首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Hepatocellular carcinoma (HCC) is the most common liver cancer and a leading cause of cancer-related mortality in the world. Hepatitis C virus (HCV) is a major etiologic agent of HCC. A majority of HCV infections lead to chronic infection that can progress to cirrhosis and, eventually, HCC and liver failure. A common pathogenic feature present in HCV infection, and other conditions leading to HCC, is oxidative stress. HCV directly increases superoxide and H2O2 formation in hepatocytes by elevating Nox protein expression and sensitizing mitochondria to reactive oxygen species generation while decreasing glutathione. Nitric oxide synthesis and hepatic iron are also elevated. Furthermore, activation of phagocytic NADPH oxidase (Nox) 2 of host immune cells is likely to exacerbate oxidative stress in HCV-infected patients. Key mechanisms of HCC include genome instability, epigenetic regulation, inflammation with chronic tissue injury and sustained cell proliferation, and modulation of cell growth and death. Oxidative stress, or Nox proteins, plays various roles in these mechanisms. Nox proteins also function in hepatic fibrosis, which commonly precedes HCC, and Nox4 elevation by HCV is mediated by transforming growth factor β. This review summarizes mechanisms of oncogenesis by HCV, highlighting the roles of oxidative stress and hepatic Nox enzymes in HCC.  相似文献   

2.
Cell culture systems have been established, where a hepatitis C virus (HCV) subgenomic replicon was efficiently replicated and maintained for a long period. It is known that HCV contains proteins which interact with host cell proteins.To see whether a HCV RNA replicon can interact in the same way with host cell proteins, HCV RNA replicon was transfected in Huh7 cells. In most infected cells, HCV replicon is present in the cytoplasm; however, in a minority of HCV-infected cells, both the cytoplasm and the nucleus or the nucleus on its own is positive for NS3. The presence of NS3 in the nuclei of Huh7 cells indicates that the protein may play a role other than in virus replication, such as in persistence of HCV infection.Keyword: Hepatitis C Virus  相似文献   

3.
Stress granules (SGs) are cytoplasmic structures that are induced in response to environmental stress, including viral infections. Here we report that hepatitis C virus (HCV) triggers the appearance of SGs in a PKR- and interferon (IFN)-dependent manner. Moreover, we show an inverse correlation between the presence of stress granules and the induction of IFN-stimulated proteins, i.e., MxA and USP18, in HCV-infected cells despite high-level expression of the corresponding MxA and USP18 mRNAs, suggesting that interferon-stimulated gene translation is inhibited in stress granule-containing HCV-infected cells. Finally, in short hairpin RNA (shRNA) knockdown experiments, we found that the stress granule proteins T-cell-restricted intracellular antigen 1 (TIA-1), TIA1-related protein (TIAR), and RasGAP-SH3 domain binding protein 1 (G3BP1) are required for efficient HCV RNA and protein accumulation at early time points in the infection and that G3BP1 and TIA-1 are required for intracellular and extracellular infectious virus production late in the infection, suggesting that they are required for virus assembly. In contrast, TIAR downregulation decreases extracellular infectious virus titers with little effect on intracellular RNA content or infectivity late in the infection, suggesting that it is required for infectious particle release. Collectively, these results illustrate that HCV exploits the stress granule machinery at least two ways: by inducing the formation of SGs by triggering PKR phosphorylation, thereby downregulating the translation of antiviral interferon-stimulated genes, and by co-opting SG proteins for its replication, assembly, and egress.  相似文献   

4.
Regulatory mechanisms of viral hepatitis B and C   总被引:10,自引:0,他引:10  
  相似文献   

5.
Hepatitis C virus (HCV) is a major cause of viral hepatitis that can progress to hepatic fibrosis, steatosis, hepatocellular carcinoma, and liver failure. HCV infection is characterized by a systemic oxidative stress that is most likely caused by a combination of chronic inflammation, iron overload, liver damage, and proteins encoded by HCV. The increased generation of reactive oxygen and nitrogen species, together with the decreased antioxidant defense, promotes the development and progression of hepatic and extrahepatic complications of HCV infection. This review discusses the possible mechanisms of HCV-induced oxidative stress and its role in HCV pathogenesis.  相似文献   

