首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Summary Bromide uptake was measured in single maturing erythroblastic cells of rabbits by means of X-ray microanalysis. Increase in bromide uptake as the cells matured was observed. The order of cells from low to high bromide uptake was: early erythroblast相似文献   

2.
Summary Rubidium uptake was measured in single erythroid and myeloid cells of rabbit by means of X-ray microanalysis. It was found in the nucleated bone marrow cells that after incubation in rubidium the sums of potassium and rubidium concentrations were similar to the original potassium concentrations, indicating that there was one-to-one replacement of potassium by rubidium. Although the nuclear potassium and rubidium concentrations were higher than those in the cytoplasm, the nuclear and cytoplasmic ratios of K/Rb were similar. This implies that the potassium in both compartments exchanged freely with rubidium. In the erythroid line of cells there was a continuous reduction of potassium transport activity during the maturation process as indicated by the decrease in rubidium uptake rates. The uptake was measured in seven groups of cell types that could be distinguished on the basis of morphology and chemical composition. The order of the groups from high to low rubidium uptake were: esosinophilic myelocyte > early erythroblast and thinrimmed erythroblast > late erythroblast > early bone marrow red cell > late bone marrow red cell > peripheral blood red cell. Thus, there is a continuous decrease in rubidium transport as the erythroid cells mature.  相似文献   

3.
The ultrastructure of mesophyll chloroplasts of maize (Zea mays L.) was more severely affected by iron deficiency that induced mild chlorosis than was the ultrastructure of bundle sheath plastids. Ferredoxin and ribulose diphosphate carboxylase levels were severely decreased by iron deficiency. Malic enzyme was less affected, and phosphoenolpyruvate carboxylase activity remained high even under severe iron deficiency. Iron deficient leaves fixed carbon into malic and aspartic acids but the rate of entrance of carbon into the sugar phosphates and sucrose was greatly reduced compared to the control. Chlorophyll a/b ratios ranged from low values of less than 2 in severely iron deficient leaves to high values exceeding 4 in leaves showing little iron deficiency.  相似文献   

4.
Avian vitellogenin has been studied as an iron carrier for hemoglobin synthesis by reticulocytes. The Fe-vitellogenin uptake by the immature red cells is progressive with time, following an unspecific iron uptake process. The iron uptake from Fe-vitellogenin was in proportion to the immature red cells present and the radioactive iron was found in the hemoglobin synthesized by these cells. These results open up the possibility of assigning a secondary role to the Fe-vitellogenin in the avian erythropoiesis, added to the classical iron transport function for egg production.  相似文献   

5.
The sensitivity of endothelial cells to oxidative stress and the high concentrations of iron in mitochondria led us to test the hypotheses that (1) changes in respiratory capacity alter iron homeostasis, and (2) lack of aerobic metabolism decreases labile iron stores and attenuates oxidative stress. Two respiration-deficient (rho(o)) endothelial cell lines with selective deletion of mitochondrial DNA (mtDNA) were created by exposing a parent endothelial cell line (EA) to ethidium bromide. Surviving cells were cloned and mtDNA-deficient cell lines were demonstrated to have diminished oxygen consumption. Total cellular and mitochondrial iron levels were measured, and iron uptake and compartmentalization were measured by inductively coupled plasma atomic emission spectroscopy. Iron transport and storage protein expression were analyzed by real-time polymerase chain reaction and Western blot or ELISA, and total and mitochondrial reactive oxygen species (ROS) generation was measured. Mitochondrial iron content was the same in all three cell lines, but both rho(o) lines had lower iron uptake and total cellular iron. Protein and mRNA expressions of major cytosolic iron transport constituents were down-regulated in rho(o) cells, including transferrin receptor, divalent metal transporter-1 (-IRE isoform), and ferritin. The mitochondrial iron-handling protein, frataxin, was also decreased in respiration-deficient cells. The rho(o) cell lines generated less mitochondrial ROS but released more extracellular H(2)O(2), and demonstrated significantly lower levels of lipid aldehyde formation than control cells. In summary, rho(o) cells with a minimal aerobic capacity had decreased iron uptake and storage. This work demonstrates that mitochondria regulate iron homeostasis in endothelial cells.  相似文献   

