首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
B A Wolf  S M Pasquale  J Turk 《Biochemistry》1991,30(26):6372-6379
Free fatty acids in isolated pancreatic islets have been quantified by gas chromatography-mass spectrometry after stimulation with insulin secretagogues. The fuel secretagogue D-glucose has been found to induce little change in islet palmitate levels but does induce the accumulation of sufficient unesterified arachidonate by mass to achieve an increment in cellular levels of 38-75 microM. Little of this free arachidonate is released into the perifusion medium, and most remains associated with the islets. Glucose-induced hydrolysis of arachidonate from islet cell phospholipids is reflected by release of the arachidonate metabolite prostaglandin E2 (PGE2) from perifused islets. Both the depolarizing insulin secretagogue tolbutamide (which is thought to act by inducing closure of beta-cell ATP-sensitive K+ channels and the influx of extracellular Ca2+ through voltage-dependent channels) and the calcium ionophore A23187 have also been found to induce free arachidonate accumulation within and PGE2 release from islets. Surprisingly, a major fraction of glucose-induced eicosanoid release was found not to require Ca2+ influx and occurred even in Ca(2+)-free medium, in the presence of the Ca(2+)-chelating agent EGTA, and in the presence of the Ca2+ channel blockers verapamil and nifedipine. Exogenous arachidonic acid was found to amplify the insulin secretory response of perifused islets to submaximally depolarizing concentrations of KCl, and the maximally effective concentration of arachidonate was 30-40 microM. These observations suggest that glucose-induced phospholipid hydrolysis and free arachidonate accumulation in pancreatic islets are not simply epiphenomena associated with Ca2+ influx and that arachidonate accumulation may play a role in the signaling process which leads to insulin secretion.  相似文献   

2.
D-fructose (10 mM) augments, in rat pancreatic islets, insulin release evoked by 10 mM D-glucose. Even in the absence of D-glucose, D-fructose (100 mM) displays a positive insulinotropic action. It was now examined whether the insulinotropic action of D-fructose could be attributed to an increase in the ATP content of islet cells. After 30-60 min incubation in the presence of D-glucose and/or D-fructose, the ATP and ADP content was measured by bioluminescence in either rat isolated pancreatic islets (total ATP and ADP) or the supernatant of dispersed rat pancreatic islet cells exposed for 30 s to digitonine (cytosolic ATP and ADP). D-fructose (10 and 100 mM) was found to cause a concentration-related decrease in the total ATP and ADP content and ATP/ADP ratio below the basal values found in islets deprived of exogenous nutrient. Moreover, in the presence of 10 mM D-glucose, which augmented both the total ATP content and ATP/ADP ratio above basal value, D-fructose (10 mM) also lowered these two parameters. The cytosolic ATP/ADP ratio, however, was increased in the presence of D-glucose and/or D-fructose. Under the present experimental conditions, a sigmoidal relationship was found between such a cytosolic ATP/ADP ratio and either (86)Rb net uptake by dispersed islet cells or insulin release from isolated islets. These data provide, to our knowledge, the first example of a dramatic dissociation between changes in total ATP content or ATP/ADP ratio and insulin release in pancreatic islets exposed to a nutrient secretagogue. Nevertheless, the cationic and insulinotropic actions of d-glucose and/or d-fructose were tightly related to the cytosolic ATP/ADP ratio.  相似文献   

