首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Vats  S.K.  Pandey  S.  Nagar  P.K. 《Photosynthetica》2002,40(4):625-628
Net photosynthetic rate (P N) of Valeriana jatamansi plants, grown under nylon net shade or under different tree canopies, was saturated with photons at 1 000 mol m–2 s–1 photosynthetic photon-flux-density (PPFD), whereas open-grown plants were able to photosynthesise even at higher PPFD, e.g. of 2 000 mol m–2 s–1. Plants grown under net shade had higher total chlorophyll (Chl) content per unit area of leaf surface. However, Chl a/b ratio was maximal in open-grown plants, but remained unchanged in plants grown in nylon net shade and under different tree canopies. Sun-grown plants had thicker leaves (higher leaf mass per leaf area unit), higher wax content, and higher P N than shade grown plants. Thus V. jatamansi is able to acclimate to high PPFD and therefore this Himalayan species may be cultivated in open habitat to meet the ever-increasing industrial demand.  相似文献   

3.
In higher plants, photosystem II (PSII) is a large pigment-protein supramolecular complex composed of the PSII core complex and the plant-specific peripheral light-harvesting complexes (LHCil). PSli-LHCII complexes are highly dynamic in their quantity and macro-organization to various environmental conditions. In this study, we reported a critical factor, the Arabidopsis Thylakoid Formation 1 (THF1) protein, which controls PSII-LHCII dynamics during dark- induced senescence and light acclimation. Loss-of-function mutations in THF1 lead to a stay-green phenotype in path- ogen-infected and senescent leaves. Both LHCII and PSll core subunits are retained in dark-induced senescent leaves of thfl, indicative of the presence of PSII-LHCII complexes. Blue native (BN)-polyacrylamide gel electrophoresis (PAGE) and immunoblot analysis showed that, in dark- and high-light-treated thfl leaves, a type of PSII-LHCII megacomplex is selec- tively retained while the stability of PSII-LHCII supercomplexes significantly decreased, suggesting a dual role of THF1 in dynamics of PSII-LHCII complexes. We showed further that THF1 interacts with Lhcb proteins in a pH-dependent manner and that the stay-green phenotype of thfl relies on the presence of LHCII complexes. Taken together, the data suggest that THF1 is required for dynamics of PSII-LHCII supramolecular organization in higher plants.  相似文献   

4.
Dorsiventrality in Photosynthetic Light Response Curves of a Leaf   总被引:5,自引:0,他引:5  
Terashima, I. 1986. Dorsiventrality in photosynthetic lightresponse curves of a leaf.—J. cxp. Bot. 37 399–405 The photosynthetic light response curve of a leaf of Glycinemax (L.) Merrill obtained by illuminating the adaxial side layabove that obtained by illuminating the abaxial side. However,after inverting the leaf for 11 d, the curve obtained by illuminatingthe abax.ial side came to lie slightly above that obtained byilluminating the adaxial side. The difference in the shape oflight response curves is satisfactorily explained only whenthe intra-leaf heterogeneities in light absorption and in photosyntheticactivity are taken into account. Key words: Photosynthetic rate, direction of illumination  相似文献   

5.
Although light is essential for photosynthesis, excess light can damage the photosynthetic apparatus and deregulate other cellular processes. Thus, protective integrated regulatory responses that can dissipate excess of absorbed light energy and simultaneously optimize photosynthesis and other cellular processes under variable light conditions can prove highly adaptive. Here, we show that the local and systemic responses to an excess light episode are associated with photoelectrophysiological signaling (PEPS) as well as with changes in nonphotochemical quenching and reactive oxygen species levels. During an excess light incident, PEPS is induced by quantum redox changes in photosystem II and in its proximity and/or by changes in glutathione metabolism in chloroplasts. PEPS is transduced, at least in part, by bundle sheath cells and is light wavelength specific. PEPS systemic propagation speed and action potential are dependent on ASCORBATE PEROXIDASE2 function. Excess light episodes are physiologically memorized in leaves, and the cellular light memory effect is specific for an excess of blue (450 nm) and red (650 nm) light of similar energy. It is concluded that plants possess a complex and dynamic light training and memory system that involves quantum redox, reactive oxygen species, hormonal, and PEPS signaling and is used to optimize light acclimation and immune defenses.  相似文献   

