首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
A 9.8-kbp DNA fragment which contained a neurotoxin gene and its upstream region was cloned from Clostridium botulinum type D strain CB-16. Nucleotide sequencing of the fragment revealed that genes encoding for hemagglutinin (HA) subcomponents and one for a nontoxic-nonhemagglutinin (NTNH) component were located upstream of the neurotoxin gene. This strain produced two toxins of different molecular size (approximately 300 kDa and 500 kDa) which were designated as progenitor toxins (M and L toxins). The molecular size of the NTNH component of L toxin was approximately 130 kDa on SDS-PAGE and its N-terminal amino acid sequence was M-D-I-N-D-D-L-N-I-N-S-P-V-D-N-K-N-V-V-I which agreed with that deduced from the nucleotide sequence. In contrast, the M toxin had a 115-kDa NTNH component whose N-terminal sequence was S-T-I-P-F-P-F-G-G-Y-R-E-T-N-Y-I-E, corresponding to the sequence from Ser141 of the deduced sequence. A 15-kDa fragment, which was found to be associated with an M toxin preparation, possessed the same N-terminal amino acid sequence as that of the 130-kDa NTNH component. Furthermore, five major fragments generated by limited proteolysis with V8 protease were shown to have N-terminal amino acid sequences identical to those deduced from the nucleotide sequence of 130-kDa NTNH. These results indicate that the 130-kDa NTNH of the L toxin is cleaved at a unique site, between Thr and Ser, leading to the 115-kDa NTNH of the M toxin.  相似文献   

2.
Botulinum type D neurotoxin was purified 950-fold from the culture supernatant with an overall yield of 32%. The purified toxin had a specific toxicity of 5.8 X 10(7) mouse minimal lethal dose per mg of protein and a relative molecular mass of 140000. The purified toxin had a di-chain structure consisting of heavy and light chains with relative molecular masses of 85000 and 55000, respectively, linked by one disulfide bond. These subunits had different amino acid compositions and antigenicities. A similarity in molecular constructions and amino acid compositions was observed between type D and type C1 toxins as well as between their subunits. Among the seven kinds of monoclonal antibodies against type D toxin, six reacted with the heavy chain of type D toxin, while one of the six also reacted with the heavy chain of type C1 toxin and neutralized the toxicities of the two toxins. The other one of monoclonal antibodies reacted with the light chains of both toxins. This evidence indicates that both toxins have common antigenic sites on their heavy and light chains and that the antigenic site on the heavy chain may contribute to the neutralization of both toxins by antibody. The binding of type D toxin to rat brain synaptosomes was examined by use of 125I-labelled type D toxin. The binding was competitively inhibited not only by unlabelled type D and C1 toxins, but also by the heavy chains of both toxins, however, it was not inhibited by the light chain of type D toxin. These results suggest that the toxin receptors on synaptosomal membrane are common for type D and C1 toxins, and that the heavy chain contributes to the binding of toxin to synaptosomes and the structure of the binding sites on the heavy chains of both toxins is quite similar.  相似文献   

3.
Species specific LSU rRNA targeted fluorescent oligonucleotide probes, designed by researchers at the Monterey Bay Aquarium Research Institute (USA) for a limited range of Pseudo-nitzschia species, were applied to unialgal cultures and Scottish field samples, to investigate possible applications in Scottish phytoplankton monitoring programmes to detect potential amnesic shellfish poisoning (ASP) toxin producing species. The existing available probe for Pseudo-nitzschia australis gave good results, positively labelling cells from cultures and field samples. However, application of the P. pungens, P. delicatissima and P. fraudulenta probes gave poor results, with little or no fluorescence label observed in field samples, while transmission electron microscopy (TEM) showed these species to be present. Comparison of the same region of the LSU sequence from cultures of P. delicatissima, isolated from Scottish waters, with the probe designed for detection of P. delicatissima isolated from Monterey Bay revealed the presence of a single base difference between the two sequences, which may have prevented the probe from hybridising to Scottish isolates and cells from field samples. In an attempt to assess the potential ASP toxin production by field populations of Pseudo-nitzschia a rapid immunodiagnostic test (the Jellet Rapid Test, JRT) for ASP toxins was examined. Results indicate that additional development of molecular probes for the detection of a range of Pseudo-nitzschia species detected in Scottish coastal waters and the use of JRT for toxin detection could conceivably provide an effective tool for broad-scale mapping of toxin events and management of coastal zone activities.  相似文献   