3.
Endogenous ATP is thought to play a key regulatory role in nutrient-stimulated insulin release. The present study deals with the effect of exogenous ATP and its stable analog alpha, beta-methylene ATP upon pancreatic islet function. Both alpha, beta-methylene ATP (5.0 microM to 0.2 mM) and ATP (0.3-3.0 mM) caused a rapid and concentration-related increase in insulin output by rat islets incubated or perfused at an intermediate concentration of D-glucose (8.3 mM). The effect of the ATP analog faded out at both lower and higher D-glucose concentrations. In the presence of 8.3 mM D-glucose, ATP also increased both 86Rb and 45Ca outflow from prelabelled islets. The cationic response to ATP persisted in the absence of extracellular Ca2+ and, hence, was reminiscent of that evoked by cholinergic agents. Like carbamylcholine, ATP caused a dose-related increase in the production of [3H]inositol phosphates from prelabelled islets or tumoral islet cells (RINm5F line). The latter effect was duplicated by alpha, beta-methylene ATP and unaffected by atropine. It is speculated that ATP, liberated together with insulin at the exocytotic site, might participate in a positive feedback control of insulin release.  相似文献   

4.
Our previous work has demonstrated that islet depolarization with KCl opens connexin36 hemichannels in β-cells of mouse pancreatic islets allowing the exchange of small metabolites with the extracellular medium. In this study, the opening of these hemichannels has been further characterized in rat islets and INS–1 cells. Taking advantage of hemicannels’opening, the uptake of extracellular ATP and its effect on insulin release were investigated. 70 mM KCl stimulated light emission by luciferin in dispersed rat islets cells transduced with the fire-fly luciferase gene: it was suppressed by 20 mM glucose and 50 μM mefloquine, a specific connexin36 inhibitor. Extracellular ATP was taken up or released by islets depolarized with 70 mM KCl at 5 mM glucose, depending on the external ATP concentration. 1 mM ATP restored the loss of ATP induced by the depolarization itself. ATP concentrations above 5 mM increased islet ATP content and the ATP/ADP ratio. No ATP uptake occurred in non-depolarized or KCl-depolarized islets simultaneously incubated with 50 μM mefloquine or 20 mM glucose. Extracellular ATP potentiated the secretory response induced by 70 mM KCl at 5 mM glucose in perifused rat islets: 5 mM ATP triggered a second phase of insulin release after the initial peak triggered by KCl-depolarization itself; at 10 mM, it increased both the initial, KCl-dependent, peak and stimulated a greater second phase of secretion than at 5 mM. These stimulatory effects of extracellular ATP were almost completely suppressed by 50 μM mefloquine. The magnitude of the second phase of insulin release due to 5 mM extracellular ATP was decreased by addition of 5 mM ADP (extracellular ATP/ADP ratio = 1). ATP acts independently of KATP channels closure and its intracellular concentration and its ATP/ADP ratio seems to regulate the magnitude of both the first (triggering) and second (amplifying) phases of glucose-induced insulin secretion.  相似文献   

5.
The interaction between Ba2+, furosemide and D-glucose on 86Rb+ fluxes in ob/ob mouse islets was investigated. Ba2+ (2 mM) significantly reduced the ouabain-resistant 86Rb+ influx, without affecting the ouabain-sensitive influx. D-Glucose (20 mM) reduced the 86Rb+ influx in the absence of Ba2+ (2 mM) but not in the presence of the cation. Furosemide, an inhibitor of Na+, K+, Cl- co-transport, reduced the 86Rb+ influx and the effect was partly additive to the effect of 2 mM Ba2+. When the islets were preincubated with Ba2+ (2 mM) the specific effect of 1 mM furosemide on the 86Rb+ influx was reduced, whereas, in acute experiments, Ba2+ (2 mM) did not affect the specific effect of furosemide on 86Rb+ influx. 86Rb+ efflux from preloaded islets was significantly reduced by 2 mM Ba2+ and during the first 5 min of ion efflux the effect of the combination of 2 mM Ba2+ and 1 mM furosemide was stronger than the effect of Ba2+ alone. The data show that Ba2+ reduces 86Rb+ fluxes in the beta-cells and suggest that this is mainly mediated by inhibition of K+ channels in the beta-cell plasma membrane. Long-term exposure to Ba2+ may also reduce the activity of the Na+, K+, Cl- co-transport system. The effect of Ba2+ on K+ channels may help to explain the stimulatory effect on insulin release in the absence of nutrient secretagogues.  相似文献   