6.
Hepatitis C virus, ER stress, and oxidative stress   总被引:13,自引:0,他引:13  
Hepatitis C virus (HCV) replication is associated with the endoplasmic reticulum (ER), where the virus causes stress. Cells cope with ER stress by activating an adaptive program called the unfolded protein response (UPR), which alleviates this stress by stimulating protein folding and degradation in the ER and down-regulating overall protein synthesis. Recent work suggests that HCV also alters ER calcium homeostasis, inducing oxidative stress. Future progress in understanding the control that HCV exerts over the ER will provide insight into viral strategies for pathogenesis and persistence in chronically infected patients.  相似文献   

7.
8.
Hepatitis virus replication in the liver is often accompanied by inflammation resulting in the formation of reactive oxygen species (ROS) and nitric oxide (NO) and these may induce cell death. We investigated whether the expression of HBx or HCV core protein in HepG2 cells has an influence on the sensitivity of these cells for oxidative radicals. Our previous study, using the inducible HBV model of HepAD38, revealed that oxidative-stress-related genes are upregulated by virus replication. In the present study, we examined the intracellular pro-oxidant status with dichlorofluorescein (DCF) in HepG2 cell lines transfected with HBx, HbsAg and HCV core. Baseline intracellular oxidative levels were not different in the cell lines expressing viral proteins as compared to control. However, when these cells were exposed to H(2)O(2), the viral protein expressing cells, especially those expressing HBx, showed a reduced level of ROS. This suggests that HBx and HCV core transfected cells can convert H(2)O(2) to less reactive compounds at a higher rate than the control cells. When HBx or HCV core expressing cells were exposed to peroxynitrite (a highly reactive product formed under physiological conditions through interaction of superoxide (O(2)(-)) with NO) these cells were less sensitive to induction of cell death. In addition, these cell lines were less prone to cell death when exposed to H(2)O(2) directly. In conclusion, HBx and HCV core expression in HepG2 cells leads to a survival benefit under oxidative stress which in vivo can be induced during inflammation.  相似文献   

9.
Infection with hepatitis C virus (HCV) is etiologically involved in liver cirrhosis, hepatocellular carcinoma and B-cell lymphomas. It has been demonstrated previously that HCV non-structural protein 3 (NS3) is involved in cell transformation. In this study, a yeast two-hybrid screening experiment was conducted to identify cellular proteins interacting with HCV NS3 protein. Cytosolic 5′(3′)-deoxyribonucleotidase (cdN, dNT-1) was found to interact with HCV NS3 protein. Binding domains of HCV NS3 and cellular cdN proteins were also determined using the yeast two-hybrid system. Interactions between HCV NS3 and cdN proteins were further demonstrated by co-immunoprecipitation and confocal analysis in cultured cells. The cellular cdN activity was partially repressed by NS3 protein in both the transiently-transfected and the stably-transfected systems. Furthermore, HCV partially repressed the cdN activity while had no effect on its protein expression in the systems of HCV sub-genomic replicons and infectious HCV virions. Deoxyribonucleotidases are present in most mammalian cells and involve in the regulation of intracellular deoxyribonucleotides pools by substrate cycles. Control of DNA precursor concentration is essential for the maintenance of genetic stability. Reduction of cdN activity would result in the imbalance of DNA precursor concentrations. Thus, our results suggested that HCV partially reduced the cdN activity via its NS3 protein and this may in turn cause diseases.  相似文献   

10.
Hepatitis C virus (HCV) is a blood-borne pathogen that was identified as an etiologic agent of non-A, non-B hepatitis in 1989. HCV is estimated to have infected at least 170 million people worldwide. The majority of patients infected with HCV do not clear the virus and become chronically infected, and chronic HCV infection increases the risk for hepatic steatosis, cirrhosis, and hepatocellular carcinoma. HCV induces oxidative/nitrosative stress from multiple sources, including inducible nitric oxide synthase, the mitochondrial electron transport chain, hepatocyte NAD(P)H oxidases, and inflammation, while decreasing glutathione. The cumulative oxidative burden is likely to promote both hepatic and extrahepatic conditions precipitated by HCV through a combination of local and more distal effects of reactive species, and clinical, animal, and in vitro studies strongly point to a role of oxidative/nitrosative stress in HCV-induced pathogenesis. Oxidative stress and hepatopathogenesis induced by HCV are exacerbated by even low doses of alcohol. Alcohol and reactive species may have other effects on hepatitis C patients such as modulation of the host immune system, viral replication, and positive selection of HCV sequence variants that contribute to antiviral resistance. This review summarizes the current understanding of redox interactions of HCV, outlining key experimental findings, directions for future research, and potential applications to therapy.  相似文献   

