sites from natural water containers like tree holes to artificial containers like clay pots. Little is known about how these natural versus artificial containers differ in their characteristics. Filling this knowledge gap could provide valuable information for studying the evolution of Ae. aegypti associated with larval habitat changes. As an initial effort, in this study, we characterized the microenvironments of Ae. aegypti larval sites in forest and domestic habitats in two African localities: La Lopé, Gabon, and Rabai, Kenya. Specifically, we measured the physical characteristics, microbial density, bacterial composition, and volatile chemical profiles of multiple larval sites. In both localities, comparisons between natural containers in the forests and artificial containers in the villages revealed significantly different microenvironments. We next examined whether the between‐habitat differences in larval site microenvironments lead to differences in oviposition, a key behavior affecting larval distribution. Forest Ae. aegypti readily accepted the artificial containers we placed in the forests. Laboratory choice experiments also did not find distinct oviposition preferences between forest and village Ae. aegypti colonies. These results suggested that African Ae. aegypti are likely generalists in their larval site choices. This flexibility to accept various containers with a wide range of physical, microbial, and chemical conditions might allow Ae. aegypti to use human‐stored water as fallback larval sites during dry seasons, which is hypothesized to have initiated the domestic evolution of Ae. aegypti.  相似文献   

13.
Abstract

Two surveys of Rarotonga, Cook Islands (21°20'S, 160°16'W) were made to determine the mosquito fauna of the island, and to identify the habitats required for breeding by searching for larvae. The first survey was made during the “dry season” in May 2001, the second during the “wet season” in February 2002. The mosquito fauna comprised four species Culex (Culex) quinquefasciatus Say, Culex (Culex) annulirostris Skuse, Aedes (Stego‐myia) aegypti (Linnaeus) and Aedes (Stegomyia) polynesiensis Marks. Larvae of the Culex species were most often found in larger natural and artificial water bodies. The Aedes species bred in both natural and artificial containers of all sizes. Ae. polynesiensis was the most widespread species, using natural holes in all regions as well as artificial containers in the urban areas. Most larvae of Ae. aegypti were located in small artificial containers. The two Aedes species are the vectors of dengue fever on the island. Mosquito control during outbreaks should specifically target the artificial containers preferred by Aedes sp. for breeding habitats.  相似文献   

14.
Environmental disturbances such as deforestation, urbanization or pollution have been widely acknowledged to play a key role in the emergence of many infectious diseases, including mosquito-borne viruses. However, we have little understanding of how habitat isolation affects the communities containing disease vectors. Here, we test the effects of habitat type and isolation on the colonization rates, species richness and abundances of mosquitoes and their aquatic predators in water-filled containers in northwestern Thailand. For eight weeks water-filled containers were monitored in areas containing forest, urban and agricultural habitats and mixtures of these three. Mosquito larvae of the genera Aedes and Culex appeared to be differentially affected by the presence of the dominant predator; Toxorhynchites splendens (Culicidae). Therefore, a predation experiment was conducted to determine predator response to prey density and its relative effects on different mosquito prey populations. Colonization rates, species richness and abundances of mosquito predators were strongly related to forest habitat and to the distance from other aquatic habitats. Areas with more tree cover had higher predator species richness and abundance in containers. Containers that were close to surface water were more rapidly colonized than those further away. In all habitat types, including urban areas, when predators were present, the number of mosquito larvae was much lower. Containers in urban areas closer to water-bodies, or with more canopy cover, had higher predator colonization rates and species richness. T. splendens (Culicidae) preyed on the larvae of two mosquito genera at different rates, which appeared to be related to prey behaviour. This study shows that anthropogenic landscape modification has an important effect on the natural biological control of mosquitoes. Vector control programmes and urban planning should attempt to integrate ecological theory when developing strategies to reduce mosquito populations. This would result in management strategies that are beneficial for both public health and biodiversity.  相似文献   

15.

Background and Objectives

In the Peruvian Amazon, the dengue vector Aedes aegypti is abundant in large urban centers such as Iquitos. In recent years, it has also been found in a number of neighboring rural communities with similar climatic and socioeconomic conditions. To better understand Ae. aegypti spread, we compared characteristics of communities, houses, and containers in infested and uninfested communities.

