首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have investigated the ability of alkylphenols to act as substrates and/or inhibitors of phenol sulfotransferase enzymes in human platelet cytosolic fractions. Our results indicate: (i) straight chain alkylphenols do not interact with the monoamine-sulfating phenol sulfotransferase (SULT1A3); (ii) short chain 4-n-alkylphenols (C < 8) are substrates for the phenol-sulfating enzymes (SULT1A1/2), which exhibit two activity maxima against substrates with alkyl chain lengths of C1-2 and C4-5; (iii) long chain 4-n-substituted alkylphenols (C >/= 8) are poor substrates and act as inhibitors of SULT1A1/2; (iv) human platelets contain two activities, of low and high affinity, capable of sulfating 17beta-estradiol, and 4-n-nonylphenol is a partial mixed inhibitor of the low affinity form of this activity. We conclude that by acting either as substrates or inhibitors of SULT1A1/2, alkylphenols may influence the sulfation, and hence the excretion, of estrogens and other phenol sulfotransferase substrates in humans.  相似文献   

2.
Cytosolic sulfotransferase 2B1b (SULT2B1b) catalyzes the sulfation of 3β-hydroxysteroids and functions as a selective cholesterol and oxysterol sulfotransferase. Activation of liver X receptors (LXRs) by oxysterols has been known to be an antiproliferative factor. Overexpression of SULT2B1b impairs LXR's response to oxysterols, by which it regulates lipid metabolism. The aim of this study was to investigate in vivo and in vitro effects of SULT2B1b on liver proliferation and the underlying mechanisms. Primary rat hepatocytes and C57BL/6 mice were infected with adenovirus encoding SULT2B1b. Liver proliferation was determined by measuring the proliferating cell nuclear antigen (PCNA) immunostaining labeling index. The correlation between SULT2B1b and PCNA expression in mouse liver tissues was determined by double immunofluorescence. Gene expressions were evaluated by quantitative real-time PCR and Western blot analysis. SULT2B1b overexpression in mouse liver tissues increased PCNA-positive cells in a dose- and time-dependent manner. The increased expression of PCNA in mouse liver tissues was only observed in the SULT2B1b transgenic cells. Small interference RNA SULT2B1b significantly inhibited cell cycle regulatory gene expressions in primary rat hepatocytes. LXR activation by T0901317 effectively suppressed SULT2B1b-induced gene expression in vivo and in vitro. SULT2B1b may promote hepatocyte proliferation by inactivating oxysterol/LXR signaling.  相似文献   

3.
4.
The human hydroxysteroid sulfotransferase, dehydroepiandrosterone sulfotransferase (DHEA-ST), is highly expressed in liver and adrenal cortex and displays reactivity towards a broad range of hydroxysteroids including 3β-hydroxysteroids, 3-hydroxysteroids, estrogens with a 3-phenolic moiety, and 17-hydroxyl group of androgens. In contrast, characterization of the newly described human hydroxysteroid sulfotransferase SULT2B1 isoforms shows that these enzymes are selective for the sulfation of 3β-hydroxysteroids, such as pregnenolone, epiandrosterone, DHEA, and androstenediol. There was no activity detected towards testosterone, dexamethasone, β-estradiol, androsterone, or p-nitrophenol. The SULT2B1 gene encodes two isoforms, SULT2B1a and SULT2B1b, which are generated by alternate splicing of the first exon; therefore the SULT2B1 isoforms differ at their N-terminals. Northern Blot analysis detected a SULT2B1 message in RNA isolated from the human prostate and placenta. No SULT2B1 message was observed in RNA isolated from human liver, colon, lung, kidney, brain, or testis tissue. Purified SULT2B1a was used to generate a specific rabbit polyclonal anti-SULT2B1 antibody. The anti-SULT2B1 antibody did not react with expressed human EST, P-PST-1, M-PST, DHEA-ST, or ST1B2, during immunoblot analysis. The substrate specificity of the expressed SULT2B1 isoforms suggests that these enzymes are capable of regulating the activity of adrenal androgens in human tissues via their inactivation by sulfation.  相似文献   