11.
12.
Three proteins, namely, the core protein C and envelope glycoproteins E1 and E2, are main structural proteins forming a hepatitis C virus (HCV) virion. The virus structure and assembly and the role of the structural proteins in virion morphogenesis remain unknown because of the lack of an efficient culture system for HCV to be grown in vitro. Highly efficient heterologous expression systems make it possible to obtain self-assembled, nonreplicating, genome-lacking particles that are morphologically similar to intact virions. Using recombinant baculoviruses expressing the HCV structural protein genes in insect cells, the individual HCV structural proteins were expressed to 25–35% of the total cell protein, and the CE1 and E1E2 heterodimers and HCV-like particles were obtained. It was demonstrated that the recombinant C, E1, and E2 proteins underwent posttranslational modification, the glycoproteins formed a noncovalent heterodimer, and HCV- like particles were located in endoplasmic reticulum membranes of infected cells. The formation of E1E2 dimers and HCV-like particles was used to study the effect of E1 glycosylation on the expression and processing of the coat proteins.  相似文献   

13.
Misfolding and aggregation of protein molecules are major threats to all living organisms. Therefore, cells have evolved quality control systems for proteins consisting of molecular chaperones and proteases, which prevent protein aggregation by either refolding or degrading misfolded proteins. DnaK/DnaJ and GroES/GroEL are the best-characterized molecular chaperone systems in bacteria. In Caulobacter crescentus these chaperone machines are the products of essential genes, which are both induced by heat shock and cell cycle regulated. In this work, we characterized the viabilities of conditional dnaKJ and groESL mutants under different types of environmental stress, as well as under normal physiological conditions. We observed that C. crescentus cells with GroES/EL depleted are quite resistant to heat shock, ethanol, and freezing but are sensitive to oxidative, saline, and osmotic stresses. In contrast, cells with DnaK/J depleted are not affected by the presence of high concentrations of hydrogen peroxide, NaCl, and sucrose but have a lower survival rate after heat shock, exposure to ethanol, and freezing and are unable to acquire thermotolerance. Cells lacking these chaperones also have morphological defects under normal growth conditions. The absence of GroE proteins results in long, pinched filamentous cells with several Z-rings, whereas cells lacking DnaK/J are only somewhat more elongated than normal predivisional cells, and most of them do not have Z-rings. These findings indicate that there is cell division arrest, which occurs at different stages depending on the chaperone machine affected. Thus, the two chaperone systems have distinct roles in stress responses and during cell cycle progression in C. crescentus.  相似文献   

14.
Hepatitis C virus (HCV) is a highly pathogenic human virus associated with liver fibrosis, steatosis, and cancer. In infected cells HCV induces oxidative stress. Here, we show that HCV proteins core, E1, E2, NS4B, and NS5A activate antioxidant defense Nrf2/ARE pathway via several independent mechanisms. This was demonstrated by the analysis of transient co-expression in Huh7 cells of HCV proteins and luciferase reporters. Expression, controlled by the promoters of stress-response genes or their minimal Nrf2-responsive elements, was studied using luminescence assay, RT-qPCR and/or Western-blot analysis. All five proteins induced Nrf2 activation by protein kinase C in response to accumulation of reactive oxygen species (ROS). In addition, expression of core, E1, E2, NS4B, and NS5A proteins resulted in the activation of Nrf2 in a ROS-independent manner. The effect of core and NS5A was mediated through casein kinase 2 and phosphoinositide-3 kinase, whereas those of NS4B, E1, and E2, were not mediated by either PKC, CK2, PI3K, p38, or ERK. Altogether, on the earliest stage of expression HCV proteins induced a strong up-regulation of the antioxidant defense system. These events may underlie the harmful effects of HCV-induced oxidative stress during acute stage of hepatitis C.  相似文献   