6.
In pancreatic islets prepared from fed rats and incubated at a low concentration (1.7 mM) of D-glucose, D-mannoheptulose (10.0 mM) virtually fails to affect the metabolism of the hexose. Likewise, in islets from starved rats, the relative extent of the inhibitory action of D-mannoheptulose upon D-glucose metabolism is much more marked at high (16.7 mM) than low (1.7 mM) hexose concentration. Nevertheless, despite decreasing the metabolism of D-glucose, starvation augments the sensitivity to D-mannoheptulose in the islets incubated at a low concentration of the hexose, D-galactose, but not D-fructose, also augments the inhibitory action of D-mannoheptulose upon D-glucose metabolism in islets prepared from fed rats and exposed to the low concentration of D-glucose. A comparable situation prevails in islets exposed to 2-ketoisocaproate. Forskolin, however, which decreases D-glucose catabolism in the islets from fed rats exposed to 1.7 mM D-glucose, fails to affect significantly the inhibitory action of D-mannoheptulose on D-glucose metabolism. It is proposed that hexoses transported by the same carrier as D-glucose and non-glucidic nutrient secretagogues somehow increase D-mannoheptulose uptake by the islet cells. The latter two conditions may be operative in islets exposed to a high concentration of D-glucose, this accounting for the exquisite sensitivity to D-mannoheptulose of glucose-stimulated islets.  相似文献   

7.
Isolated pancreatic islets of the rat were either prelabeled with [3H]arachidonic acid, or were incubated over the short term with the concomitant addition of radiolabeled arachidonic acid and a stimulatory concentration of glucose (17mM) for prostaglandin (PG) analysis. In prelabeled islets, radiolabel in 6-keto-PGF1 alpha, PGE2, and 15-keto-13,14-dihydro-PGF2 alpha increased in response to a 5 min glucose (17mM) challenge. In islets not prelabeled with arachidonic acid, label incorporation in 6-keto-PGF1 alpha increased, whereas label in PGE2 decreased during a 5 min glucose stimulation; after 30-45 min of glucose stimulation labeled PGE levels increased compared to control (2.8mM glucose) levels. Enhanced labelling of PGF2 alpha was not detected in glucose-stimulated islets prelabeled or not. Isotope dilution with endogenous arachidonic acid probably occurs early in the stimulus response in islets not prelabeled. D-Galactose (17mM) or 2-deoxyglucose (17mM) did not alter PG production. Indomethacin inhibited islet PG turnover and potentiated glucose-stimulated insulin release. Islets also converted the endoperoxide [3H]PGH2 to 6-keto-PGF1 alpha, PGF2 alpha, PGE2 and PGD2, in a time-dependent manner and in proportions similar to arachidonic acid-derived PGs. In dispersed islet cells, the calcium ionophore ionomycin, but not glucose, enhanced the production of labeled PGs from arachidonic acid. Insulin release paralleled PG production in dispersed cells, however, indomethacin did not inhibit ionomycin-stimulated insulin release, suggesting that PG synthesis was not required for secretion. In confirmation of islet PGI2 turnover indicated by 6-keto-PGF1 alpha production, islet cell PGI2-like products inhibited platelet aggregation induced by ADP. These results suggest that biosynthesis of specific PGs early in the glucose secretion response may play a modulatory role in islet hormone secretion, and that different pools of cellular arachidonic acid may contribute to PG biosynthesis in the microenvironment of the islet.  相似文献   