4.
The production of fusaric acid and other toxins by a strain of Fusarium oxysporum used for control of the weed Striga hermonthica (Del.) Benth. was investigated. Culturing of the strain under optimal conditions for toxin production produced small amounts of fusaric acid and dehydrofusaric acid but no other toxins reported to be produced by some strains of F. oxysporum. Culturing of the fungus under conditions similar to those that would be used in the field produced no detectable toxins of concern for human health.  相似文献   

5.
Exfoliative toxins of approximately 30 kDa produced by Staphylococcus hyicus strains NCTC 10350, 1289D-88 and 842A-88 were purified and specific polyclonal antisera were raised against each of the toxins. It was shown by immunoblot analysis and ELISA that three exfoliative toxins from S. hyicus were antigenically distinct. The three toxins were designated ExhA, ExhB and ExhC. From 60 diseased pigs, each representing an outbreak of exudative epidermitis, a total of 584 isolates of S. hyicus were phage typed and tested for production of exfoliative toxin. ExhA-, ExhB- and ExhC-producing S. hyicus isolates were found in 12 (20%), 20 (33%) and 11 (18%), respectively, of the 60 pig herds investigated. Production of the different types of exfoliative toxin was predominantly associated with certain phage groups. However, toxin production was found in all of the six phage groups defined by the phage typing system. Some changes in the distribution of isolates between phage groups were observed when the results of this study were compared to previous investigations. In this study two new antigenically distinct exfoliative toxins were isolated and tools for in vitro detection of toxin producing S. hyicus isolates and for further studies on the exfoliative toxins from S. hyicus have been provided.  相似文献   

6.
Animal toxins are highly reticulated and structured polypeptides that adopt a limited number of folds. In scorpion species, the most represented fold is the alpha/beta scaffold in which an helical structure is connected to an antiparallel beta-sheet by two disulfide bridges. The intimate relationship existing between peptide reticulation and folding remains poorly understood. Here, we investigated the role of disulfide bridging on the 3D structure of HsTx1, a scorpion toxin potently active on Kv1.1 and Kv1.3 channels. This toxin folds along the classical alpha/beta scaffold but belongs to a unique family of short-chain, four disulfide-bridged toxins. Removal of the fourth disulfide bridge of HsTx1 does not affect its helical structure, whereas its two-stranded beta-sheet is altered from a twisted to a nontwisted configuration. This structural change in HsTx1 is accompanied by a marked decrease in Kv1.1 and Kv1.3 current blockage, and by alterations in the toxin to channel molecular contacts. In contrast, a similar removal of the fourth disulfide bridge of Pi1, another scorpion toxin from the same structural family, has no impact on its 3D structure, pharmacology, or channel interaction. These data highlight the importance of disulfide bridging in reaching the correct bioactive conformation of some toxins.  相似文献   

7.
A strain of Pseudomonas sp. isolated from the phyllosphere of Pinus nigra in northern Italy was used for the introduction and high expression level of the gene encoding the Cry9Aa entomocidal toxin from Bacillus thuringiensis spp. galleriae. Laboratory tests showed that the resulting bacterial construct was more efficacious in terms of LC50 when compared to the purified toxin alone, against the first instar larvae of the pine processionary moth (Thaumetopoea pityocampa), suggesting that the encapsulation of the toxin within the bacterial cell may prevent the degradation of the protein. When the efficacy of the strain was compared in a long-term greenhouse experiment (102 days) with that of a commercial preparation of Btk (Foray 48B), the latter was superior in terms of total mortality, but its effectiveness decreased with time at a faster rate than that of the cry9Aa-Pseudomonas. Overall data indicate that the expression of Bt toxins in heterologous epiphytic bacteria offers potential for more efficient and persistent delivery of toxins to the target insect pests.  相似文献   