6.
We report a multiscale study in the Wind River Valley in southwestern Washington, where we quantified leaf to stand scale variation in spectral reflectance for dominant species. Four remotely sensed structural measures, the normalized difference vegetation index (NDVI), cover fractions from spectral mixture analysis (SMA), equivalent water thickness (EWT), and albedo were investigated using Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data. Discrimination of plant species varied with wavelength and scale, with deciduous species showing greater separability than conifers. Contrary to expectations, plant species were most distinct at the branch scale and least distinct at the stand scale. At the stand scale, broadleaf and conifer species were spectrally distinct, as were most conifer age classes. Intermediate separability occurred at the leaf scale. Reflectance decreased from leaf to stand scales except in the broadleaf species, which peaked in near-infrared reflectance at the branch scale. Important biochemical signatures became more pronounced spectrally progressing from leaf to stand scales. Recent regenerated clear-cuts (less than 10 years old) had the highest albedo and nonphotosynthetic vegetation (NPV). After 50 years, the stands showed significant decreases in albedo, NPV, and EWT and increases in shade. Albedo was lowest in old-growth forests. Peak EWT, a proxy measure for leaf area index (LAI), was observed in 11- to 30-year-old stands. When compared to LAI, EWT and NDVI showed exponentially decreasing, but distinctly different, relationships with increasing LAI. This difference is biologically important: at 95% of the maximum predicted NDVI and EWT, LAI was 5.17 and 9.08, respectively. Although these results confirm the stand structural variation expected with forest succession, remote-sensing images also provide a spatial context and establish a basis to evaluate variance within and between age classes. Landscape heterogeneity can thus be characterized over large areas—a critical and important step in scaling fluxes from stand-based towers to larger scales.  相似文献   

7.
Canopy‐top leaves of the dominant tree species from two 0.96‐ha plots in Brunei, northern Borneo, were sampled for structural and chemical analysis. Thirteen species from the mixed dipterocarp forest at Andulau and 14 from the lowland heath forest at Badas were studied. The heath‐forest species had significantly thicker leaves and were lower in nitrogen and ash concentration than those from the mixed dipterocarp forest. There were no significant differences between the two species groups in leaf mass per unit area (LMA), leaf fracture toughness, carbon concentration, 813C, neutral detergent fiber concentration, sclerophylly index, and stomatal density. A significant negative correlation between %C and 813C was found for the species from the mixed dipterocarp forest, but not those from the heath forest. The degree of sclerophylly measured in physical terms overlapped between the two sites to a considerable degree; however, all six species tested that were present in both plots had higher leaf fracture toughness in the heath forest. The possible reasons for the marked sclerophylly in the mixed dipterocarp forest are discussed.  相似文献   

8.
The control exerted by light on leaf and stem growth in light-grown Alaska pea seedlings was studied during the main photoperiod. Two high irradiance responses were observed. The action spectrum for one had a single sharp peak at 600 nanometers. The action spectrum for the other showed a broad peak between 440 and 470 nanometers. These two light responses must be activated simultaneously for any inhibition of stem growth or promotion of leaf growth. Both action spectra may be explained in terms of the high irradiance response of phytochrome.  相似文献   

