首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
We consider a conceptual correspondence between the missing data setting, and joint modeling of longitudinal and time‐to‐event outcomes. Based on this, we formulate an extended shared random effects joint model. Based on this, we provide a characterization of missing at random, which is in line with that in the missing data setting. The ideas are illustrated using data from a study on liver cirrhosis, contrasting the new framework with conventional joint models.  相似文献   

2.
Analyzing incomplete longitudinal clinical trial data   总被引:1,自引:0,他引:1  
Using standard missing data taxonomy, due to Rubin and co-workers, and simple algebraic derivations, it is argued that some simple but commonly used methods to handle incomplete longitudinal clinical trial data, such as complete case analyses and methods based on last observation carried forward, require restrictive assumptions and stand on a weaker theoretical foundation than likelihood-based methods developed under the missing at random (MAR) framework. Given the availability of flexible software for analyzing longitudinal sequences of unequal length, implementation of likelihood-based MAR analyses is not limited by computational considerations. While such analyses are valid under the comparatively weak assumption of MAR, the possibility of data missing not at random (MNAR) is difficult to rule out. It is argued, however, that MNAR analyses are, themselves, surrounded with problems and therefore, rather than ignoring MNAR analyses altogether or blindly shifting to them, their optimal place is within sensitivity analysis. The concepts developed here are illustrated using data from three clinical trials, where it is shown that the analysis method may have an impact on the conclusions of the study.  相似文献   

3.
4.
Pattern-mixture models with proper time dependence   总被引:1,自引:0,他引:1  
  相似文献   

5.
6.
    
Yongqiang Tang 《Biometrics》2017,73(4):1379-1387
  相似文献   

7.
    
Generalized additive models (GAMs) have been widely used for flexible modeling of various types of outcomes. When the outcome in a GAM is subject to missing, practical analyses often assume that missingness is missing at random (MAR). This assumption can be of suspicion when the missingness is not by design. Evaluating the potential effects of alternative nonignorable missing data mechanism on the MAR inference from a GAM can be important but often challenging due to the complicatedness of alternative nonignorable models. We apply the index approach to local sensitivity (Troxel, Ma, and Heitjan 2004 (2004). Statistica Sinica 14 , 1221–1237) to evaluate the potential changes of the GAM estimates in the neighborhood of the MAR model. The approach avoids fitting any complicated nonignorable GAM. Only MAR estimates are required to calculate the resulting sensitivity index and adjust the GAM estimates to account for nonignorable missingness. Thus the proposed approach is considerably simpler to conduct, as compared with the alternative methods. The simulation study shows that the index provides valid assessment of the local sensitivity of the GAM estimates to nonignorable missingness. We then illustrate the method using a rheumatoid arthritis clinical trial data set.  相似文献   

8.
    
Summary In medical research, the receiver operating characteristic (ROC) curves can be used to evaluate the performance of biomarkers for diagnosing diseases or predicting the risk of developing a disease in the future. The area under the ROC curve (ROC AUC), as a summary measure of ROC curves, is widely utilized, especially when comparing multiple ROC curves. In observational studies, the estimation of the AUC is often complicated by the presence of missing biomarker values, which means that the existing estimators of the AUC are potentially biased. In this article, we develop robust statistical methods for estimating the ROC AUC and the proposed methods use information from auxiliary variables that are potentially predictive of the missingness of the biomarkers or the missing biomarker values. We are particularly interested in auxiliary variables that are predictive of the missing biomarker values. In the case of missing at random (MAR), that is, missingness of biomarker values only depends on the observed data, our estimators have the attractive feature of being consistent if one correctly specifies, conditional on auxiliary variables and disease status, either the model for the probabilities of being missing or the model for the biomarker values. In the case of missing not at random (MNAR), that is, missingness may depend on the unobserved biomarker values, we propose a sensitivity analysis to assess the impact of MNAR on the estimation of the ROC AUC. The asymptotic properties of the proposed estimators are studied and their finite‐sample behaviors are evaluated in simulation studies. The methods are further illustrated using data from a study of maternal depression during pregnancy.  相似文献   