5.
Sulfation is an important pathway in the metabolism of thyroid hormones. Sulfated iodothyronines are elevated in nonthyroidal illnesses and in the normal human fetal circulation. We assayed and characterized COS-1 cell expressed recombinant human liver dehydroepiandrosterone sulfotransferase (DHEA ST or SULT2A1) and estrogen sulfotransferase (EST or SULT1E1) activities for the first time with triiodothyronine (T(3)) as the substrate. Several biochemical properties that included apparent K(m) values, thermal stabilities, and responses to the inhibitors 2, 6-dichloro-4-nitrophenol and NaCl were tested. SULT2A1, a member of the hydroxysteroid sulfotransferase family, used 3,3'-T(2) more readily than T(3) and 3,5-T(2) as substrates, but had the lowest apparent K(m) value for T(3) of any reported human SULT. SULT1E1, a member of the phenol sulfotransferase family, used 3,3'-T(2) and rT(3) more readily than T(3), and also displayed the greatest specificity for T(4) among human SULTs. SULT2A1 may contribute more to iodothyronine sulfation than previously suspected. Potential roles of both steroid sulfotransferases in the enhanced sulfation of nonthyroidal illnesses and fetal development invite further investigation.  相似文献   

6.
To investigate whether sulfation, a major Phase II detoxification pathway in vivo, can be employed as a means for the inactivation/disposal of environmental estrogens, recombinant human cytosolic sulfotransferases were prepared and tested for enzymatic activities with bisphenol A, diethylstilbestrol, 4-octylphenol, p-nonylphenol, and 17alpha-ethynylestradiol as substrates. Of the seven recombinant enzymes examined, only SULT1C sulfotransferase #1 showed no activities toward the environmental estrogens tested. Among the other six sulfotransferases, the simple phenol (P)-form phenol sulfotransferase and estrogen sulfotransferase appeared to be considerably more active toward environmental estrogens than the other four sulfotransferases. Metabolic labeling experiments revealed the sulfation of environmental estrogens and the release of their sulfated derivatives by HepG2 human hepatoma cells. Moreover, sulfated environmental estrogens appeared to be incapable of penetrating through the HepG2 cell membrane.  相似文献   

7.
Breast cancer (BC) is the most commonly diagnosed cancer among American women; however, the development of post-menopausal BC is significantly lower in African Americans as compared to Caucasians. Hormonal stimulation is important in BC development and differences in the conversion of dehydroepiandrosterone (DHEA) into estrogens may be involved in the lower incidence of post-menopausal BC in African American women. DHEA sulfation by sulfotransferase 2B1b (SULT2B1b) is important in regulating the conversion of DHEA into estrogens in tissues. SULT2B1b is localized in both cytosol and nuclei of some tissues including cancerous and associated-normal breast tissue. Immunohistochemical staining was used to evaluate the total expression and subcellular localization of SULT2B1b in African American and Caucasian breast tissues. Cell fractionation, immunoblot analysis and sulfation assays were used to characterize the subcellular expression and activity of SULT2B1b in BC tissues and T-47D breast adenocarcinoma cells. Immunohistochemical analysis of SULT2B1b showed that African Americans had a significantly greater amount of SULT2B1b in epithelial cells of associated-normal breast tissue as compared to Caucasians. Also, more SULT2B1b in African American associated-normal breast epithelial cells was localized in the nuclei than in Caucasians. Equivalent levels of SULT2B1b were detected in breast adenocarcinoma tissues from both African American and Caucasian women. Nuclei isolation and immunoblot analysis of both BC tissue and human T-47D breast adenocarcinoma cells demonstrated that SULT2B1b is present in nuclei and cytoplasm.  相似文献   

8.
Previous studies on the metabolism of coenyzme Q (CoQ) have focused on products found in the urine, bile or feces. However, the metabolites found in these samples were end products from a multitude of catabolic processes which did not necessarily reflect CoQ intracellular metabolism (e.g. in the liver, the major site of CoQ synthesis or metabolism). Using isolated rat hepatocytes, we have found that the sulfation of coenzyme Q1 (CoQ1) was the initial and dominant step following its reduction to the hydroquinone. This metabolic process is important as conjugation may occur on the hydroquinone metabolites of any coenzyme10 scission product retaining the quinone ring. By using rat liver cytosol, we were able to identify the monosulfated metabolite of CoQ1. The CoQ1 sulfate conjugate was identified by mass spectrometry followed by tandem mass spectrometry. The rate of formation of the CoQ1 sulfate conjugate was markedly increased by the addition of NADH and was prevented by dicumarol, a DT-diaphorase (NQO1) inhibitor. CoQ1 sulfate conjugate formation catalysed by cytosol was inhibited by the sulfotransferase 1A (SULT1A) inhibitor, pentachlorophenol (PCP) suggesting that sulfation was carried out by the SULT 1A isoform. CoQ1 sulfation in isolated hepatocytes and inversely CoQ1 hydroquinone formation were dependent on the concentration of inorganic sulfate in the media. Intracellular sulfation also decreased CoQ1 antioxidant and cytoprotective activity towards cumene hydroperoxide (CHP) induced cell death. Sulfotransferases may therefore play a significant role in endogenous CoQ metabolism following its degradation to short chain products.  相似文献   