9.
The regulation of senescence by oxygen-concentration, lightirradiance and H2O2 has been studied in leaf segments of Avenasativa L. cv. Suregrain. The development of the components of the senescence process,for example chlorophyll breakdown, proteolysis (as soluble aminoacids), hydroperoxides (as malondi-aldehyde) and permeability(as conductivity) is accelerated in light as the O2-tensionincreases. In darkness, 0.3% O2 accelerates increases in hydroperoxides,permeability and proteolysis and delays the chlorophyll break-down,but 0.0005% O2 delays all the components studied. In every casethe hydroperoxide content, permeability and proteolysis areclosely related. Any treatment inducing an increase in membranepermeability causes chlorophyll bleaching (photo-oxidation)if leaf segments are then treated with light in an atmospherecontaining oxygen. Light has a modulating effect on the senescenceprocess. An irradiance lower or higher than 40 W m–2 hasan accelerating effect on the senescence process. (Received September 7, 1985; Accepted July 30, 1985)  相似文献   

10.
Upon termination of watering of plants of Nerium oleander exposed to high light, photochemical efficiency became reduced as leaf water content decreased. Evidence is presented that this type of photoinhibition reflects to a substantial degree radiationless dissipation of excitation energy, probably mediated by the carotenoid zeaxanthin. During the imposition of water stress, the zeaxanthin content of leaves increased at the expense of violaxanthin and β-carotene as a water deficit developed over a period of several days. The increase in zeaxanthin content was linearly related to an increase in the rate of radiationless energy dissipation in the antenna chlorophyll as calculated from the characteristics of chlorophyll a fluorescence measured with a pulse amplitude modulated fluorometer at room temperature. The increase in the rate of radiationless dissipation was also linearly related to a decrease in PSII photochemical efficiency as indicated by the ratio of variable to maximum fluorescence. Leaves of well-watered shade plants of N. oleander exposed to strong light showed a similar increase in zeaxanthin content as sun leaves of the same species subjected to drought in strong light. Shade leaves possessed the same capacity as sun leaves to form zeaxanthin at the expense of both violaxanthin and β-carotene. The resistance of this species to the destructive effects of excess light appears to be related to interconversions between β-carotene and the three carotenoids of the xanthophyll cycle.  相似文献   

11.
Capture of linear fragments at a double-strand break in yeast   总被引:2,自引:0,他引:2  
Double-strand breaks (DSBs) are dangerous chromosomal lesions that must be efficiently repaired in order to avoid loss of genetic information or cell death. In all organisms studied to date, two different mechanisms are used to repair DSBs: homologous recombination (HR) and non-homologous end joining (NHEJ). Previous studies have shown that during DSB repair, non-homologous exogenous DNA (also termed ‘filler DNA’) can be incorporated at the site of a DSB. We have created a genetic system in the yeast Saccharomyces cerevisiae to study the mechanism of fragment capture. Our yeast strains carry recognition sites for the HO endonuclease at a unique chromosomal site, and plasmids in which a LEU2 gene is flanked by HO cut sites. Upon induction of the HO endonuclease, a linear extrachromosomal fragment is generated in each cell and its incorporation at the chromosomal DSB site can be genetically monitored. Our results show that linear fragments are captured at the repaired DSB site at frequencies of 10−6 to 10−4 per plated cell depending on strain background and specific end sequences. The mechanism of fragment capture depends on the NHEJ machinery, but only partially on the homologous recombination proteins. More than one fragment can be used during repair, by a mechanism that relies on the annealing of small complementary sequences. We present a model to explain the basis for fragment capture.  相似文献   

12.
Photosynthesis rate, internal CO2 concentration, starch, sucrose, and metabolite levels were measured in leaves of sugar beet (Beta vulgaris L.) during a 14-h period of sinusoidal light, which simulated a natural light period. Photosynthesis rate closely followed increasing and decreasing light level. Chloroplast metabolite levels changed in a manner indicating differential activation of enzymes at different light levels. Starch levels declined during the first and last 2 hours of the photoperiod, but increased when photosynthesis rate was greater than 50% of maximal. Sucrose and sucrose phosphate synthase levels were constant during the photoperiod, which is consistent with a relatively steady rate of sucrose synthesis during the day as observed previously (BR Fondy et al. [1989] Plant Physiol 89: 396-402). When starch was being degraded, glucose 1-phosphate level was high and there was a large amount of glucose 6-phosphate above that in equilibrium with fructose 6-phosphate, while fructose 6-phosphate and triose-phosphate levels were very low. Likewise, the regulatory metabolite, fructose, 2,6-bisphosphate was high, indicating that little carbon could move to sucrose from starch by the triose-phosphate pathway. These data cast doubt upon the feasibility of significant carbon flow through the triose-phosphate pathway during starch degradation and support the need for an additional pathway for mobilizing starch carbon to sucrose.  相似文献   