6.
Hepatocellular carcinoma cells of the PLC/PRF/5 cell line had 1.9 x 10(5) transferrin receptors per tumor cell with a Kd of 1.5 x 10(-8) M. At high concentrations of transferrin the binding was not saturable. Transferrin internalization by hepatoma cells was shown by time and temperature-dependent binding studies and by pronase experiments. Transferrin recycling was confirmed by the demonstration of a progressive increase in the cellular molar ratios of iron to transferrin and by chase experiments. Ammonium chloride interfered with iron unloading. The vinca alkaloid vincristine inhibited iron and transferrin uptake. The hepatocarcinoma cells appeared to lack asialoglycoprotein receptors and therefore internalized partially desialated transferrin by the regular route. Iron uptake from transferrin was markedly inhibited by the hydrophobic ferrous chelator 2,2' bipyridine but was relatively unaffected by the hydrophilic ferric chelator desferroxamine. The implication that ferrous iron was involved in postendocytic transvesicular membrane iron transport was supported by a study in which hepatoma cells were shown to take up large amounts of ferrous iron suspended in 270 mM sucrose at pH 5.5. The interaction at this pH between surface labeled hepatoma cell extracts and ferrous iron on a Sephacryl S-300 column suggested that the postendocytic transvesicular transport of iron through the membrane was in part protein mediated. The endocytosed iron in hepatoma cells was found in association with ferritin (33%), transferrin (31%) and a low molecular weight fraction (21%).  相似文献   

7.
The effects of low levels of glutaraldehyde uptake (less than 120 mumol/10(10) cells) on the physicochemical properties of human red blood cells (RBC) were investigated. Salient effects include: by different measures of cell deformability, the extent of glutaraldehyde uptake required to decrease cellular deformability was shown to range from approximately 8 to 30 mumol/10(10) cells; osmotically stressed red cells exhibit complete hemolysis when the level of glutaraldehyde uptake is less than 28 mumol/10(10) cells and no hemolysis when uptake is less than 70 mumol/10(10) cells with the extent of hemolysis decreasing in an approximately linear manner with glutaraldehyde uptake between these limits; glutaraldehyde uptake of up to 58 mumol/10(10) cells does not change the cells' density, mean cell volume or ability to retain potassium.  相似文献   

8.
Iron-binding proteins were localized by their saturation with iron using iron nitrilotriacetate (FeNTA), maintenance of protein-iron-binding at specific values of pH, and visualization of the iron with acid ferrocyanide (AF). Human neutrophilic cells showed strong blue granular and diffuse cytoplasmic staining. Human mid- and late-stage erythroblasts showed moderate diffuse cytoplasmic staining. Monocytes and macrophages showed reactions similar to those seen with AF technique alone. Other hematopoietic cells showed minimal or no stain positivity. Nuclear positivity was not observed in any cells. Concanavalin A (ConA) treatment of purified neutrophils reduced their FeNTA-AF positivity; supernatants from these cells showed precipitin lines of identity with anti-lactoferrin (Lf) stainable with FeNTA and AF. Cellulose acetate electrophoresis of crude neutrophil extracts treated with [59Fe]NTA showed multiple protein bands; one band co-migrated with purified Lf and showed autoradiographic positivity. Rabbit heterophils and rat neutrophils showed less FeNTA-AF positivity, consistent with less Lf in these cells than in human neutrophils. Washing smears with 0.1 M citrate, pH 6.0, between FeNTA and AF treatments eliminated only erythroblast positivity; 0.1 M citrate, pH 4.0, ablated neutrophil staining as well. Ferritin-hemosiderin staining was preserved at both values of pH. These results indicate that FeNTA-AF technique specifically visualizes neutrophil Lf, and suggest that the observed erythroblast positivity is due to transferrin (Tf).  相似文献   

9.
D A Ross  R W Yen  C B Chae 《Biochemistry》1982,21(4):764-771
Nuclear matrix was prepared from both erythroblasts and erythrocytes of chicken red blood cells. Greater than 90% of the globin nuclear RNA remains bound to the erythroblast nuclear matrix. There are approximately 1000 copies of globin RNA in the nucleus per cell, and most of these contain a poly(A) tail. Precursor beta globin RNA exists in four high molecular weight forms, some of which are larger than the natural beta globin gene. Most of the ribosomal RNA is lost during the preparation of an erythroblast nuclear matrix. In contrast, some of the snRNAs are specifically enriched in the erythroblast nuclear matrix. There is little or no globin nuclear RNA in the erythrocyte nuclear matrix. There appears to be no selective attachment of the globin genes to the erythroblast nuclear matrix. The nuclear matrix is postulated to be a platform for the differential processing of nuclear RNA.  相似文献   