8.
Our recent findings indicate that glucose-induced insulin secretion from isolated pancreatic islets is temporally associated with accumulation of substantial amounts of free arachidonic acid and that arachidonate may serve as a second messenger for intracellular calcium mobilization in islets. In an effort to determine the source of this released arachidonate, the endogenous fatty acid composition of phospholipids from islets has been determined by thin-layer chromatographic separation of the phospholipids, methanolysis to the fatty acid methyl esters, and quantitative gas chromatographic analyses. The relative abundance of phospholipids in islets as judged by their fatty acid content was phosphatidylcholine (PC), 0.63; phosphatidylethanolamine (PE), 0.23; phosphatidylinositol (PI), 0.067; phosphatidylserine (PS), 0.049. Arachidonate constituted 17% of the total islet fatty acid content, and PC contained 43% of total islet arachidonate. Islets incubated with [3H]arachidonate in the presence of 28 mM D-glucose incorporated radiolabel into PC with a considerably higher specific activity than that of PE, PS or PI. The total fatty acid content of PC from islets incubated with 28 mM glucose for 30 min was significantly lower than that of islets incubated with 3 mM glucose, and smaller effects were observed with PE, PS and PI. The molar decrement in PC arachidonate was 3.2 pmol/islet under these conditions, which is sufficient to account for the previously observed accumulation of free arachidonate (2 pmol/islet). A sensitive method involving negative ion-chemical ionization-mass spectrometric analyses of the pentafluorobenzyl esters of fatty acids derived from trace amounts of lysophosphatidylcholine (lyso-PC) was developed, and glucose-stimulation was found to reduce islet lyso-PC content by about 10-fold. These findings indicate that the insulin secretagogue D-glucose induces phospholipid hydrolysis in islets and suggest that PC may be the major source of free arachidonate which accumulates in glucose-stimulated islets.  相似文献   

9.
The effect of glucose on phosphatidylinositol turnover was studied. Phosphatidylinositol of rat pancreatic islets was labeled with myo[2-3H]inositol in the presence of various secretagogues (16.7 mM D-glucose, 22 mM D-mannose, 20 mM D-glyceraldehyde) and nonsecretagogues (3.3 mM D-glucose, 20 mM pyruvate, 16.7 mM D-galactose, 16.7 mM L-glucose). Upon subsequent stimulation with 16.7 mM D-glucose, only the islets that were labeled in the presence of secretagogues showed a loss of radioactivity from phosphatidylinositol. No loss of radioactivity from phosphatidylinositol occurred in the presence of 3.3 mM D-glucose even after labeling in the presence of secretagogues. A comparison of the subcellular distribution of labeled phosphatidylinositol in islets before and after stimulation with insulinotropic glucose revealed a loss of radioactivity from the plasma membrane fraction as judged by subcellular fractionation with a sucrose gradient. These results support a hypothesis advanced previously that pancreatic islets contain a unique pool of phosphatidylinositol that undergoes rapid turnover only in the presence of insulinotropic concentrations of D-glucose or other secretagogues [R. S. Rana, R. J. Mertz, A. Kowlura, J. F. Dixon, L. E. Hokin, and M. J. MacDonald (1985) J. Biol. Chem. 260, 7861-7867]. On the basis of the subcellular fractionation studies reported here, the secretagogue-responsive phosphatidylinositol pool appears to be located primarily in the plasma membrane of pancreatic islets.  相似文献   

10.
Glucose stimulation of insulin release involves metabolism of the sugar and elevation of cytoplasmic calcium (Ca2+i) in pancreatic B-cells. We compared the dynamic changes of metabolism (fluorescence of endogenous reduced pyridine nucleotides, NAD(P)H), membrane potential (intracellular microelectrodes), and Ca2+i (fura-2 technique), in intact mouse islets. Glucose (15 mM) sequentially triggered an increase in NAD(P)H fluorescence, a depolarization with electrical activity, and a rise in Ca2+i. The change in NAD(P)H was monophasic and regular, whereas the changes in membrane potential and Ca2+i were multiphasic, with steady-state regular oscillations of similar average frequencies (about 2.2/min). Digital image analysis revealed that Ca2+i oscillations were synchronous in all regions of the islets. Omission of extracellular Ca2+ abolished the rise in Ca2+i but not the increase in NAD(P)H. Both electrical and Ca2+i oscillations disappeared in low external Ca2+ (1 mM), and became larger but slower in high Ca2+ (10 mM). Sustained depolarization (by tolbutamide, arginine, or high K+) and hyperpolarization (by diazoxide) of B-cells caused sustained increases and decreases of Ca2+i, respectively. In conclusion, the changes in membrane potential induced by various secretagogues trigger synchronous changes in Ca2+i in all B-cells of the islets. The oscillatory pattern of the electrical and Ca2+i responses induced by glucose is not accompanied by and thus probably not due to similar oscillations of metabolism.  相似文献   