13.
云南松林与常绿阔叶林中枯落叶分解研究   总被引:10,自引:0,他引:10  
采用分解袋的方法,研究了云南松、滇青冈和元江栲枯叶在针、阔叶林两种生境下的分解及养分动态变化规律。结果表明,滇青冈和元栲枯叶分解速率高于云南松针叶。在阔叶林下这些枯叶的分解系数(0.55-0.61a^-1)要比在云南松林下的(0.50-0.53a^-1)高。在分解过程中3种枯叶的N、Al、Fe、Zn元素含量表现出分解前期富积,后期释放的特征,P、Ca元素在阔叶林地的分解中也有富积过程。而Mg、K元  相似文献   

14.
Experiments are reported on the spatial distributions of isotopiccarbon within the mesophyll of detached leaves of the C3 plantVicia faba L. fed 14CO2 at different light intensities. Eachleaf was isolated in a cuvette and ten artificial stomata providedspatial continuity between the ambient atmosphere (0.03–0.05%v/v CO2) and the mesophyll from the abaxial leaf side. Paradermalleaf layers exhibited spatial profiles of radioactivity whichvaried with the intensity of incident light in 2 min exposures.At low light, when biochemical kinetics should limit CO2 uptake,sections through palisade cells contained most radioactivity.As the light intensity was increased to approximately 20% offull sunlight, peak radioactivity was observed in the spongycells near the geometric mid-plane of the mesophyll. The resultsindicate that diffusion of carbon dioxide within the mesophyllregulated the relative photosynthetic activity of the palisadeand spongy cells at incident photosynthetically active lightintensities as little as 110 µE m–2 s–1 whenCO2 entered only through the lower leaf surface. Key words: CO2 capture sites, Vicia faba L., Artificial stomata  相似文献   

15.
Nitrogen-fixing microbial populations in a Douglas fir forest on the western slope of the Oregon Cascade Mountain Range were analyzed. The complexity of the nifH gene pool (nifH is the marker gene which encodes nitrogenase reductase) was assessed by performing nested PCR with bulk DNA extracted from plant litter and soil. The restriction fragment length polymorphisms (RFLPs) of PCR products obtained from litter were reproducibly different than the RFLPs of PCR products obtained from the underlying soil. The characteristic differences were found during the entire sampling period between May and September. RFLP analyses of cloned nifH PCR products also revealed characteristic patterns for each sample type. Among 42 nifH clones obtained from a forest litter library nine different RFLP patterns were found, and among 64 nifH clones obtained from forest soil libraries 13 different patterns were found. Only two of the patterns were found in both the litter and the soil, indicating that there were major differences between the nitrogen-fixing microbial populations. A sequence analysis of clones representing the 20 distinct patterns revealed that 19 of the patterns had a proteobacterial origin. All of the nifH sequences obtained from the Douglas fir forest litter localized in a distinct phylogenetic cluster characterized by the nifH sequences of members of the genera Rhizobium, Sinorhizobium, and Azospirillum. The nifH sequences obtained from soil were found in two additional clusters, one characterized by sequences of members of the genera Bradyrhizobium, Azorhizobium, Herbaspirillum, and Thiobacillus and the other, represented by a single nifH clone, located between the gram-positive bacteria and the cyanobacteria. Our results revealed the distinctness of the nitrogen-fixing microbial populations in litter and soil in a Douglas fir forest; the differences may be related to special requirements for degradation and mineralization processes in the plant litter.  相似文献   