10.
Iron transport across polarized intestinal epithelium was studied by using Caco-2 cells grown in bicameral chambers. When cells were grown under conditions of low, normal, or high iron concentration not only was the iron content of the cells markedly altered but the low iron cells exhibited a nearly 2-fold increase in transepithelial electrical resistance (TEER). 59Fe uptake from the apical surface into cells and transport into the basal chamber was affected both by the valency of the iron and the iron status of the cells. Uptake from 59Fe(II)-ascorbate was about 600 pmol 59Fe/h per mg protein, increased about 2-fold in low iron cells, and was about 13-200-fold greater than uptakes from 59Fe(III) chelated to nitrilotriacetic acid, BSA, or citrate. Transport into the basal chamber from 59Fe(II)-ascorbate was 3.7 +/- 1.7 pmol/h per cm2 for Fe-deficient cells vs. 0.72 +/- 0.1 pmol/h per cm2 for normal-Fe cells and from 59Fe(III)-BSA 1.1 +/- 0.2 pmol/h per cm2 vs. 0.3 +/- 0.03 pmol/h per cm2 for deficient vs. normal iron cells, respectively. The greater transport of iron both from Fe(II) and in iron deficient cells supports the use of the Caco-2 cells as a model for iron transport.  相似文献   

11.
Cultured rat hepatoma cells (HTC-cells) were used to study the uptake of copper and zinc from a minimal salt-glucose medium, supplemented with albumin from different species or with ovalbumin. Competitive equilibrium dialysis showed that at low molar ratios of metal/protein (less than 1) the affinity for copper of human and bovine albumin was about equal, but that of dog albumin or ovalbumin was much lower. Only a small difference in affinity for zinc could be detected between human albumin and ovalbumin. Supplementing the medium with the different proteins the rate of copper uptake in the cell at a given molar Cu/protein ratio increased as follows: human albumin congruent to bovine albumin less than dog albumin less than ovalbumin. When the molar Cu/protein ratio was increased, a discontinuity was seen with all three albumin species at a ratio of about 1. In contrast, the zinc uptake mimics that of Cu/ovalbumin, and no discontinuity was observed using different molar Zn/protein ratios. These results indicate that the rate of copper and zinc uptake depends strongly on its affinity for the protein: a low affinity leads to a high uptake. The results suggest further that at physiologic concentrations zinc is taken up by a mechanism different from that for copper.  相似文献   

12.
The mechanism of iron uptake from transferrin by the rat placenta in culture has been studied. Transferrin endocytosis preceded iron accumulation by the cells. Both transferrin internalisation and iron uptake were inhibited by low temperature. Transferrin endocytosis was less susceptible to the effects of metabolic inhibitors such as sodium fluoroacetate, potassium cyanide, 2,4, dinitrophenol or carbonylcyanide M-chlorophenyl hydrazone (CCCP) than was iron uptake. Iron accumulation was decreased if the cells were incubated in the presence of weak bases such as chloroquine or ammonium chloride. These results suggest that, following internalisation, the vesicles containing the transferrin and iron became acidified, and that this acidification was a necessary prerequisite for the accumulation of iron by the cell. Further, the results indicate that the intravesicular pH was maintained at the expense of metabolic energy, suggesting that a pump may be involved. The importance of the permeability properties of the vesicle membrane in the iron uptake process was investigated by incubating the cells with labelled transferrin and iron in the presence of different cation and anion ionophores. Irrespective of the normal cation that the ionophores carried, all inhibited iron uptake without altering transferrin levels. In contrast, phloridzin, a Cl- transport inhibitor, did not affect either the levels of transferrin within the cells or the amount of iron accumulated.  相似文献   

13.
The change from high potassium dog erythroid cells to low potassium red blood cells during erythropoiesis was investigated by X-ray microanalysis of single cells. A correlation of morphology and composition, using freeze-dried cryosectioned preparations, showed that during normal erythropoiesis in dog bone marrow the switch from high potassium to low potassium occurs during the change from early to late nucleated erythroid cells, and in synchrony with the beginning of iron accumulation. In contrast, during rapid erythropoiesis in dogs with phenylhydrazine-induced anemia, the most prominent change in cation composition as well as the accumulation of iron occurs during the reticulocyte stage in the peripheral blood. The determination of the absolute amounts of sodium and potassium per cell in stress reticulocytes of peripheral blood indicated that the changeover from high potassium to low potassium actually occurs by the loss of cellular potassium during volume reduction, with little change in the amount of cellular sodium. This suggests that maturation may involve a selective change in potassium permeability. Lastly, it was observed that not all cells followed the predominant pathway with respect to change in morphology, membrane permeability and hemoglobin synthesis. One particular subpopulation appeared to follow a sequence which expressed the complete HK to LK transition before the accumulation of any iron; this implies the possibility of completing protein synthesis in a low potassium intracellular milieu.  相似文献   