11.
Sener  A.  Scruel  O.  Louchami  K.  Jijakli  H.  Malaisse  W.J. 《Molecular and cellular biochemistry》1999,194(1-2):133-145
The analog of D-glucose, 3-O-methyl-D-glucose, is thought to delay the equilibration of D-glucose concentration across the plasma membrane of pancreatic islet B-cells, but not to exert any marked inhibitory action upon the late phase of glucose-stimulated insulin release. In this study, however, 3-O-methyl-D-glucose, when tested in high concentrations (30-80 mM) was found to cause a rapid, sustained and not rapidly reversible inhibition of glucose-induced insulin release in rat pancreatic islets. In relative terms, the inhibitory action of 3-O-methyl-D-glucose was more marked at low than high concentrations of D-glucose. It could not be attributed to hyperosmolarity and appeared specific for the insulinotropic action of D-glucose, as distinct from non-glucidic nutrient secretagogues. Although 3-O-methyl-D-glucose and D-glucose failed to exert any reciprocal effect upon the steady-state value for the net uptake of these monosaccharides by the islets, the glucose analog inhibited D-[5-3H]glucose utilization and D-[U-14C]glucose oxidation. This coincided with increased 86Rb outflow and decreased 45Ca outflow from prelabelled islets, as well as decreased 45Ca net uptake. A preferential effect of 3-O-methyl-D-glucose upon the first phase of glucose-stimulated insulin release was judged compatible with an altered initial rate of D-glucose entry into islet B-cells. The long-term inhibitory action of the glucose analog upon the metabolic and secretory response to D-glucose, however, may be due, in part at least, to an impaired rate of D-glucose phosphorylation. The phosphorylation of the hexose by beef heart hexokinase and human B-cell glucokinase, as well as by parotid and islet homogenates, was indeed inhibited by 3-O-methyl-D-glucose. The relationship between insulin release and D-glucose utilization or oxidation in the presence of 3-O-methyl-D-glucose was not different from that otherwise observed at increasing concentrations of either D-glucose or D-mannoheptulose. It is concluded, therefore, that 3-O-methyl-D-glucose adversely affects the metabolism and insulinotropic action of D-glucose by a mechanism largely unrelated to changes in the intracellular concentration of the latter hexose.  相似文献   