Methods

We conducted pupal-demographic surveys and deployed ovitraps in 34 communities surrounding the city of Iquitos. Communities surveyed were located along two transects: the Amazon River and a 95km highway. We calculated entomological indices, mapped Ae. aegypti presence, and developed univariable and multivariable logistic regression models to predict Ae. aegypti presence at the community, household, or container level.

Results

Large communities closer to Iquitos were more likely to be infested with Ae. aegypti. Within infested communities, houses with Ae. aegypti had more passively-filled containers and were more often infested with other mosquito genera than houses without Ae. aegypti. For containers, large water tanks/drums and containers with solar exposure were more likely to be infested with Ae. aegypti. Maps of Ae. aegypti presence revealed a linear pattern of infestation along the highway, and a scattered pattern along the Amazon River. We also identified the geographical limit of Ae. aegypti expansion along the highway at 19.3 km south of Iquitos.

Conclusion

In the Peruvian Amazon, Ae. aegypti geographic spread is driven by human transportation networks along rivers and highways. Our results suggest that urban development and oviposition site availability drive Ae. aegypti colonization along roads. Along rivers, boat traffic is likely to drive long-distance dispersal via unintentional transport of mosquitoes on boats.  相似文献   

16.

Aedes aegypti (Linnaeus) was once highly prevalent across eastern Australia, resulting in epidemics of dengue fever. Drought conditions have led to a rapid rise in semi-permanent, urban water storage containers called rainwater tanks known to be critical larval habitat for the species. The presence of these larval habitats has increased the risk of establishment of highly urbanised, invasive mosquito vectors such as Ae. aegypti. Here we use a spatially explicit network model to examine the role that unsealed rainwater tanks may play in population connectivity of an Ae. aegypti invasion in suburbs of Brisbane, a major Australian city. We characterise movement between rainwater tanks as a diffusion-like process, limited by a maximum distance of movement, average life expectancy, and a probability that Ae. aegypti will cross wide open spaces such as roads. The simulation model was run against a number of scenarios that examined population spread through the rainwater tank network based on non-compliance rates of tanks (unsealed or sealed) and road grids. We show that Ae. aegypti tank infestation and population spread was greatest in areas of high tank density and road lengths were shortest e.g. cul-de-sacs. Rainwater tank non-compliance rates of over 30% show increased connectivity when compared to less than 10%, suggesting rainwater tanks non-compliance should be maintained under this level to minimize the spread of an invading Ae. aegypti population. These results presented as risk maps of Ae. aegypti spread across Brisbane, can assist health and government authorities on where to optimally target rainwater tank surveillance and educational activities.

  相似文献   

17.
Tropical aquatic environments host a large number of predatory insects including heteropteran water bugs Anisops bouvieri Kirkaldy, 1704 (Heteroptera: Notonectidae), Diplonychus (=Sphaerodema) rusticus Fabricius, 1781 (Heteroptera: Belostomatidae), and Diplonychus (=Sphaerodema) annulatus Fabricius, 1781 (Heteroptera: Belostomatidae) feeding on a range of organisms. In tropical and subtropical wetlands, ponds, and temporary pools these predators play a role in regulation of dipteran populations, particularly mosquitoes and chironomids. Their relative abilities to control mosquitoes depend in part on predator preference for mosquitoes in relation to other natural prey, and the predators’ propensities to switch to mosquitoes as mosquito density increases. The prey electivity and switching dynamics of these predatory water bugs were evaluated in the laboratory under various prey densities, using two instars (II and IV) of chironomid and mosquito larvae as prey. Studies of electivity at relatively high densities (20 prey L−1) in small (5 L) vessels demonstrated that all predators showed opportunistic foraging as the mosquito:chironomid ratio changed, with some evidence that mosquito larvae were positively selected over chironomids. In particular, Anisops showed strong electivity for mosquitoes when presented with any ratio of large mosquito and chironomid prey in the high density experiment, although the preference was not expressed in lower density (2.5 prey L−1) treatments executed in 40 L vessels. In these lower density treatments, D. rusticus demonstrated higher electivity for mosquitoes when the mosquito:chironomid ratio was high, consistent with non-significant trends observed in the higher density experiment. The positive electivity of D. rusticus for mosquitoes was reinforced in an experiment executed over 16 days at varying prey ratios, in which D. rusticus mosquito electivity was high and consistent while D. annulatus showed slight avoidance of mosquito larvae, and Anisops remained largely opportunistic in foraging on prey in proportion with availability. Anisops and D. rusticus are potentially good biocontrol agents for mosquito larvae, in that they preferentially consume mosquitoes under many circumstances but can readily forage on other prey when mosquito density is low.  相似文献   