16.
Naramoto  M.  Han  Q.  Kakubari  Y. 《Photosynthetica》2001,39(4):545-552
Photosynthetic induction responses to a sudden increase in photosynthetic photon flux density (PPFD) from lower background PPFD (0, 25, 50, and 100 mol m–2 s–1) to 1 000 mol m–2 s–1 were measured in leaves of Fagus crenata, Acer rufinerve Siebold & Zucc., and Viburnum furcatum growing in a gap and understory of a F. crenata forest in the Naeba mountains. In the gap, A. rufinerve exhibited more than 1.2-fold higher maximum net photosynthetic rate (P Nmax) than F. crenata and V. furcatum. Meanwhile, in the understory F. crenata exhibited the highest P Nmax among the three species. The photosynthetic induction period required to reach P Nmax was 3–41 min. The photosynthetic responses to increase in PPFD depended on the background PPFD before increase in PPFD. The induction period required to reach P Nmax was 2.5–6.5-fold longer when PPFD increased from darkness than when PPFD increased from 100 mol m–2 s–1. The induction period was correlated with initial P N and stomatal conductance (g s) relative to maximum values before increase in PPFD. The relationship was similar between the gap and the understory. As the background PPFD increased, the initial P N and g s increased, indicating that the degrees of biochemical and stomata limitations to dynamic photosynthetic performance decreased. Therefore, photosynthetic induction responses to increase in PPFD became faster with the increasing background PPFD. The differences in time required to reach induction between species, as well as between gap and understory, were mainly due to the varying of relative initial induction states in P N and g s at the same background PPFD.  相似文献   

17.
The senescence of excised leaves of Oryza saliva L. cv. BAM11 was studied by monitoring the breakdown of chlorophyll andprotein. ABA at 10–6 M retarded senescence until the 3rdday and accelerated it in a normal way until the 9th day inlight. The effect of ABA was light-dependent, which is beingreported for the first time in rice. ABA in the presence oflight (26.3 Klux) delayed protein breakdown but could not preventthe yellowing effect. (Received June 18, 1982; Accepted January 28, 1983)  相似文献   

18.
19.
研究了水稻 (OryzasativaL .)幼苗叶片生长过程中叶绿素荧光和类胡萝卜素各组分含量的变化以及它们对高光胁迫的响应。结果表明 :随着叶片的衰老 ,光合速率、类胡萝卜素不同组分及总的类胡萝卜素含量和叶黄素循环库下降 ;不同叶龄的叶片经高光胁迫后 ,第 5叶 (成熟叶 )qN增加的幅度比第 6叶 (幼嫩叶 )和老叶 (第 3和 4叶 )大 ;与高光胁迫前相比 ,第 3、4、5和 6叶光系统Ⅱ激发压 (1-qP)分别增加了 4 4 %、5 7%、19%和 4 5 % ;第 5叶具有高胡萝卜素含量和高紫黄质到玉米黄质的转化 ,这与其呈现较强的抗高光胁迫相一致。水稻叶片抵御光抑制的能力与类胡萝卜素水平和类胡萝卜素的生物合成能力以及叶片所处的生长时期相关。  相似文献   

20.
研究了水稻(Oryza sativa L.)幼苗叶片生长过程中叶绿素荧光和类胡萝卜素各组分含量的变化以及它们对高光胁迫的响应.结果表明:随着叶片的衰老,光合速率、类胡萝卜素不同组分及总的类胡萝卜素含量和叶黄素循环库下降;不同叶龄的叶片经高光胁迫后,第5叶(成熟叶)qN增加的幅度比第6叶(幼嫩叶)和老叶(第3和4叶)大;与高光胁迫前相比,第3、4、5和6叶光系统Ⅱ激发压(1-qP)分别增加了44%、57%、19%和45%;第5叶具有高胡萝卜素含量和高紫黄质到玉米黄质的转化,这与其呈现较强的抗高光胁迫相一致.水稻叶片抵御光抑制的能力与类胡萝卜素水平和类胡萝卜素的生物合成能力以及叶片所处的生长时期相关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号