15.
Studies on hepatitis C virus (HCV) replication have been greatly advanced by the development of cell culture models for HCV known as replicon systems. The prototype replicon consists of a subgenomic HCV RNA in which the HCV structural region is replaced by the neomycin phosphotransferase II (NPTII) gene, and translation of the HCV proteins NS3 to NS5 is directed by the encephalomyocarditis virus (EMCV) internal ribosome entry site (IRES). The interferon (IFN)-inducible protein kinase PKR plays an important role in cell defense against virus infection by impairing protein synthesis as a result of eIF-2alpha phosphorylation. Here, we show that expression of the viral nonstructural (NS) and PKR proteins and eIF-2alpha phosphorylation are all variably regulated in proliferating replicon Huh7 cells. In proliferating cells, induction of PKR protein by IFN-alpha is inversely proportional to viral RNA replication and NS protein expression, whereas eIF-2alpha phosphorylation is induced by IFN-alpha in proliferating but not in serum-starved replicon cells. The role of PKR and eIF-2alpha phosphorylation was further addressed in transient-expression assays in Huh7 cells. These experiments demonstrated that activation of PKR results in the inhibition of EMCV IRES-driven NS protein synthesis from the subgenomic viral clone through mechanisms that are independent of eIF-2alpha phosphorylation. Unlike NS proteins, HCV IRES-driven NPTII protein synthesis from the subgenomic clone was resistant to PKR activation. Interestingly, activation of PKR could induce HCV IRES-dependent mRNA translation from dicistronic constructs, but this stimulatory effect was mitigated by the presence of the viral 3' untranslated region. Thus, PKR may assume multiple roles in modulating HCV replication and protein synthesis, and tight control of PKR activity may play an important role in maintaining virus replication and allowing infection to evade the host's IFN system.  相似文献   

16.
Hepatitis C virus (HCV) is a global problem. To better understand HCV infection researchers employ in vitro HCV cell-culture (HCVcc) systems that use Huh-7 derived hepatoma cells that are particularly permissive to HCV infection. A variety of hyper-permissive cells have been subcloned for this purpose. In addition, subclones of Huh-7 which have evolved resistance to HCV are available. However, the mechanisms of susceptibility or resistance to infection among these cells have not been fully determined. In order to elucidate mechanisms by which hepatoma cells are susceptible or resistant to HCV infection we performed genome-wide expression analyses of six Huh-7 derived cell cultures that have different levels of permissiveness to infection. A great number of genes, representing a wide spectrum of functions are differentially expressed between cells. To focus our investigation, we identify host proteins from HCV replicase complexes, perform gene expression analysis of three HCV infected cells and conduct a detailed analysis of differentially expressed host factors by integrating a variety of data sources. Our results demonstrate that changes relating to susceptibility to HCV infection in hepatoma cells are linked to the innate immune response, secreted signal peptides and host factors that have a role in virus entry and replication. This work identifies both known and novel host factors that may influence HCV infection. Our findings build upon current knowledge of the complex interplay between HCV and the host cell, which could aid development of new antiviral strategies.  相似文献   

17.
Differential cellular gene expression induced by hepatitis B and C viruses   总被引:10,自引:0,他引:10  
Hepatitis B virus (HBV) is a hepatotropic virus that causes acute and chronic hepatocellular injury and hepatocellular carcinoma. To clarify how HBV proteins regulate host cellular gene expression, we used our in-house cDNA microarray and HepG2.2.15 cells, which are derived from HepG2 cells and produce all HBV proteins. Of 2304 genes investigated, several genes were differentially expressed in HepG2.2.15 cells compared with HepG2 cells. These genes included insulin-like growth factor II and alpha-fetoprotein, consistent with previous reports. Furthermore, we previously performed similar microarray analyses to clarify the effects of hepatitis C virus (HCV) proteins on host cells, using a HepG2-derivative cell line, which produces all HCV proteins. Using these two microarray results, we compared the differences in cellular gene expression induced by HBV and HCV proteins. The expression of the majority of genes investigated differed only slightly between HBV and HCV protein-producing cells. However, HBV and HCV proteins clearly regulated several genes in a reciprocal manner. Combined, these microarray results shed new light on the effects of HBV proteins on cellular gene expression and on the differences in the pathogenic activities of these two hepatitis viruses.  相似文献   