14.
The effect of pH on the binding of apotransferrin and diferric transferrin to reticulocyte membrane receptors was investigated using rabbit transferrin and rabbit reticulocyte ghosts, intact cells and a detergent-solubilized extract of reticulocyte membranes. The studies were performed within the pH range 4.5–8.0. The binding of apotransferrin to ghosts and membrane extracts and its uptake by intact reticulocytes was high at pH levels below 6.5 but decreased to very low values as the pH was raised above 6.5. By contrast, diferric transferrin showed a high level of binding and uptake between pH 7.0 and 8.0 in addition to binding only slightly less than did apotransferrin at pH values below 6.5. It is proposed that the high affinity of apotransferrin for its receptor at lower pH values and low affinity at pH 7.0 or above allow transferrin to remain bound to the receptor when it is within acidic intracellular vesicles, even after loss of its iron, but also allow ready release from the cell membrane when it is exteriorized by exocytosis after iron uptake. The binding of transferrin to the receptor throughout the endocytosis-exocytosis cycle may protect it from proteolytic breakdown and aid in its recycling to the outer cell membrane  相似文献   

15.
The iron-storage protein ferritin consists of a protein shell and has an iron content of up to 4500 iron atoms as a microcrystalline ferric oxide hydrate. A study was made of the uptake of ferrous iron by apoferritin in the presence of an oxidizing agent at very low iron:protein ratios. At ratios of less than about 150 iron atoms per apoferritin molecule hyperbolic progress curves were obtained, whereas at higher ratios the curves became sigmoidal under the conditions used. A computer model, developed previously (Macara et al., 1972), was shown to account for this result. The experimental evidence indicates that apoferritin binds ferrous iron and catalyses the initial stage in the formation of the ferric oxide hydrate inside the protein shell. This stage involves the oxidation of sufficient iron within the protein molecule to form a stable nucleus on which the growth of the microcrystalline iron-core particles can proceed. A possible schematic mechanism for the action of apoferritin is suggested.  相似文献   

16.
The release of iron by Sertoli cells in culture   总被引:1,自引:0,他引:1  
In seminiferous tubules, iron transport from the blood to the abluminal germinal cells must occur through the Sertoli cell cytoplasm. We investigated the release of previously accumulated iron by cultured Sertoli cells. We found that Sertoli cells contain easily releasable and less easily releasable iron pools. Iron is released in a low molecular weight form (molecular weight less than 30,000). A high concentration of this low molecular weight iron in the medium reduces further iron release by Sertoli cells, whereas the addition of more medium or fresh medium increases further iron release. Apotransferrin stimulates the release of iron in a dose-dependent manner by chelating the low molecular weight iron. Rat and human apotransferrin are completely competitive in this respect. Diethylenetriamine penta acetic acid (DTPA), an extracellular iron chelator, and apotransferrin compete for iron binding and stimulation of iron release, indicating that no binding or uptake of the chelator by the cells is required. Desferrioxamine (DFO), an intracellular iron chelator, on the other hand, increases iron release more drastically, and apotransferrin cannot compete with it for iron. The addition of extracellular iron also increases the amount of 59Fe in the medium, probably by reducing the re-uptake of 59Fe. This is also demonstrated with primaquine, which blocks endocytosis and increases the amount of 59Fe in the medium. The presence of germinal cells also stimulates the release of iron by Sertoli cells. When cocultured, the germinal cells internalize iron as it is release by Sertoli cells.  相似文献   

17.
A monoclonal antibody to the chicken transferrin receptor (JS-8) blocked temperature-induced and spontaneous differentiation of avian erythroid cells transformed by ts- and wt-retroviral oncogenes. In cells committed to differentiate, JS-8 caused an arrest at the erythroblast or early reticulocyte stage, followed by premature cell death, whereas proliferation of noncommitted erythroid cells or other hematopoietic cells remained unaffected. JS-8 had no effect on transferrin binding or internalization, but blocked subsequent receptor-recycling resulting in reduced iron uptake. Restoration of high intracellular iron levels neutralized the action of JS-8, whereas an inhibitor of porphyrine biosynthesis (4,6-dioxoheptanoic acid) closely mimicked the effect of JS-8. This suggests that erythroid differentiation might involve coordinate synthesis of erythrocyte proteins subject to regulation by hemin or hemoglobin.  相似文献   

