首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The gut hormone gastric inhibitory polypeptide (GIP) plays a key role in glucose homeostasis and lipid metabolism. This study investigated the effects of administration of a stable and specific GIP receptor antagonist, (Pro(3))GIP, in mice previously fed a high-fat diet for 160 days to induce obesity and related diabetes. Daily intraperitoneal injection of (Pro(3))GIP over 50 days significantly decreased body weight compared with saline-treated controls, with a modest increase in locomotor activity but no change of high-fat diet intake. Plasma glucose, glycated hemoglobin, and pancreatic insulin were restored to levels of chow-fed mice, and circulating triglyceride and cholesterol were significantly decreased. (Pro(3))GIP treatment also significantly decreased circulating glucagon and corticosterone, but concentrations of GLP-1, GIP, resistin, and adiponectin were unchanged. Adipose tissue mass, adipocyte hypertrophy, and deposition of triglyceride in liver and muscle were significantly decreased. These changes were accompanied by significant improvement of insulin sensitivity, meal tolerance, and normalization of glucose tolerance in (Pro(3))GIP-treated high-fat-fed mice. (Pro(3))GIP concentrations peaked rapidly and remained elevated 24 h after injection. These data indicate that GIP receptor antagonism using (Pro(3))GIP provides an effective means of countering obesity and related diabetes induced by consumption of a high-fat, energy-rich diet.  相似文献   

2.
In this study, we tested the biological activity of a novel acylated form of (Pro3)glucose-dependent insulinotropic polypetide [(Pro3)GIP] prepared by conjugating palmitic acid to Lys16 to enhance its efficacy in vivo by promoting binding to albumin and extending its biological actions. Like the parent molecule (Pro3)GIP, (Pro3)GIPLys16PAL was completely stable to the actions of DPP-IV and significantly (p<0.01 to p<0.001) inhibited GIP-stimulated cAMP production and cellular insulin secretion. Furthermore, acute administration of (Pro3)GIPLys16PAL also significantly (p<0.05 to p<0.001) countered the glucose-lowering and insulin-releasing actions of GIP in ob/ob mice. Daily injection of (Pro3)GIPLys16PAL (25 nmol/kg bw) in 14-18-week-old ob/ob mice over 14 days had no effect on body weight, food intake or non-fasting plasma glucose and insulin concentrations. (Pro3)GIPLys16PAL treatment also failed to significantly alter the glycaemic response to an i.p. glucose load or test meal, but insulin concentrations were significantly reduced (1.5-fold; p<0.05) after the glucose load. Insulin sensitivity was enhanced (1.3-fold; p<0.05) and pancreatic insulin was significantly reduced (p<0.05) in the (Pro3)GIPLys16PAL-treated mice. These data demonstrate that acylation of Lys16 with palmitic acid in (Pro3)GIP does not improve its biological effectiveness as a GIP receptor antagonist.  相似文献   

3.
Glucose-dependent insulinotropic polypeptide (GIP) is an incretin hormone secreted by endocrine K-cells in response to nutrient absorption. In this study we have utilized a specific and enzymatically stable GIP receptor antagonist, (Pro3)GIP, to evaluate the contribution of endogenous GIP to insulin secretion and glucose homeostasis in mice. Daily injection of (Pro3)GIP (25 nmol/kg body weight) for 11 days had no effect on food intake or body weight. Non-fasting plasma glucose concentrations were significantly raised (p<0.05) by day 11, while plasma insulin concentrations were not significantly different from saline treated controls. After 11 days, intraperitoneal glucose tolerance was significantly impaired in the (Pro3)GIP treated mice compared to control (p<0.01). Glucose-mediated insulin secretion was not significantly different between the two groups. Insulin sensitivity of 11-day (Pro3)GIP treated mice was slightly impaired 60 min post injection compared with controls. Following a 15 min refeeding period in 18 h fasted mice, food intake was not significantly different in (Pro3)GIP treated mice and controls. However, (Pro3)GIP treated mice displayed significantly elevated plasma glucose levels 30 and 60 min post feeding (p<0.05, in both cases). Postprandial insulin secretion was not significantly different and no changes in pancreatic insulin content or islet morphology were observed in (Pro3)GIP treated mice. The observed biological effects of (Pro3)GIP were reversed following cessation of treatment for 9 days. These data indicate that ablation of GIP signaling causes a readily reversible glucose intolerance without appreciable change of insulin secretion.  相似文献   