9.
Polychlorobiphenylols (OH-PCBs) were reported as potent inhibitors of estrogen sulfotransferase, thyroid hormone and 3-hydroxybenzo(a)pyrene sulfotransferases. The aim of this study was to examine the effects of selected OH-PCBs on SULT1A1 activity in human liver cytosol, measured with 4microM 4-nitrophenol, a concentration considered to be diagnostic for selectively detecting SULT1A1. All the OH-PCBs studied inhibited the sulfonation of 4-nitrophenol in human liver cytosol. Among the eighteen OH-PCBs studied, 3'-OH-CB3 (4-chlorobiphenyl-3'-ol) was the most potent inhibitor (IC(50): 0.73+/-0.15microM, mean+/-S.D., n=3). The least potent inhibitor studied was 6'-OH-CB35 (3,3',4-trichlorobiphenyl-6'-ol) with IC(50): 49.1+/-10.8microM. The IC(50) values of the other OH-PCBs studied ranged from 0.78 to 3.76microM. Some OH-PCBs with various inhibitory potencies with human liver cytosol were selected for study with recombinant human SULT1A1 and SULT1B1. These OH-PCBs showed more potent inhibition of 4-nitrophenol sulfonation with SULT1A1 than with human liver cytosol. The IC(50) values with human liver cytosol showed a perfect linear correlation with those found with SULT1A1 (r(2)=1), but not with SULT1B1 (r(2)=0.21). The results suggested that in these human samples SULT1A1 was predominantly responsible for the sulfonation of 4-nitrophenol, with very little or no contribution from SULT1B1. The kinetics of inhibition were studied with 4'-OH-CB165, which is similar in structure to OH-PCBs found in human blood. The 4'-OH-CB165 was a mixed noncompetitive-uncompetitive inhibitor (K(i)=1.80+/-0.2microM, K(ies)=0.16+/-0.02microM). Finally, it was demonstrated that the tested OH-PCBs were themselves only slowly sulfonated by human sulfotransferases in the presence of (35)S-PAPS, as measured by the production of (35)S-labeled metabolites. Although this series of 18 OH-PCBs was too small to draw conclusions about structure-potency relationships, this work demonstrated that several OH-PCBs were potent inhibitors of 4-nitrophenol sulfonation but poor substrates in human liver cytosol, and suggested that OH-PCBs may inhibit the sulfation rate of those xenobiotics sulfated by SULT1A1.  相似文献   

10.
11.
Sulfation, catalyzed by members of the sulfotransferase enzyme family, is a major metabolic pathway which modulates the biological activity of numerous endogenous and xenobiotic chemicals. A number of these enzymes have been expressed in prokaryotic and eukaryotic systems to produce protein for biochemical and physical characterization. However, the effective use of heterologous expression systems to produce recombinant enzymes for such purposes depends upon the expressed protein faithfully representing the "native" protein. For human sulfotransferases, little attention has been paid to this despite the widespread use of recombinant enzymes. Here we have validated a number of heterologous expression systems for producing the human dopamine-metabolizing sulfotransferase SULT1A3, including Escherichia coli, Saccharomyces cerevisiae, COS-7, and V79 cells, by comparison of Km values of the recombinant enzyme in cell extracts with enzyme present in human platelets and with recombinant enzyme purified to homogeneity following E. coli expression. This is the first report of heterologous expression of a cytosolic sulfotransferase in yeast. Expression of SULT1A3 was achieved in all cell types, and the Km for dopamine under the conditions applied was approximately 1 microM in all heterologous systems studied, which compared favorably with the value determined with human platelets. We also determined the subunit and native molecular weights of the purified recombinant enzyme by SDS-PAGE, electrospray ionization mass spectrometry, dynamic light scattering, and sedimentation analysis. The enzyme purified following expression in E. coli existed as a homodimer with Mr approximately 68,000 as determined by light scattering and sedimentation analysis. Mass spectrometry revealed two species with experimentally determined masses of 34,272 and 34,348 which correspond to the native protein with either one or two 2-mercaptoethanol adducts. We conclude that the enzyme expressed in prokaryotic and eukaryotic heterologous systems, and also purified from E. coli, equates to that which is found in human tissue preparations.  相似文献   