18.
Dengue is a global health concern. Growing insecticide resistance in the primary mosquito vector, Aedes aegypti, limits the effectiveness of vector control, so alternative tools are urgently needed. One approach is the use of biopesticides comprising entomopathogenic fungi, e.g., Beauveria bassiana and Metarhizium anisopliae. These fungi may decrease disease transmission by reducing mosquito vector longevity and also occur worldwide, although many isolates have not been tested for virulence against mosquitoes. Ninety-three isolates of entomopathogenic fungi representing six species (B. bassiana, M. anisopliae, Isaria fumosorosea, I. farinosa, I. flavovirescens, and Lecanicillium spp.) were screened as potential biological control agents of Aedes aegypti. A hierarchical, multi-criteria experimental design was undertaken to find suitable isolates. Initial screening was performed via in vitro assays measuring radial growth and spore persistence, eliminating isolates with poor growth or viability on nutrient-rich substrate. Subsequent measurements of spore persistence revealed that only nine of 30 strains tested had half-lives exceeding 3 weeks. Ten isolates were chosen for in vivo bioassays against adult Ae. aegypti. From these assays, two Australian isolates of B. bassiana, FI-277 and FI-278, appeared to be most promising. Both isolates were shown to be virulent against Ae. aegypti at 20, 26, and 32°C. Spreading spores manually onto substrate was found to be more efficacious than spraying. Ae. aegypti infected by manually-spread spores on cotton substrate were found to have an LT50 of 3.7±0.3 days. These characteristics suggest that FI-277 has promise as a dengue mosquito biocontrol agent, either alone or combined with conventional chemical insecticides.  相似文献   

19.
We collected mosquito immatures from artificial containers during 2010–2011 from 26 communities, ranging in size from small rural communities to large urban centers, located in different parts of Yucatán State in southeastern México. The arbovirus vector Aedes (Stegomyia) aegypti was collected from all 26 examined communities, and nine of the communities also yielded another container‐inhabiting Aedes mosquito: Aedes (Howardina) cozumelensis. The communities from which Ae. cozumelensis were collected were all small rural communities (<6,000 inhabitants) in the north‐central part of Yucatán State. These new collection records for Ae. cozumelensis demonstrate that this mosquito has a far broader geographic range in the Yucatán Peninsula than previously known. Ae. cozumelensis immatures were collected from both residential premises and cemeteries, with specimens recovered from rock holes as well as various artificial containers including metal cans, flower vases, buckets, tires, and a water storage tank. The co‐occurrence with Ae. aegypti in small rural communities poses intriguing questions regarding linkages between these mosquitoes, including the potential for direct competition for larval development sites. Additional studies are needed to determine how commonly Ae. cozumelensis feeds on human blood and whether it is naturally infected with arboviruses or other pathogens of medical or veterinary importance. We also summarize the published records for Ae. cozumelensis, which are restricted to collections from México's Yucatán Peninsula and Belize, and uniformly represent geographic locations where Ae. aegypti can be expected to occur.  相似文献   

20.
New mosquito control strategies centred on the modifying of populations require knowledge of existing population densities at release sites and an understanding of breeding site ecology. Using a quantitative pupal survey method, we investigated production of the dengue vector Aedes aegypti (L.) (Stegomyia aegypti) (Diptera: Culicidae) in Cairns, Queensland, Australia, and found that garden accoutrements represented the most common container type. Deliberately placed ‘sentinel’ containers were set at seven houses and sampled for pupae over 10 weeks during the wet season. Pupal production was approximately constant; tyres and buckets represented the most productive container types. Sentinel tyres produced the largest female mosquitoes, but were relatively rare in the field survey. We then used field‐collected data to make estimates of per premises population density using three different approaches. Estimates of female Ae. aegypti abundance per premises made using the container‐inhabiting mosquito simulation (CIMSiM) model [95% confidence interval (CI) 18.5–29.1 females] concorded reasonably well with estimates obtained using a standing crop calculation based on pupal collections (95% CI 8.8–22.5) and using BG‐Sentinel traps and a sampling rate correction factor (95% CI 6.2–35.2). By first describing local Ae. aegypti productivity, we were able to compare three separate population density estimates which provided similar results. We anticipate that this will provide researchers and health officials with several tools with which to make estimates of population densities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号