9.
It is very common in regression analysis to encounter incompletely observed covariate information. A recent approach to analyse such data is weighted estimating equations (Robins, J. M., Rotnitzky, A. and Zhao, L. P. (1994), JASA, 89, 846-866, and Zhao, L. P., Lipsitz, S. R. and Lew, D. (1996), Biometrics, 52, 1165-1182). With weighted estimating equations, the contribution to the estimating equation from a complete observation is weighted by the inverse of the probability of being observed. We propose a test statistic to assess if the weighted estimating equations produce biased estimates. Our test statistic is similar to the test statistic proposed by DuMouchel and Duncan (1983) for weighted least squares estimates for sample survey data. The method is illustrated using data from a randomized clinical trial on chemotherapy for multiple myeloma.  相似文献   

10.
    
Hairu Wang  Zhiping Lu  Yukun Liu 《Biometrics》2023,79(2):1268-1279
Missing data are frequently encountered in various disciplines and can be divided into three categories: missing completely at random (MCAR), missing at random (MAR), and missing not at random (MNAR). Valid statistical approaches to missing data depend crucially on correct identification of the underlying missingness mechanism. Although the problem of testing whether this mechanism is MCAR or MAR has been extensively studied, there has been very little research on testing MAR versus MNAR. A critical challenge that is faced when dealing with this problem is the issue of model identification under MNAR. In this paper, under a logistic model for the missing probability, we develop two score tests for the problem of whether the missingness mechanism is MAR or MNAR under a parametric model and a semiparametric location model on the regression function. The implementation of the score tests circumvents the identification issue as it requires only parameter estimation under the null MAR assumption. Our simulations and analysis of human immunodeficiency virus data show that the score tests have well-controlled type I errors and desirable powers.  相似文献   

11.
Methods in the literature for missing covariate data in survival models have relied on the missing at random (MAR) assumption to render regression parameters identifiable. MAR means that missingness can depend on the observed exit time, and whether or not that exit is a failure or a censoring event. By considering ways in which missingness of covariate X could depend on the true but possibly censored failure time T and the true censoring time C, we attempt to identify missingness mechanisms which would yield MAR data. We find that, under various reasonable assumptions about how missingness might depend on T and/or C, additional strong assumptions are needed to obtain MAR. We conclude that MAR is difficult to justify in practical applications. One exception arises when missingness is independent of T, and C is independent of the value of the missing X. As alternatives to MAR, we propose two new missingness assumptions. In one, the missingness depends on T but not on C; in the other, the situation is reversed. For each, we show that the failure time model is identifiable. When missingness is independent of T, we show that the naive complete record analysis will yield a consistent estimator of the failure time distribution. When missingness is independent of C, we develop a complete record likelihood function and a corresponding estimator for parametric failure time models. We propose analyses to evaluate the plausibility of either assumption in a particular data set, and illustrate the ideas using data from the literature on this problem.  相似文献   

12.
13.
On using the Cox proportional hazards model with missing covariates   总被引:1,自引:0,他引:1  
  相似文献   

14.
Using data from 145,007 adults in the Disability Supplement to the National Health Interview Survey, we investigated the effect of balance difficulties on frequent depression after controlling for age, gender, race, and other baseline health status information. There were two major complications: (i) 80% of subjects were missing data on depression and the missing-data mechanism was likely related to depression, and (ii) the data arose from a complex sample survey. To adjust for (i) we investigated three classes of models: missingness in depression, missingness in depression and balance, and missingness in depression with an auxiliary variable. To adjust for (ii) we developed the first linearization variance formula for nonignorable missing-data models. Our sensitivity analysis was based on fitting a range of ignorable missing-data models along with nonignorable missing-data models that added one or two parameters. All nonignorable missing-data models that we considered fit the data substantially better than their ignorable missing-data counterparts. Under an ignorable missing-data mechanism, the odds ratio for the association between balance and depression was 2.0 with a 95% CI of (1.8, 2.2). Under 29 of the 30 selected nonignorable missing-data models, the odds ratios ranged from 2.7 with 95% CI of (2.3, 3.1) to 4.2 with 95% CI of (3.9, 4.6). Under one nonignorable missing-data model, the odds ratio was 7.4 with 95% CI of (6.3, 8.6). This is the first analysis to find a strong association between balance difficulties and frequent depression.  相似文献   

15.
    