4.
A novel N-terminally substituted Pro(3) analogue of glucose-dependent insulinotropic polypeptide (GIP) was synthesized and tested for plasma stability and biological activity both in vitro and in vivo. Native GIP was rapidly degraded by human plasma with only 39 +/- 6% remaining intact after 8 h, whereas (Pro(3))GIP was completely stable even after 24 h. In CHL cells expressing the human GIP receptor, (Pro(3))GIP antagonized the cyclic adenosine monophosphate (cAMP) stimulatory ability of 10(-7) M native GIP, with an IC(50) value of 2.6 microM. In the clonal pancreatic beta cell line BRIN-BD11, (Pro(3))GIP over the concentration range 10(-13) to 10(-8) M dose dependently inhibited GIP-stimulated (10(-7) M) insulin release (1.2- to 1.7-fold; P < 0.05 to P < 0.001). In obese diabetic (ob/ob) mice, intraperitoneal administration of (Pro(3))GIP (25 nmol/kg body wt) countered the ability of native GIP to stimulate plasma insulin (2.4-fold decrease; P < 0.001) and lower the glycemic excursion (1.5-fold decrease; P < 0.001) induced by a glucose load (18 mmol/kg body wt). Collectively these data demonstrate that (Pro(3))GIP is a novel and potent enzyme-resistant GIP receptor antagonist capable of blocking the ability of native GIP to increase cAMP, stimulate insulin secretion, and improve glucose homeostasis in a commonly employed animal model of type 2 diabetes.  相似文献   

5.
Glucose-dependent insulinotropic polypeptide (GIP) is an important gastrointestinal hormone, which regulates insulin release and glucose homeostasis, but is rapidly inactivated by enzymatic N-terminal truncation. Here we report the enzyme resistance and biological activity of several Glu(3)-substituted analogues of GIP namely; (Ala(3))GIP, (Lys(3))GIP, (Phe(3))GIP, (Trp(3))GIP and (Tyr(3))GIP. Only (Lys(3))GIP demonstrated moderately enhanced resistance to DPP-IV (p<0.05 to p<0.01) compared to native GIP. All analogues demonstrated a decreased potency in cAMP production (EC(50) 1.47 to 11.02 nM; p<0.01 to p<0.001) with (Lys(3))GIP and (Phe(3))GIP significantly inhibiting GIP-stimulated cAMP production (p<0.05). In BRIN-BD11 cells, (Lys(3))GIP, (Phe(3))GIP, (Trp(3))GIP and (Tyr(3))GIP did not stimulate insulin secretion with both (Lys(3))GIP and (Phe(3))GIP significantly inhibiting GIP-stimulated insulin secretion (p<0.05). Injection of each GIP analogue together with glucose in ob/ob mice significantly increased the glycaemic excursion compared to control (p<0.05 to p<0.001). This was associated with lack of significant insulin responses. (Ala(3))GIP, (Phe(3))GIP and (Tyr(3))GIP, when administered together with GIP, significantly reduced plasma insulin (p<0.05 to p<0.01) and impaired the glucose-lowering ability (p<0.05 to p<0.01) of the native peptide. The DPP-IV resistance and GIP antagonism observed were similar but less pronounced than (Pro(3))GIP. These data demonstrate that position 3 amino acid substitution of GIP with (Ala(3)), (Phe(3)), (Tyr(3)) or (Pro(3)) provides a new class of functional GIP receptor antagonists.  相似文献   

