共查询到2条相似文献,搜索用时 0 毫秒
1.
Elizabeth Knyihár-Csillik P. Rakic Prof. B. Csillik MD PhD ScD 《Cell and tissue research》1987,247(3):599-604
Summary The effect of sciatic nerve transection on its centrally located terminals in the spinal cord was analyzed by electron microscopy in adult rhesus monkeys one and three months following lesion. Although the peripheral and intermediate portions of the dorsal roots, where the axons are enveloped by Schwann cells were normal, their central portion and their terminals in the substantia gelatinosa were remarkably altered. Transganglionic degenerative atrophy (TDA) is characterized by three distinct types of electronmicroscopic alterations. The first type exhibits a conspicuous electron density of the terminal and pre-terminal axoplasm. Importantly, shrinkage replaces fragmentation and glial engulfement of the terminal seen in the course of Wallerian degeneration. The second type is characterized by the disappearance of synaptic vesicles from the terminals. The third type of TDA consists of intricate labyrinthine structures, composed of flattened profiles of axonal, dendritic and glial elements. The complex and diverse cellular changes that occur in the upper dorsal horn following peripheral nerve injury may provide the structural basis of plasticity of the primary nociceptive system. 相似文献
2.
Elizabeth Knyihár-Csillik Pasko Rakic Prof. Bert Csillik M.D. Ph.D. Sc.D. 《Cell and tissue research》1985,239(3):633-641
Summary Following transganglionic degenerative atrophy of primary afferent terminals induced by a crush-injury of the sciatic nerve, a regenerative process takes places in the upper dorsal horn of the lumbar spinal cord in the primate Macacus rhesus. Axonal growth cones are characterized by cisterns of axoplasmic reticulum; filopodia emanating from growth cones are electron-optically translucent sheet-like expansions, often containing growth-cone vesicles. Axoplasmic reticulum appears also in preterminal portions of regenerating axons. Dendritic growth cones contain a fine, filamentous matrix; electron-dense membrane specializations can be seen in well-defined areas of their surfaces. Immature synapses are formed between filopodia of axonal growth cones and dendritic growth cones. Electron-microscopic structures of this unique CNS regeneration are similar to those seen in the course of embryonic development of the spinal cord. 相似文献