12.
The effect of glucose on the metabolism of phospholipids in pancreatic islets was studied with three radioactive phospholipid precursors, [32P]orthophosphate, [3H]myoinositol, and [3H]arachidonic acid, to determine the conditions necessary for studying the breakdown of prelabeled phospholipids. Islets were incubated in the presence of a radioactive precursor for 60 or 90 min and in the presence of either 3.3 or 16.7 mM glucose to prelabel phospholipids. To study the breakdown of prelabeled phospholipid, the unincorporated precursor was removed and the islets were reincubated for 15 or 20 min under conditions that either did or did not stimulate insulin release. Prelabeling in the presence of a noninsulinotropic concentration of glucose (3.3 mM) supported the incorporation of precursors into almost all islet phospholipids studied. Prelabeling in an insulinotropic concentration of glucose (16.7 mM) increased the incorporation of precursors into a number of phospholipids even more; and reincubation in 16.7 mM glucose caused a rapid loss of radioactivity from specific phospholipids (phosphatidylinositol and/or phosphatidylcholine, depending on the precursor). This breakdown was observed only when islets had been prelabeled in 16.7 mM glucose. The amount of radioactivity lost from phospholipid corresponded roughly to the additional amount incorporated during the prelabeling in the high concentration of glucose. Radioactivity in phospholipids in islets prelabeled in 3.3 mM glucose or in nonsecretagogue metabolic fuels, such as malate plus pyruvate, did not decrease when the islets were subsequently exposed to 16.7 mM glucose, nor did it decrease in 3.3 mM glucose when these islets had been prelabeled in 16.7 mM glucose. Glyceraldehyde, an insulin secretagogue, but not galactose or L-glucose which are not insulin secretagogues, stimulated phospholipid breakdown in islets that had been prelabeled in 16.7 mM glucose. Depriving islets of extracellular calcium, a condition that inhibits insulin release, inhibited phospholipid breakdown. The results suggest that pancreatic islets contain a glucose-responsive and a glucose-unresponsive phospholipid pool. The glucose-responsive pool becomes labeled and undergoes rapid turnover only under stimulatory conditions and may play a role in the stimulus-secretion coupling of insulin release.  相似文献   

13.
14.
Resveratrol is a stilbene present in different plant species and exerting numerous beneficial effects, including prevention of diabetes and attenuation of some diabetic complications. Its inhibitory effect on insulin secretion was recently documented, but the exact mechanism underlying this action remains unknown. Experiments employing diazoxide and a high concentration of K(+) revealed that, in depolarized pancreatic islets incubated for 90 min with resveratrol (1, 10, and 100 microM), insulin secretion stimulated by glucose and leucine was impaired. The attenuation of the insulin secretory response to 6.7 mM glucose was not abrogated by blockade of intracellular estrogen receptors and was found to be accompanied by diminished islet glucose oxidation, enhanced lactate production, and reduced ATP levels. Glucose-induced hyperpolarization of the mitochondrial membrane was also reduced in the presence of resveratrol. Moreover, in depolarized islets incubated with 2.8 mM glucose, activation of protein kinase C or protein kinase A potentiated insulin release; however, under these conditions, resveratrol was ineffective. Further studies also revealed that, under conditions of blocked voltage-dependent calcium channels, the stilbene reduced insulin secretion induced by a combination of glucose with forskolin. These data demonstrate that resveratrol 1) inhibits the amplifying pathway of insulin secretion, 2) exerts an insulin-suppressive effect independently of its estrogenic/anti-estrogenic activity, 3) shifts islet glucose metabolism from mitochondrial oxidation to anaerobic,4) fails to abrogate insulin release promoted without metabolic events, and 5) does not suppress hormone secretion as a result of the direct inhibition of Ca(2+) influx through voltage-dependent calcium channels.  相似文献   

15.
The concentration of glucose in plasma is an important determinant of pancreatic beta-cell mass, whereas the relative contributions of hypertrophy, proliferation, and cell survival to this process are unclear. Glucose results in depolarization and subsequent calcium influx into islet beta-cells. Because depolarization and calcium (Ca(2+)) influx promote survival of neuronal cells, we hypothesized that glucose might alter survival of islet beta-cells through a similar mechanism. In the present studies, cultured mouse islet beta-cells showed a threefold decrease in apoptosis under conditions of 15 mM glucose compared with 2 mM glucose (P < 0.05). MIN6 insulinoma cells incubated in 25 mM glucose for 24 h showed a threefold decrease in apoptosis compared with cells in 5 mM glucose (1.7 +/- 0.2 vs. 6.3 +/- 1%, respectively, P < 0.001). High glucose (25 mM) enhanced survival-required depolarization and Ca(2+) influx and was blocked by phosphatidylinositol (PI) 3-kinase inhibitors. Glucose activation of the protein kinase Akt was demonstrated in both insulinoma cells and cultured mouse islets by means of an antibody specific for Ser(473) phospho-Akt and by an in vitro Akt kinase assay. Akt phosphorylation was dependent on PI 3-kinase but not on MAPK. Transfection of insulinoma cells with an Akt kinase-dead plasmid (Akt-K179M) resulted in loss of glucose-mediated protection, whereas transfection with a constitutively active Akt enhanced survival in glucose-deprived insulinoma cells. The results of these studies defined a novel pathway for glucose-mediated activation of a PI 3-kinase/Akt survival-signaling pathway in islet beta-cells. This pathway may provide important targets for therapeutic intervention.  相似文献   