8.
Vibrio vulnificus can be divided into two groups on the basis of pathogenesis. Group 1 is pathogenic only to humans, whereas group 2 is pathogenic to eels and occasionally to humans. Although both groups produce a 50-kDa cytotoxin-hemolysin (V. vulnificus hemolysin; VVH), the toxins are different. In the present study, the nucleotide sequence of the toxin gene (vvhA ) of strain CDC B3547 (a group 2 strain) was determined, and the deduced amino acid sequence was compared to that of strain L-180 (a group 1 strain). The nucleotide sequence of vvhA of strain CDC B3547 was about 96% identical with that of strain L-180, which results in a difference of 3 amino acid residues in the C-terminal lectin domain of VVH. Nevertheless, two primer sets for polymerase chain reaction could be designed to differentiate the toxin gene of each strain. When 27 V. vulnificus clinical isolates were tested, group 1 strains (9 strains) were shown to react only to the primers designed for vvhA of strain L-180; whereas, the gene of group 2 strains (18 strains) could be amplified with the primers for vvhA of strain CDC B3547. These findings may lead to development of a novel genetic grouping system related to the virulence potential or to the host range.  相似文献   

9.
Eleven isolates of Botrytis cinerea were studied to examine the relationship between toxin production and virulence. After 5 days of incubation, screening experiments revealed significant differences in toxin production by the strains. The isolates with low toxin production were less virulent; moreover, the only toxins isolated were those corresponding to botrydial or its derivatives. In contrast, higher amounts of toxins were isolated from the more aggressive isolates. Furthermore, two classes of toxins, those with botryane skeleton and botcinolide derivatives, were detected in and isolated from all aggressive strains studied. This indicates that a synergistic action of several toxins is involved in the phytotoxicity of this phytopathogen.  相似文献   

10.
Clostridium difficile toxinotypes are groups of strains defined by changes in the PaLoc region encoding two main virulence factors: toxins TcdA and TcdB. Currently, 24 variant toxinotypes (I-XXIV) are known, in addition to toxinotype 0 strains, which contain a PaLoc identical to the reference strain VPI 10463. Variant toxinotypes can also differ from toxinotype 0 strains in their toxin production pattern. The most-studied variant strains are TcdA-, TcdB+ (A-B+) strains and binary toxin CDT-producing strains. Variations in toxin genes are also conserved on the protein level and variant toxins can differ in size, antibody reactivity, pattern of intracellular targets (small GTPases) and consequently in their effects on the cell. Toxinotypes do not correlate with particular forms of disease or patient populations, but some toxinotypes (IIIb and VIII) are currently associated with disease of increased severity and outbreaks worldwide. Variant toxinotypes are very common in animal hosts and can represent from 40% to 100% of all isolates. Among human isolates, variant toxinotypes usually represent up to 10% of strains but their prevalence is increasing.  相似文献   

11.
The potency of venom from Bracon hebetor against lepidopterous larvae has been known for over 40 years, but previous attempts to purify and characterize individual protein toxins have been largely unsuccessful. Three protein toxins were purified from venom of this small parasitic wasp and the amino acid sequences of 22–31 consecutive residues at the amino-terminus were determined. These relatively large toxins (apparent molecular mass 73 kDa) were labile under many isolation techniques, but anion-exchange chromatography allowed purification with retention of biological activity. Two purified toxins were quite insecticidal (LD50 < 0.3μg/g) when injected into six species of lepidopterous larvae. On a molar basis, one toxin (Brh-I) has the highest known biocidal activity against Heliothis virescens (LD50 = 2 pmol/g).  相似文献   