6.
Irwin N  Hunter K  Flatt PR 《Peptides》2008,29(6):1036-1041
GIP receptor antagonism with (Pro3)GIP protects against obesity, insulin resistance, glucose intolerance and associated disturbances in mice fed high-fat diet. Furthermore, cannabinoid CB1 receptor antagonism with AM251 reduces appetite and body weight gain in mice. The present study has examined and compared the effects of chronic daily administrations of (Pro3)GIP (25 nmol/kg body weight), AM251 (6 mg/kg body weight) and a combination of both drugs in high-fat fed mice. Daily i.p. injection of (Pro3)GIP, AM251 or combined drug administration over 22 days significantly (P < 0.05 to <0.01) decreased body weight compared with saline-treated controls. This was associated with a significant (P < 0.05 to <0.01) reduction of food intake in mice treated with AM251. Plasma glucose levels and glucose tolerance were significantly (P < 0.05) lowered by 22 days (Pro3)GIP, AM251 or combined drug treatment. These changes were accompanied by a significant (P < 0.05) improvement of insulin sensitivity in all treatment groups. In contrast, AM251 lacked effects on glucose tolerance, metabolic response to feeding and insulin sensitivity in high-fat mice when administered acutely. These data indicate that chemical blockade of GIP- or CB1-receptor signaling using (Pro3)GIP or AM251, respectively provides an effective means of countering obesity and related abnormalities induced by consumption of high-fat energy-rich diet. AM251 lacks acute effects on glucose homeostasis and there was no evidence of a synergistic effect of combined treatment with (Pro3)GIP.  相似文献   

7.
Effects of chemical ablation of the GIP and GLP-1 receptors on metabolic aspects of obesity-diabetes were investigated using the stable receptor antagonists (Pro3)GIP and exendin(9-39)amide. Ob/ob mice received a daily i.p. injection of saline vehicle, (Pro3)GIP, exendin(9-39)amide or a combination of both peptides over a 14-day period. Non-fasting plasma glucose levels were significantly (p<0.05) lower in (Pro3)GIP-treated mice compared to control mice after just 9 days of treatment. (Pro3)GIP-treated mice also displayed significantly lower plasma glucose concentrations in response to feeding and intraperitoneal administration of either glucose or insulin (p<0.05 to p<0.001). The (Pro3)GIP-treated group also exhibited significantly (p<0.05) reduced pancreatic insulin content. Acute administration of exendin(9-39)amide immediately prior to re-feeding completely annulled the beneficial effects of sub-chronic (Pro3)GIP treatment, but non-fasting concentrations of active GLP-1 were unchanged. Combined sub-chronic administration of (Pro3GIP) with exendin(9-39)amide revealed no beneficial effects. Similarly, daily administration of exendin(9-39)amide alone had no significant effects on any of the metabolic parameters measured. These studies highlight an important role for GIP in obesity-related forms of diabetes, suggesting the possible involvement of GLP-1 in the beneficial actions of GIP receptor antagonism.  相似文献   

8.
Glucose-dependent insulinotropic polypeptide (GIP) is a key physiological insulin releasing peptide and potential antidiabetic agent. The present study was undertaken in an attempt to develop small molecular weight GIP agonist and antagonist molecules. The bioactivity of two modified C-terminally truncated fragment GIP peptides, GIP(1-16) and (Pro3)GIP(1-16), was examined in terms of insulin secretion and glucose homeostasis using BRIN-BD11 cells and type 2 diabetic mice. In vitro insulin release studies demonstrated that GIP(1-16) and (Pro3)GIP(1-16) possessed weak GIP-receptor agonist and antagonistic properties, respectively. Intraperitoneal administration of GIP(1-16) in combination with glucose to obese diabetic (ob/ob) mice did not effect the glycaemic excursion and had a marginal effect on insulin release. GIP(1-16) was substantially less effective than the native GIP(1-42). (Pro3)GIP(1-16) administration significantly curtailed (P < 0.05) the insulinotropic and glucose lowering effects of native GIP, but was significantly less effective than (Pro3)GIP. Based on the established concept of a therapeutic benefit of GIP receptor antagonism in obesity-diabetes, ob/ob mice received once daily injection of (Pro3)GIP(1-16) for 14 days. No significant effects were observed on food intake, body weight, HbA1c, glucose tolerance, metabolic response to feeding and either insulin secretion or insulin sensitivity following prolonged (Pro3)GIP(1-16) treatment. These data demonstrate that C-terminal truncation of GIP or (Pro3)GIP yields small molecular weight GIP molecules with significantly reduced biological activity that precludes therapeutic utility.  相似文献   