16.
《Journal of Physiology》1998,92(1):31-35
Perifused rat pancreatic islets, prelabelled with 45Ca, were exposed for 90 min to a medium containing 30 mM K+, 0.25 mM diazoxide and 0.5 mM EGTA, but deprived of CaCl2. Either verapamil (0.05 mM) or Cd2+ (0.05 mM) were also present in the perifusate. Under these conditions a rise in D-glucose concentrations from either 2.8 to 16.7 mM or zero to 8.3 mM increased both 45Ca outflow and insulin release, after an initial and transient decrease in effluent radioactivity. These findings suggest that, in islets depolarised by exposure to a high extracellular concentration of K+, D-glucose provokes an intracellular redistribution of Ca2+ ions and subsequent stimulation of insulin release. The functional response to D-glucose is apparently not attributable to either the closing of ATP-sensitive K+ channels, which were actually activated by diazoxide, or stimulation of Ca2+ influx, which was prevented by the absence of extracellular Ca2+. The present experimental design thus reveals a novel component of the glucose-induced remodelling of Ca2+ fluxes in islet cells. Such an effect might also be operative under physiological conditions, when the hexose leads to depolarisation of the islet B-cells.  相似文献   

17.
In islets from adult rats injected with streptozotocin during the neonatal period, both a nonmetabolized analog of L-leucine and 3-phenylpyruvate augmented 14CO2 output from islets either prelabeled with L-[U-14C]glutamine or exposed to D-[2-14C]glucose and D-[6-14C]glucose in a manner qualitatively comparable to that found in islets from control rats. The islets of diabetic rats differed, however, from those of control rats by their unresponsiveness to both the L-leucine analog and a high concentration of D-glucose in terms of increasing 3HOH generation from [2-3H]glycerol, an impaired sparing action of the hexose upon 14CO2 output from islets prelabeled with [U-14C]palmitate, and, most importantly, by a decreased rate of D-[2-14C]glucose and D-[6-14C]glucose oxidation when either incubated at a high concentration of the hexose (16.7 mM) or stimulated by nonglucidic nutrient secretagogues at a low concentration of D-glucose (2.8 mM). In islet homogenates, the activity of glyceraldehyde phosphate dehydrogenase, glutamate decarboxylase, and NADP-malate dehydrogenase was lower in diabetic than control islets. Such was not the case for glutamatealanine transaminase, glutamate-aspartate transaminase, or glutamate dehydrogenase. The neonatal injection of streptozotocin thus affected, in the adult rats, the activity of several islet enzymes. Nevertheless, the metabolic data suggest that an impaired circulation in the glycerol phosphate shuttle, as observed in response to stimulation of the islets by either a high concentration of D-glucose or nonglucidic nutrient secretagogues, represents an essential determinant of the preferential impairment of glucose-induced insulin release in this model of non-insulin-dependent diabetes.  相似文献   