18.
The uptake of iron from transferrin by isolated rat hepatocytes and rat reticulocytes has been compared. The results show the following. 1) Reticulocytes and hepatocytes express plasma membrane NADH:ferricyanide oxidoreductase activity. The activity, expressed per 10(6) cells, is approximately 60-fold higher in the hepatocyte than in the reticulocyte. 2) Hepatocyte plasma membrane NADH:ferricyanide oxidoreductase activity and uptake of iron from transferrin are stimulated by low oxygen concentration and inhibited by iodoacetate. In reticulocytes, similar changes are seen in NADH:ferricyanide oxidoreductase activity, but not on iron uptake. 3) Ferricyanide inhibits the uptake of iron from transferrin by hepatocytes, but has no effect on iron uptake by reticulocytes. 4) Perturbants of endocytosis and endosomal acidification have no inhibitory effect on hepatocyte iron uptake, but inhibit reticulocyte iron uptake. 5) Hydrophilic iron chelators effectively inhibit hepatocyte iron uptake, but have no effect on reticulocyte iron uptake. Hydrophobic iron chelators generally inhibit both hepatocyte and reticulocyte iron uptake. 6) Divalent metal cations with ionic radii similar to or less than the ferrous iron ion are effective inhibitors of hepatocyte iron uptake with no effect on reticulocyte iron uptake. The results are compatible with hepatocyte uptake of iron from transferrin by a reductive process at the cell surface and reticulocyte iron uptake by receptor-mediated endocytosis.  相似文献   

19.
Sealed, inside-out human red cell membrane vesicles, prepared by a modified method of Steck (Steck T.L. (1974) in Methods in Membrane Biology (Korn, E.D., ed.), Vol 2, pp. 245–281, Plenum Press, New York), accomplish an ATP and Mg2+-dependent uphill calcium uptake with a reproducible maximum rate of 12–15 nmol/mg vesicle protein per min under physiological conditions. This maximum rate is increased by about 60–70% in the presence of a heatstable cytoplasmic activator protein (calmodulin) obtained from red cells. Calcium efflux from inside-out vesicles is smaller than 0.01 nmol/mg vesicle protein per min at intravesicular calcium concentrations between 0.1 and 20.0 mM.In the presence of Mg2+, active calcium uptake is supported by ATP, ITP, or UTP, but not by ADP, AMP, or p-nitrophenyl phosphate. The optimum pH for the process is 7.4–7.6, and the activation energy is 19–20 kcal/mol, irrespective of the presence or absence of calmodulin. Calcium uptake in inside-out vesicles is unaffected by ouabain or oligomycin, but blocked by low concentrations of lanthanum, ruthenium red, quercetin and phloretin. K+ and Na+, when compared to choline+ or Li+, significantly increase active calcium uptake. This stimulation by K+ and Na+ is independent of that by calmodulin.Concentrated red cell cytoplasm activates calcium uptake at low soluble protein:membrane protein ratios, while a ‘deactivation’ of the transport occurs at high cytoplasm: membrane protein ratios. A heat-labile cytoplasmic protein fraction antagonizing calmodulin activation, can be separated by DEAE-Sephadex chromatography. Based on these findings the regulation of active calcium transport in human red cells is discussed.  相似文献   

20.
Chloride self-exchange was determined by measuring the rate of 36Cl efflux from human red blood cells at pH 7.2 (0 degrees C) in the presence of fluoride, bromide, iodide, and bicarbonate. The chloride concentration was varied between 10--400 mM and the concentration of other halides and bicarbonate between 10--300 mM. Chloride equilibrium flux showed saturation kinetics. The half-saturation constant increased and the maximum flux decreased in the presence of halides and bicarbonate: the inhibition kinetics were both competitive and noncompetitive. The competitive and the noncompetitive effects increased proportionately in the sequence: fluoride less than bromide less than iodide. The inhibitory action of bicarbonate was predominantly competitive. The noncompetitive effect of chloride (chloride self-inhibition) on chloride transport was less dominant at high inhibitor concentrations. Similarly, the noncompetitive action of the inhibitors was less dominant at high chloride concentrations. The results can be described by a carrier model with two anion binding sites: a transport site, and a second site which modifies the maximum transport rate. Binding to both types of sites increases proportionately in the sequence: fluoride less than chloride less than bromide less than iodide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号