9.
This study examines the actions of the novel enzyme-resistant, NH2-terminally modified GIP analog (Hyp(3))GIP and its fatty acid-derivatized analog (Hyp(3))GIPLys(16)PAL. Acute effects are compared with the established GIP receptor antagonist (Pro(3))GIP. All three peptides exhibited DPP IV resistance, and significantly inhibited GIP stimulated cAMP formation and insulin secretion in GIP receptor-transfected fibroblasts and in clonal pancreatic BRIN-BD11 cells, respectively. Likewise, in obese diabetic ob/ob mice, intraperitoneal administration of GIP analogs significantly inhibited the acute antihyperglycemic and insulin-releasing effects of native GIP. Administration of once daily injections of (Hyp(3))GIP or (Hyp(3))GIPLys(16)PAL for 14 days resulted in significantly lower plasma glucose levels (P < 0.05) after (Hyp(3))GIP on days 12 and 14 and enhanced glucose tolerance (P < 0.05) and insulin sensitivity (P < 0.05 to P < 0.001) in both groups by day 14. Both (Hyp(3))GIP and (Hyp(3))GIPLys(16)PAL treatment also reduced pancreatic insulin (P < 0.05 to P < 0.01) without affecting islet number. These data indicate that (Hyp(3))GIP and (Hyp(3))GIPLys(16)PAL function as GIP receptor antagonists with potential for ameliorating obesity-related diabetes. Acylation of (Hyp(3))GIP to extend bioactivity does not appear to be of any additional benefit.  相似文献   

10.
Glucose-dependent insulinotropic polypeptide (GIP) is an incretin hormone secreted by endocrine K-cells in response to nutrient absorption. This study has utilised numerous well-characterised dipeptidyl peptidase IV-resistant GIP analogues to evaluate the glucagonotropic actions of GIP in Wistar rats and isolated rat islets. Intraperitoneal administration of GIP analogues (25 nmol/kg body weight) in combination with glucose had no effect on circulating glucagon concentrations compared to controls in Wistar rats. However, plasma glucose concentrations were significantly (p<0.05 to p<0.001) lowered by the GIP-receptor agonists, N-AcGIP, GIP(Lys37)PAL and N-AcGIP(Lys37)PAL. The GIP antagonist, (Pro3)GIP, caused a significant (p<0.05) reduction in glucagon levels following concurrent administration with saline in Wistar rats. In isolated rat islets native GIP induced a significant (p<0.01) enhancement of glucagon release at basal glucose concentrations, which was completely annulled by (Pro3)GIP. Furthermore, glucagon release in the presence of GLP-1, GIP(Lys37)PAL, N-AcGIP(Lys37)PAL and (Pro3)GIP was significantly (p<0.05 to p<0.001) decreased compared to native GIP in isolated rat islets. These data indicate a modest effect of GIP on glucagon secretion from isolated rat islets, which was not observed in vivo. However, the GIP agonists N-AcGIP, GIP(Lys37)PAL and N-AcGIP(Lys37)PAL had no effect on glucagon release demonstrating an improved therapeutic potential for the treatment of type 2 diabetes.  相似文献   

11.
PYY(3-36) is a gut-derived hormone acting on hypothalamic nuclei to inhibit food intake. We recently showed that PYY(3-36) acutely reinforces insulin action on glucose disposal in mice. We aimed to evaluate effects of PYY(3-36) on energy metabolism and the impact of chronic PYY(3-36) treatment on insulin sensitivity. Mice received a single injection of PYY(3-36) or were injected once daily for 7 days, and energy metabolism was subsequently measured in a metabolic cage. Furthermore, the effects of chronic PYY(3-36) administration (continuous and intermittent) on glucose turnover were determined during a hyperinsulinemic-euglycemic clamp. PYY(3-36) inhibited cumulative food intake for 30 min of refeeding after an overnight fast (0.29 +/- 0.04 vs. 0.56 +/- 0.12 g, P = 0.036) in an acute setting, but not after 7 days of daily dosing. Body weight, total energy expenditure, and physical activity were not affected by PYY(3-36). However, it significantly decreased the respiratory quotient. Both continuous and intermittent PYY(3-36) treatment significantly enhanced insulin-mediated whole body glucose disposal compared with vehicle treatment (81.2 +/- 6.2 vs. 77.1 +/- 5.2 vs. 63.4 +/- 5.5 micromol.min(-1).kg(-1), respectively). In particular, PYY(3-36) treatment increased glucose uptake in adipose tissue, whereas its impact on glucose disposal in muscle did not attain statistical significance. PYY(3-36) treatment shifts the balance of fuel use in favor of fatty acids and enhances insulin sensitivity in mice, where it particularly promotes insulin-mediated glucose disposal. Notably, these metabolic effects of PYY(3-36) remain unabated after chronic administration, in contrast to its anorexic effects.  相似文献   