18.
The effects of lowered O2 tension on insulin secretion and changes in cellular energy parameters were investigated in isolated rat pancreatic islets perifused with buffers equilibrated with 21, 9, 5, and 1% oxygen and containing 5 mM glucose. Decreasing the external [O2] reduced the amount of insulin released in response to 16 mM glucose, 20 mM alpha-ketoisocaproic acid, and 40 mM KCl. Secretion elicited by high glucose or KCl had declined significantly at 9% oxygen, whereas that caused by alpha-ketoisocaproic acid became inhibited below 5% O2. Lowering the oxygen tension also decreased the ability of islets to respond with a rise in [ATP]/[ADP] upon stimulation with metabolic secretagogues. This reduction in the evoked increase in the nucleotide ratios paralleled the inhibition of stimulated insulin secretion. Addition of 2 mM amytal markedly decreased the islet energy level and eliminated the secretory response to 16 mM glucose. The results suggest that enhancement of B-cell energy production and a consequent rise in [ATP] (or [ATP]/[ADP]) are a necessary event for the hormone release elicited by high glucose and alpha-ketoisocaproic acid. A decrease in temperature inhibited insulin secretion with all three secretagogues tested. The energies of activation were similar for high glucose and KCl-induced secretion, about 20 kcal/mol, but were higher for alpha-ketoisocaproic acid, about 35 kcal/mol. At 28 degrees C, the [ATP]/[ADP] was larger than that at 38 degrees C (8 versus 5) and was not increased further upon addition of 16 mM glucose. It is suggested that a decrease in the rate of energy production at lowered temperatures may contribute to the inhibition of insulin release caused by metabolic secretagogues.  相似文献   

19.
Insulin secretion in normal B-cells is pulsatile, a consequence of oscillations in the cell membrane potential (MP) and cytosolic calcium activity ([Ca(2+)](c)). We simultaneously monitored glucose-induced changes in [Ca(2+)](c) and in the mitochondrial membrane potential DeltaPsi, as a measure for ATP generation. Increasing the glucose concentration from 0.5 to 15 mM led to the well-known hyperpolarization of DeltaPsi and ATP-dependent lowering of [Ca(2+)](c). However, as soon as [Ca(2+)](c) rose due to the opening of voltage-dependent Ca(2+) channels, DeltaPsi depolarized and thereafter oscillations in [Ca(2+)](c) were parallel to oscillations in DeltaPsi. A depolarization or oscillations of DeltaPsi cannot be evoked by a substimulatory glucose concentration, but Ca(2+) influx provoked by 30 mM KCl was followed by a depolarization of DeltaPsi. The following feedback loop is suggested: Glucose metabolism via mitochondrial ATP production and closure of K(+)(ATP) channels induces an increase in [Ca(2+)](c). The rise in [Ca(2+)](c) in turn decreases ATP synthesis by depolarizing DeltaPsi, thus transiently terminating Ca(2+) influx.  相似文献   

20.
F Martin  F J Bedoya 《Life sciences》1991,49(25):1915-1921
The involvement of cAMP- and calcium-dependent pathways on the inhibitory effect of CsA (0.5 micrograms/ml) on insulin and glucagon release was studied in collagenase-isolated islets. CsA suppressed by 50% the release of insulin in pertussis toxin treated islets stimulated by 20 mM D-glucose. CsA blocked glucagon and insulin release induced by 0.2 mM IBMX (80% and 50% respectively). Similarly it inhibited glucagon and insulin release induced by 1 microM A23187 (53% and 40% respectively). CsA also abolished 0.1 microM glucagon-induced insulin release and 10 ng/ml VIP-induced glucagon release (70% and 38% respectively). The glucagon response to 2 mM D-glucose and to 10 mM arginine was decreased 25% and 45% respectively by CsA. The inhibitory effect of 0.1 microM somatostatin on insulin release was significantly abolished by CsA (p less than 0.001 vs control). On the other hand 1 microM forskolin induced insulin and glucagon release was not modified by CsA. Rats treated with CsA (10 mg/kg body wt) during 10 days showed hyperglycaemia, hypoglucagonemia and higher contents of pancreatic glucagon. It is concluded that CsA affects alpha- and beta-cell function, in vivo and in vitro, acting through calcium and cAMP-dependent pathways. This latter pathway involves the Ca(2+)-calmodulin dependent phosphodiesterase and the regulatory proteins Gs and Gi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号