12.
Biofilms are multispecies communities, in which bacteria constantly compete with one another for resources and niches. Bacteria produce many antibiotics and toxins for competition. However, since biofilm cells exhibit increased tolerance to antimicrobials, their roles in biofilms remain controversial. Here, we showed that Bacillus subtilis produces multiple diverse polymorphic toxins, called LXG toxins, that contain N-terminal LXG delivery domains and diverse C-terminal toxin domains. Each B. subtilis strain possesses a distinct set of LXG toxin–antitoxin genes, the number and variation of which is sufficient to distinguish each strain. The B. subtilis strain NCIB3610 possesses six LXG toxin–antitoxin operons on its chromosome, and five of the toxins functioned as DNase. In competition assays, deletion mutants of any of the six LXG toxin–antitoxin operons were outcompeted by the wild-type strain. This phenotype was suppressed when the antitoxins were ectopically expressed in the deletion mutants. The fitness defect of the mutants was only observed in solid media that supported biofilm formation. Biofilm matrix polymers, exopolysaccharides and TasA protein polymers were required for LXG toxin function. These results indicate that LXG toxin-antitoxin systems specifically mediate intercellular competition between B. subtilis strains in biofilms. Mutual antagonism between some LXG toxin producers drove the spatial segregation of two strains in a biofilm, indicating that LXG toxins not only mediate competition in biofilms, but may also help to avoid warfare between strains in biofilms. LXG toxins from strain NCIB3610 were effective against some natural isolates, and thus LXG toxin–antitoxin systems have ecological impact. B. subtilis possesses another polymorphic toxin, WapA. WapA had toxic effects under planktonic growth conditions but not under biofilm conditions because exopolysaccharides and TasA protein polymers inhibited WapA function. These results indicate that B. subtilis uses two types of polymorphic toxins for competition, depending on the growth mode.  相似文献   

13.
A total of 13 killer toxin producing strains belonging to the genera Saccharomyces, Candida and Pichia were tested against each other and against a sensitive yeast strain. Based on the activity of the toxins 4 different toxins of Saccharomyces cerevisiae, 2 different toxins of Pichia and one toxin of Candida were recognized. The culture filtrate of Pichia and Candida showed a much smaller activity than the strains of Saccharomyces. Extracellular killer toxins of 3 types of Saccharomyces were concentrated and partially purified. The pH optimum and the isoelectric point were determined. The killer toxins of S. cerevisiae strain NCYC 738, strain 399 and strain 28 were glycoproteins and had a molecular weight of Mr=16,000. The amino acid composition of the toxin type K2 of S. cerevisiae strain 399 was determined and compared with the composition of two other toxins.  相似文献   

14.
蜘蛛多肽毒素研究进展   总被引:8,自引:0,他引:8  
蜘蛛肽类神经毒素按分子量大小可分为2种,除了黑寡妇蜘蛛毒素属于高分子量多肽,其余的毒素均属于小分子量肽类。不同的多肽毒素其功能不同,它们或仅作用于昆虫,或仅作用于哺乳动物,或对二者皆有影响。本文综述了近十年来这方面的研究成果,根据功能将毒素分成4类,逐一介绍了毒素的结构与作用机制。这些毒素的研究对神经生物学,新药的研究与开发及植物的抗虫育种等方面的发展具有重要的意义。  相似文献   

15.
The molecular composition of the purified progenitor toxin produced by a Clostridium botulinum type C strain 6813 (C-6813) was analyzed. The strain produced two types of progenitor toxins (M and L). Purified L toxin is formed by conjugation of the M toxin (composed of a neurotoxin and a non-toxic nonhemagglutinin) with additional hemagglutinin (HA) components. The dual cleavage sites at loop region of the dichain structure neurotoxin were identified between Arg444-Ser445 and Lys449-Thr450 by the analyses of C-terminal of the light chain and N-terminal of the heavy chain. Analysis of partial amino acid sequences of fragments generated by limited proteolysis of the neurotoxin has shown to that the neurotoxin protein produced by C-6813 was a hybrid molecule composed of type C and D neurotoxins as previously reported. HA components consist of a mixture of several subcomponents with molecular weights of 70-, 55-, 33-, 26~21- and 17-kDa. The N-terminal amino acid sequences of 70-, 55-, and 26~21-kDa proteins indicated that the 70-kDa protein was intact HA-70 gene product, and other 55- and 26~21-kDa proteins were derived from the 70-kDa protein by modification with proteolysis after translation of HA-70 gene. Furthermore, several amino acid differences were exhibited in the amino acid sequence as compared with the deduced sequence from the nucleotide sequence of the HA-70 gene which was common among type C (strains C-St and C-468) and D progenitor toxins (strains D-CB16 and D-1873).  相似文献   