12.
BackgroundProlonged high fat feeding negatively impacts pancreatic and intestinal morphology. In this regard, direct effects of PYY(3–36) on intestinal cell and pancreatic islet morphometry are yet to be fully explored in the setting of obesity.MethodsWe examined the influence of 21-days twice daily treatment with PYY(3–36) on these parameters in mice fed a high fat diet (HFD).ResultsPYY(3–36) treatment decreased food intake, body weight and circulating glucose in HFD mice. In terms of intestinal morphology, crypt depth was restored to control levels by PYY(3–36), with an additional enlargement of villi length. PYY(3–36) also reversed HFD-induced decreases of ileal PYY, and especially GLP-1, content. HFD increased numbers of PYY and GIP positive ileal cells, with PYY(3–36) fully reversing the effect on PYY cell detection. There were no obvious differences in the overall number of GLP-1 positive ileal cells in all mice, barring PYY(3–36) marginally decreasing GLP-1 villi cell immunoreactivity. Within pancreatic islets, PYY(3–36) significantly decreased alpha-cell area, whilst islet, beta-, PYY- and delta-cell areas remained unchanged. However, PYY(3–36) increased the percentage of beta-cells while also reducing percentage alpha-cell area. This was related to PYY(3-36)-induced reductions of beta-cell proliferation and apoptosis frequencies. Co-localisation of islet PYY with glucagon or somatostatin was elevated by PYY(3–36), with GLP-1/glucagon co-visualisation increased when compared to lean controls.ConclusionPYY(3–36) exerts protective effects on pancreatic and intestinal morphology in HFD mice linked to elevated ileal GLP-1 content.General significanceThese observations highlight mechanisms linked to the metabolic and weight reducing benefits of PYY(3–36).  相似文献   

13.
目的:探讨下丘脑注射OXR-1选择性受体拮抗剂ACT-335827对肥胖大鼠代谢的效果。方法:通过高脂饮食建立肥胖大鼠模型,采用CODA 8通道高通量非侵入性血压系统(EMKA)测量血压;所有脂类都使用商品酶试剂盒和TOSHIBA-40FR全自动分析仪测量;空腹血糖采用葡萄糖氧化酶法;空腹胰岛素采用放射免疫法测定。肥胖大鼠出现代谢紊乱后,给予ACT-335827处理,检测大鼠体重、血压、脂肪、甘油三酯、总胆固醇、高密度脂蛋白、低密度脂蛋白、游离脂肪酸(NEFA)、瘦素、空腹血糖及空腹胰岛素等的变化。结果:与普通饮食组相比,经过10周高脂饮食,高脂饮食组大鼠体重显著升高(P0.05),给予ACT-335827处理后,普通大鼠的体重、血压、脂肪含量、脂代谢等均无明显变化;与高脂饮食和高脂饮食加生理盐水处理组大鼠比较,高脂饮食加ACT-335827处理组肥胖大鼠的体重显著下降(P0.05),腹部和附睾脂肪含量下降(P0.05),低密度脂蛋白、甘油三酯、总胆固醇、瘦素水平下降(P0.05),空腹血糖及空腹胰岛素也显著降低(P0.05),但血压、肠系膜脂肪和肩胛棕色脂肪、高密度脂蛋白和NEFA无明显变化(P0.05)。结论:ACT-335827对肥胖大鼠的代谢紊乱具有改善作用,对肥胖大鼠有一定的减肥作用。  相似文献   