18.
Reactive oxygen and nitrogen species (ROS/RNS), whether produced endogenously as a consequence of normal cell functions or derived from external sources, pose a constant threat to cells living in an aerobic environment. When the production of ROS/RNS overrides the antioxidant capability of the target cells, oxidative damage may occur as a consequence of the interaction with DNA, protein, and lipids. Hepatitis C virus (HCV) is a major cause of viral hepatitis. Although the molecular mechanisms of HCV pathogenesis remain unclear, oxidative stress is emerging as a key step and a major initiator in the development and the progression of liver damage, and the evaluation of oxidative stress may be useful for a better understanding of the pathogenesis of hepatitis C. Liver steatosis is one of the most important histopathological features in patients with chronic hepatitis C. Both viral and host factors contribute to the development of steatosis, and putative defects caused by ROS/RNS may be involved through abnormalities in lipid metabolism. This review is aimed to offer an updated overview of the relationship between oxidative stress and HCV infection, focusing on the significance of ROS/RNS in the pathogenesis of liver disease. The potential role played by oxidative stress in the pathogenic mechanisms of HCV-related steatosis is also discussed.  相似文献   

19.
Endothelial cells are exposed to different types of shear stress which triggers the secretion of subsets of proteins. In this study, we analyzed the secretome of endothelial cells under static, laminar, and oscillatory flow. To differentiate between endogenously expressed and added proteins, isolated human umbilical vein endothelial cells were labeled with l-Lysine-(13)C(6),(15)N(2) and l-Arginine-(13)C(6),(15)N(4). Shear stress was applied for 24 h using a cone-and-plate viscometer. Proteins from the supernatants were isolated, trypsinized, and finally analyzed using LC-MS/MS (LTQ). Under static control condition 395 proteins could be identified, of which 78 proteins were assigned to the secretome according to Swiss-Prot database. Under laminar shear stress conditions, 327 proteins (83 secreted) and under oscillatory shear stress 507 proteins (79 secreted) were measured. We were able to identify 6 proteins specific for control conditions, 8 proteins specific for laminar shear stress, and 5 proteins specific for oscillatory shear stress. In addition, we identified flow-specific secretion patterns like the increased secretion of cell adhesion proteins and of proteins involved in protein binding. In conclusion, the identification of shear stress specific secreted proteins (101 under different flow conditions) emphasizes the role of endothelial cells in modulating the plasma composition according to the physiological requirements.  相似文献   

20.
The microRNA miR-122 and DDX6/Rck/p54, a microRNA effector, have been implicated in hepatitis C virus (HCV) replication. In this study, we demonstrated for the first time that HCV-JFH1 infection disrupted processing (P)-body formation of the microRNA effectors DDX6, Lsm1, Xrn1, PATL1, and Ago2, but not the decapping enzyme DCP2, and dynamically redistributed these microRNA effectors to the HCV production factory around lipid droplets in HuH-7-derived RSc cells. Notably, HCV-JFH1 infection also redistributed the stress granule components GTPase-activating protein (SH3 domain)-binding protein 1 (G3BP1), ataxin-2 (ATX2), and poly(A)-binding protein 1 (PABP1) to the HCV production factory. In this regard, we found that the P-body formation of DDX6 began to be disrupted at 36 h postinfection. Consistently, G3BP1 transiently formed stress granules at 36 h postinfection. We then observed the ringlike formation of DDX6 or G3BP1 and colocalization with HCV core after 48 h postinfection, suggesting that the disruption of P-body formation and the hijacking of P-body and stress granule components occur at a late step of HCV infection. Furthermore, HCV infection could suppress stress granule formation in response to heat shock or treatment with arsenite. Importantly, we demonstrate that the accumulation of HCV RNA was significantly suppressed in DDX6, Lsm1, ATX2, and PABP1 knockdown cells after the inoculation of HCV-JFH1, suggesting that the P-body and the stress granule components are required for the HCV life cycle. Altogether, HCV seems to hijack the P-body and the stress granule components for HCV replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号