12.
We recently found single amino acid substitutions ((213)Arg/His and (223)Met/Val) in polymorphic human phenol-sulfating phenol sulfotransferase (SULT: cDNAs encoding ST1A3, P PST or HAST1/2) among Caucasians and African-Americans. In a Japanese population (n = 143), allele frequencies of (213)Arg and (213)His were 83.2 and 16. 8%, respectively, but the (223)Val allele was not found. (213)His homozygosity was reportedly associated with both very low (>7-fold) sulfating activities of p-nitrophenol (at 4 microM) and low thermostability in platelets. Sulfating-activity determinations using recombinant (213)Arg- and (213)His-forms (ST1A3*1 and ST1A3*2, respectively) did not, however, reveal appreciable deficiency in [(35)S]3'-phosphoadenosine 5'-phosphosulfate (PAPS)-dependent sulfation of p-nitrophenol (4 microM) by ST1A3*2 (7.5 vs. 10.2 nmol/min/nmol SULT for ST1A3). Kinetic parameters for p-nitrophenol for p-nitrophenol sulfation supported the slight decrease in sulfating activities at 4 microM (K(m), 0.82 vs. 1.75 microM; V(max), 13.2 vs. 13.1 nmol/min/nmol SULT, respectively, for ST1A3*1 and *2). p-Nitrophenyl sulfate-dependent 2-naphthol sulfation by ST1A3*2 was 69% of that by ST1A3*1 (p<0.05). However, ST1A3*2 was remarkably unstable at 45 and 37 degrees C as compared to ST1A3*1. The lower p-nitrophenol sulfating activity of ST1A3*2 may explain the lower platelet p-nitrophenol sulfation in ST1A3*2 homozygotes. Protein instability and ST1A3 gene regulation may be both involved in the polymorphism of p-nitrophenol sulfation in human tissues.  相似文献   

13.
As a result of an alternative exon 1, the gene for human hydroxysteroid sulfotransferase (SULTB1) encodes for two peptides differing only at their amino termini. The SULT2B1b isoform preferentially sulfonates cholesterol. Conversely, the SULT2B1a isoform avidly sulfonates pregnenolone but not cholesterol. The outstanding structural feature that distinguishes the SULT2B1 isoforms from the prototypical SULT2A1 isozyme is the presence of extended amino- and carboxyl-terminal ends in the former. Investigating the functional significance of this unique characteristic reveals that removal of 53 amino acids from the relatively long carboxyl-terminal end that is common to both SULT2B1 isoforms has no effect on the catalytic activity of either isoform. On the other hand, removal of 23 amino acids from the amino-terminal end that is unique to SULT2B1b results in loss of cholesterol sulfotransferase activity, whereas removal of 8 amino acids from the amino-terminal end that is unique to SULT2B1a has no effect on pregnenolone sulfotransferase activity. Deletion analysis along with site-directed mutagenesis of SULT2B1b reveal that the amino acid segment 19-23 residues from the amino terminus and particularly isoleucines at positions 21 and 23 are crucial for cholesterol catalysis. In the gene for SULT2B1, exon 1B encodes for only the unique amino-terminal region of SULT2B1b; however, exon 1A encodes for the unique amino-terminal end of SULT2B1a plus an additional 48 amino acids. Thus, if the gene for SULT2B1 employs exon 1B, cholesterol sulfotransferase is synthesized, whereas if exon 1A is used, pregnenolone sulfotransferase is produced.  相似文献   

14.
By searching the expressed sequence tag database, a zebrafish cDNA encoding a putative cytosolic sulfotransferase (SULT) was identified. Sequence analysis indicated that this zebrafish SULT belongs to the SULT1 cytosolic SULT gene family. The recombinant form of this novel zebrafish SULT, expressed using the pGEX-2TK expression system and purified from transformed BL21 (DE3) Escherichia coli cells, displayed sulfating activities specifically for estrone and 17beta-estradiol among various endogenous compounds tested as substrates. The enzyme also exhibited sulfating activities toward some xenobiotic phenolic compounds. This new zebrafish SULT showed dual pH optima, at 6.5 and 10-10.5, with estrone or n-propyl gallate as substrate. Kinetic constants of the sulfation of estrone, 17beta-estradiol, and n-propyl gallate were determined. Developmental stage-dependent expression experiments revealed a significant level of expression of this novel zebrafish estrogen-sulfating SULT at the beginning of the hatching period during embryogenesis, which continued throughout the larval stage onto maturity.  相似文献   