14.
We studied whether serum fasting levels of active form of peptide YY (PYY), PYY(3-36), are associated with obesity and related phenotypes. The study population consisted of 428 patients with coronary artery disease and diagnosed type 2 diabetes and 440 patients with coronary artery disease but without evidence of diabetes from the ARTEMIS study. The patients were recruited from the consecutive series of patients undergoing coronary angiography in the Oulu University Hospital. The patients without diabetes underwent a 2-hour oral glucose tolerance test. PYY(3-36) levels were analyzed by human PYY(3-36) specific radioimmunoassay. Result suggested that when PYY(3-36) tertiles were considered, high serum fasting PYY(3-36) concentration was associated with high body mass index, waist circumference, hemoglobin A1c, fasting blood glucose, leptin, triglyceride (p for all p ≤ 0.001), serum insulin (p=0.013) and with a low high-density lipoprotein cholesterol (p=0.004) concentrations in the analyses adjusted for age, sex and study group. The link high PYY(3-36)-high insulin level was evident in subjects with normal glucose tolerance (p<0.05). The prevalence of diabetes was 72%, 46% and 30% in the highest, medium and lowest PYY(3-36) tertile (p<0.001). The PYY(3-36) concentrations (after adjustment for age, sex and body mass index) were higher in type 2 diabetics compared to subjects with impaired fasting glucose, impaired glucose tolerance and normal glucose tolerance (p<0.001 for trend). In conclusion, fasting PYY(3-36) concentrations in type 2 diabetic subjects are high. Although high PYY(3-36) is strongly linked to obesity and associated insulin resistance, the relation between PYY(3-36) and type 2 diabetes is independent of body fatness.  相似文献   

15.
Glucose-dependent insulinotropic polypeptide (GIP) is a key hormone of the enteroinsular axis. The present study was designed to assess the metabolic effects in healthy mice of long term activation of the GIP receptor by N-AcGIP(LysPAL37), a potent long-acting GIP receptor agonist. Daily injection of N-AcGIP(LysPAL37) (25 nmol/kg body weight) for 14 days had no significant effect on food intake, body weight, glycated hemoglobin levels, non-fasting plasma glucose and insulin concentrations compared to saline treated controls. No significant differences in post-prandial plasma glucose and insulin concentrations were observed between the two groups following 15 min feeding. However, after 14 days, the glycemic response to intraperitoneal (i.p.) glucose was significantly improved in the N-AcGIP(LysPAL37) treated mice compared to controls (P < 0.01). In keeping with this, glucose-mediated insulin secretion was significantly enhanced in the N-AcGIP(LysPAL37) treated group (P < 0.05). No changes in insulin sensitivity or pancreatic insulin content of the N-AcGIP(LysPAL37) treated mice were detected. No adverse reactions were noted and the effects of N-AcGIP(LysPAL37) were reversed by 14 days cessation of treatment. These data indicate that long term activation of the GIP receptor by daily treatment with N-AcGIP(LysPAL37) improved glucose tolerance due to enhancement of pancreatic beta cell glucose responsiveness and insulin secretion.  相似文献   

16.
The incretins, glucose-dependent insulinotropic peptide (GIP(1-42)) and glucagon-like peptide 1 (GLP-1(7-36)), are involved in regulation of gastric emptying, glucose homeostasis, body fat regulation and the glucose-induced insulin secretion from the endocrine pancreas. After release in the circulation both peptides are rapidly degraded by the exopeptidase dipeptidyl peptidase IV (DP IV) to the inactive polypeptides GIP(3-42) and GLP-1(9-36). In vivo stabilization of the active incretins by orally available DP IV-inhibitors is now widely accepted as a new therapeutic approach in antidiabetic treatment. In order to demonstrate the pharmacodynamic effect of DP IV-inhibitors, it is necessary to measure the plasma levels of active and inactive forms of GIP and GLP-1. We previously described an immunoprecipitation method as sample preparation and concentration in combination with a LC-MS analysis for determination of active and inactive GIP. We could improve the efficiency and suitability of this method by reduction of the necessary sample volume to 1.0 ml and simultaneous measurement of GIP(1-42), GIP(3-42) and GLP-1(7-36), GLP-1(9-36), without loss of sensitivity. An LOQ of approximately 5 and 11 pmol/l was maintained for GIP and GLP-1, respectively.  相似文献   

17.
Inhibition of gastric inhibitory polypeptide signaling prevents obesity   总被引:25,自引:0,他引:25  
Secretion of gastric inhibitory polypeptide (GIP), a duodenal hormone, is primarily induced by absorption of ingested fat. Here we describe a novel pathway of obesity promotion via GIP. Wild-type mice fed a high-fat diet exhibited both hypersecretion of GIP and extreme visceral and subcutaneous fat deposition with insulin resistance. In contrast, mice lacking the GIP receptor (Gipr(-/-)) fed a high-fat diet were clearly protected from both the obesity and the insulin resistance. Moreover, double-homozygous mice (Gipr(-/-), Lep(ob)/Lep(ob)) generated by crossbreeding Gipr(-/-) and obese ob/ob (Lep(ob)/Lep(ob)) mice gained less weight and had lower adiposity than Lep(ob)/Lep(ob) mice. The Gipr(-/-) mice had a lower respiratory quotient and used fat as the preferred energy substrate, and were thus resistant to obesity. Therefore, GIP directly links overnutrition to obesity and it is a potential target for anti-obesity drugs.  相似文献   