Chen B  Zhou XH 《Biometrics》2011,67(3):830-842
Longitudinal studies often feature incomplete response and covariate data. Likelihood-based methods such as the expectation-maximization algorithm give consistent estimators for model parameters when data are missing at random (MAR) provided that the response model and the missing covariate model are correctly specified; however, we do not need to specify the missing data mechanism. An alternative method is the weighted estimating equation, which gives consistent estimators if the missing data and response models are correctly specified; however, we do not need to specify the distribution of the covariates that have missing values. In this article, we develop a doubly robust estimation method for longitudinal data with missing response and missing covariate when data are MAR. This method is appealing in that it can provide consistent estimators if either the missing data model or the missing covariate model is correctly specified. Simulation studies demonstrate that this method performs well in a variety of situations.  相似文献   

16.
    
Summary .  Little and An (2004,  Statistica Sinica   14, 949–968) proposed a penalized spline of propensity prediction (PSPP) method of imputation of missing values that yields robust model-based inference under the missing at random assumption. The propensity score for a missing variable is estimated and a regression model is fitted that includes the spline of the estimated logit propensity score as a covariate. The predicted unconditional mean of the missing variable has a double robustness (DR) property under misspecification of the imputation model. We show that a simplified version of PSPP, which does not center other regressors prior to including them in the prediction model, also has the DR property. We also propose two extensions of PSPP, namely, stratified PSPP and bivariate PSPP, that extend the DR property to inferences about conditional means. These extended PSPP methods are compared with the PSPP method and simple alternatives in a simulation study and applied to an online weight loss study conducted by Kaiser Permanente.  相似文献   

17.
Inference and missing data   总被引:85,自引:0,他引:85  
RUBIN  DONALD B. 《Biometrika》1976,63(3):581-592
  相似文献   

18.
    
Natural selection is typically exerted at some specific life stages. If natural selection takes place before a trait can be measured, using conventional models can cause wrong inference about population parameters. When the missing data process relates to the trait of interest, a valid inference requires explicit modeling of the missing process. We propose a joint modeling approach, a shared parameter model, to account for nonrandom missing data. It consists of an animal model for the phenotypic data and a logistic model for the missing process, linked by the additive genetic effects. A Bayesian approach is taken and inference is made using integrated nested Laplace approximations. From a simulation study we find that wrongly assuming that missing data are missing at random can result in severely biased estimates of additive genetic variance. Using real data from a wild population of Swiss barn owls Tyto alba, our model indicates that the missing individuals would display large black spots; and we conclude that genes affecting this trait are already under selection before it is expressed. Our model is a tool to correctly estimate the magnitude of both natural selection and additive genetic variance.  相似文献   

19.
    
Summary A routine challenge is that of making inference on parameters in a statistical model of interest from longitudinal data subject to dropout, which are a special case of the more general setting of monotonely coarsened data. Considerable recent attention has focused on doubly robust (DR) estimators, which in this context involve positing models for both the missingness (more generally, coarsening) mechanism and aspects of the distribution of the full data, that have the appealing property of yielding consistent inferences if only one of these models is correctly specified. DR estimators have been criticized for potentially disastrous performance when both of these models are even only mildly misspecified. We propose a DR estimator applicable in general monotone coarsening problems that achieves comparable or improved performance relative to existing DR methods, which we demonstrate via simulation studies and by application to data from an AIDS clinical trial.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号