15.
16.
Cytosolic sulfotransferase (SULT)-catalyzed sulfation regulates the activity of bio-signaling molecules and aids in metabolizing hydroxyl-containing xenobiotics. The sulfuryl donor for the SULT reaction is adenosine 3′-phosphate 5′-phosphosulfate (PAPS), while products are adenosine 3′,5′-diphosphate (PAP) and a sulfated alcohol. Human phenol sulfotransferase (SULT1A1) is one of the major detoxifying enzymes for phenolic xenobiotics. The mechanism of SULT1A1-catalyzed sulfation of PAP by pNPS was investigated. PAP was sulfated by para-nitrophenyl sulfate (pNPS) in a concentration-dependent manner. 2-Naphthol inhibited sulfation of PAP, competing with pNPS, while phenol activated the sulfation reaction. At saturating PAP, a ping pong kinetic mechanism is observed with pNPS and phenol as substrates, consistent with phenol intercepting the E–PAPS complex prior to dissociation of PAPS. At high concentrations, phenol competes with pNPS, consistent with formation of the E–PAP–phenol dead-end complex. Data are consistent with the previously reported mechanism for sulfation of 2-naphthol by PAPS, and its activation by pNPS [14]. Overall, data are consistent with release of PAP from E–PAP and PAPS from E–PAPS contributing to rate-limitation in both reaction directions.  相似文献   

17.
Sulfation appears to be an important pathway for the reversible inactivation of thyroid hormone during fetal development. The rat is an often used animal model to study the regulation of fetal thyroid hormone status. The present study was done to determine which sulfotransferases (SULTs) are important for iodothyronine sulfation in the rat, using radioactive T4, T3, rT3, and 3,3'-T2 as substrates, 3'-phosphoadenosine-5'-phosphosulfate (PAPS) as cofactor, and rat liver, kidney and brain cytosol, and recombinant rat SULT1A1, -1B1, -1C1, -1E1, -2A1, -2A2, and -2A3 as enzymes. Recombinant rat SULT1A1, -1E1, -2A1, -2A2, and -2A3 failed to catalyze iodothyronine sulfation. For all tissue SULTs and for rSULT1B1 and rSULT1C1, 3,3'-T2 was by far the preferred substrate. Apparent Km values for 3,3'-T2 amounted to 1.9 microM in male liver, 4.4 microM in female liver, 0.76 microM in male kidney, 0.23 microM in male brain, 7.7 microM for SULT1B1, and 0.62 microM for SULT1C1, whereas apparent Km values for PAPS showed less variation (2.0-6.9 microM). Sulfation of 3,3'-T2 was inhibited dose dependently by other iodothyronines, with similar structure-activity relationships for most enzymes except for the SULT activity in rat brain. The apparent Km values of 3,3'-T2 in liver cytosol were between those determined for SULT1B1 and -1C1, supporting the importance of these enzymes for the sulfation of iodothyronines in rat liver, with a greater contribution of SULT1C1 in male than in female rat liver. The results further suggest that rSULT1C1 also contributes to iodothyronine sulfation in rat kidney, whereas other, yet-unidentified forms appear more important for the sulfation of thyroid hormone in rat brain.  相似文献   

18.
19.
Vought VE  Ohmachi M  Lee MH  Maine EM 《Genetics》2005,170(3):1121-1132
Caenorhabditis elegans EGO-1, a putative cellular RNA-directed RNA polymerase, promotes several aspects of germline development, including proliferation, meiosis, and gametogenesis, and ensures a robust response to RNA interference. In C. elegans, GLP-1/Notch signaling from the somatic gonad maintains a population of proliferating germ cells, while entry of germ cells into meiosis is triggered by the GLD-1 and GLD-2 pathways. GLP-1 signaling prevents germ cells from entering meiosis by inhibiting GLD-1 and GLD-2 activity. We originally identified the ego-1 gene on the basis of a genetic interaction with glp-1. Here, we investigate the role of ego-1 in germline proliferation. Our data indicate that EGO-1 does not positively regulate GLP-1 protein levels or GLP-1 signaling activity. Moreover, GLP-1 signaling does not positively regulate EGO-1 activity. EGO-1 does not inhibit expression of GLD-1 protein in the distal germline. Instead, EGO-1 acts in parallel with GLP-1 signaling to influence the proliferation vs. meiosis fate choice. Moreover, EGO-1 and GLD-1 act in parallel to ensure germline health. Finally, the size and distribution of nuclear pore complexes and perinuclear P granules are altered in the absence of EGO-1, effects that disrupt germ cell biology per se and probably limit germline growth.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号