18.
Effects of insulin excess and deficiency on glucose-dependent insulinotropic polypeptide (GIP) was examined in rats following insulinoma transplantation or streptozotocin (STZ) administration. Over 14 days, food intake was increased (p < 0.001) in both groups of rats, with decreased body weight (p < 0.01) in STZ rats. Non-fasting plasma glucose levels were decreased (p < 0.01) and plasma insulin levels increased (p < 0.001) in insulinoma-bearing rats, whereas STZ treatment elevated glucose (p < 0.001) and decreased insulin (p < 0.01). Circulating GIP concentrations were elevated (p < 0.01) in both animal models. At 14 days, oral glucose resulted in a decreased glycaemic excursion (p < 0.05) with concomitant elevations in insulin release (p < 0.001) in insulinoma-bearing rats, whereas STZ-treated rats displayed similar glucose-lowering effects but reduced insulin levels (p < 0.01). GIP concentrations were augmented in STZ rats (p < 0.05) following oral glucose. Plasma glucose and insulin concentrations were not affected by oral fat, but fat-induced GIP secretion was particularly (p < 0.05) increased in insulinoma-bearing rats. Exogenous GIP enhanced (p < 0.05) glucose-lowering in all groups of rats accompanied by insulin releasing (p < 0.001) effects in insulinoma-bearing and control rats. Both rat models exhibited increased (p < 0.001) intestinal weight but decreased intestinal GIP concentrations. These data suggest that circulating insulin has direct and indirect effects on the synthesis and secretion of GIP.  相似文献   

19.
目的:探讨黄酮类成分木犀草素对高脂饮食诱导的肥胖小鼠模型的胰岛素抵抗的影响。方法:30只C57BL/6J小鼠分正常饮食对照组(10只),高脂膳食组(对照组,10只)和高脂膳食加2%木犀草素组(木犀草素组,10只),干预16周,观察体重、血脂水平、血糖、胰岛素敏感性及胰岛素水平的变化。结果:小鼠在给予高脂膳食16周后,体重水平、血脂水平、血糖水平、胰岛素水平显著高于木犀草素组,胰岛素敏感性显著下降,与木犀草素组比较,P<0.05或P<0.01。而木犀草素组则可显著抑制体重、血脂、血糖及胰岛素水平的升高,与胰岛素敏感性未见明显下降,与正常对照组比较,P>0.05。结论:木犀草素可预防高脂膳食诱导的胰岛素抵抗。  相似文献   

20.
Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are the two key incretin hormones released from the gastrointestinal tract that regulate blood glucose homeostasis through potent insulin secretion. The rapid degradation of GIP and GLP-1 by the ubiquitous enzyme dipeptidyl peptidase IV (DPP IV) renders both peptides noninsulinotropic. However, DPP IV stable agonists, such as N-AcGIP and (Val8)GLP-1, have now been developed. The present study has examined and compared the metabolic effects of subchronic administration of daily i.p. injections of N-AcGIP, (Val8) GLP-1 and a combination of both peptides (all at 25 nmol/kg bw) in obese diabetic (ob/ob) mice. Initial in vitro experiments confirmed the potent insulinotropic properties of N-AcGIP and (Val8)GLP-1 in the clonal pancreatic BRIN BD11 cell line. Subchronic administration of N-AcGIP, (Val8)GLP-1 or combined peptide administration had no significant effects on the body weight, food intake and plasma insulin concentrations. However, all treatment groups had significantly (p < 0.05) decreased plasma glucose levels and improved glucose tolerance by day 14. The effectiveness of the peptide groups was similar, and glucose concentrations were substantially reduced following injection of insulin to assess insulin sensitivity compared to control. These results provide evidence for an improvement of glucose homeostasis following treatment with enzyme-resistant GIP and GLP-1 analogues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号