16.
17.
Clostridium botulinum type D strain 4947 produces two different sizes of progenitor toxins (M and L) as intact forms without proteolytic processing. The M toxin is composed of neurotoxin (NT) and nontoxic-nonhemagglutinin (NTNHA), whereas the L toxin is composed of the M toxin and hemagglutinin (HA) subcomponents (HA-70, HA-17, and HA-33). The HA-70 subcomponent and the HA-33/17 complex were isolated from the L toxin to near homogeneity by chromatography in the presence of denaturing agents. We were able to demonstrate, for the first time, in vitro reconstitution of the L toxin formed by mixing purified M toxin, HA-70, and HA-33/17. The properties of reconstituted and native L toxins are indistinguishable with respect to their gel filtration profiles, native-PAGE profiles, hemagglutination activity, binding activity to erythrocytes, and oral toxicity to mice. M toxin, which contained nicked NTNHA prepared by treatment with trypsin, could no longer be reconstituted to the L toxin with HA subcomponents, whereas the L toxin treated with proteases was not degraded into M toxin and HA subcomponents. We conclude that the M toxin forms first by assembly of NT with NTNHA and is subsequently converted to the L toxin by assembly with HA-70 and HA-33/17.  相似文献   

18.
Abstract Ganglioside GTlb inactivated botulinum toxins. The inactivation of type A, B, E and F toxins was marked but that of type C and D was less. Inactivation of type A toxin by ganglioside was significantly inhibited by one of two toxin fragments. The inactivation of botulinum toxin with ganglioside GTlb was affected by the ionic strength of the solvent. The findings indicate that ganglioside GTlb may not be implicated in the primary binding site for botulinum toxins on the synaptic membrane.  相似文献   

19.
Unialgal isolates of the Protogonyaulax (—Gonyaulax) tamarensis/catenella species complex, a group of dinoflagellates which causes paralytic shellfish poisoning (PSP), were subjected to toxin analysis by HPLC. Protogonyaulax isolates from widely separated geographical locations were compared, including the northeastern Pacific (British Columbia and Washington State), eastern Canada, Portugal, the United Kingdom and New Zealand. Two distantly related gonyaulacoid species were also analyzed, but the presence of PSP toxins was not detected. Although Protogonyaulax isolates varied markedly in total toxin concentration and toxicity, even through the culture cycle, the toxin ratios of individual isolates were distinctive and relatively constant. No toxins were detected in the Plymouth (U.K.) isolate of P. tamarensis, from the species type locality. Two isolates from Vancouver Island (British Columbia), which were previously considered to be non-toxic according to the mouse bioassay, revealed weak toxin spectra by HPLC. Within populations from English Bay (British Columbia) the toxin profiles of tamarensoid isolates tended to be conservative. However, this was not the case for the catenelloid forms from Washington State, which displayed a greater degree of toxin heterogeneity. Significantly, there was no identifiable relationship between toxicity or toxin profiles and the morphological characteristics conventionally used to separate the two dominant morphotypes into species within this species complex.  相似文献   

20.
These studies show that Clostridium botulinum types C and D cultures can be cured of their prophages and converted to either type C or D depending on the specific phage used. Strains of types C and D were cured of their prophages and simultaneously ceased to produce their dominant toxins designated as C(1) and D, respectively. Cured nontoxigenic cultures derived from type C strain 162 were sensitive to the phages from the toxigenic type C strain 162 and type D strain South African. When cured nontoxigenic cultures derived from strain 162 were infected with the tox(+) phages from the 162 strain of type C and the South African strain of type D, they then produced toxin neutralized by types C and D antisera, respectively. Cured nontoxigenic cultures isolated from the type D South African strain were only sensitive to the parent phage, and, when reinfected with the tox(+) phage, they produced toxin neutralized by type D antiserum. Type C strain 153 and type D strain 1873, when cured of their respective prophages, also ceased to produce toxins C(1) and D, but, unlike strain 162 and the South African strain, they continued to produce a toxin designated as C(2). When the cured cultures from strains 153 and 1873 were infected with the tox(+) phage from type D strain 1873, the cultures simultaneously produced toxin that was neutralized by type D antiserum. When these cured cultures were infected with the tox(+) phage from type C strain 153, the cultures produced toxin that was neutralized by type C antiserum. These studies with the four strains of C. botulinum confirm that the toxigenicity of types C and D strains requires the continued participation of tox(+) phages. Evidence is presented that types C and D cultures may arise from a common nontoxigenic strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号