首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
BACKGROUND: The importance of mitotic spindle checkpoint control has been well established during somatic cell divisions. The metaphase-to-anaphase transition takes place only when all sister chromatids have been properly attached to the bipolar spindle and are aligned at the metaphase plate. Failure of this checkpoint may lead to unequal separation of sister chromatids. On the contrary, the existence of such a checkpoint during the first meiotic division in mammalian oocytes when homologous chromosomes are segregated has remained controversial. RESULTS: Here, we show that mouse oocytes respond to spindle damage by a transient and reversible cell cycle arrest in metaphase I with high Maturation Promoting Factor (MPF) activity. Furthermore, the mitotic checkpoint protein Mad2 is present throughout meiotic maturation and is recruited to unattached kinetochores. Overexpression of Mad2 in meiosis I leads to a cell cycle arrest in metaphase I. Expression of a dominant-negative Mad2 protein interferes with proper spindle checkpoint arrest. CONCLUSIONS: Errors in meiosis I cause missegregation of chromosomes and can result in the generation of aneuploid embryos with severe birth defects. In human oocytes, failures in spindle checkpoint control may be responsible for the generation of trisomies (e.g., Down Syndrome) due to chromosome missegregation in meiosis I. Up to now, the mechanisms ensuring correct separation of chromosomes in meiosis I remained unknown. Our study shows for the first time that a functional Mad2-dependent spindle checkpoint exists during the first meiotic division in mammalian oocytes.  相似文献   

2.
Research over the last two decades has identified a group of meiosis-specific proteins, consisting of budding yeast Spo13, fission yeast Moa1, mouse MEIKIN, and Drosophila Mtrm, with essential functions in meiotic chromosome segregation. These proteins, which we call meiosis I kinase regulators (MOKIRs), mediate two major adaptations to the meiotic cell cycle to allow the generation of haploid gametes from diploid mother cells. Firstly, they promote the segregation of homologous chromosomes in meiosis I (reductional division) by ensuring that sister kinetochores face towards the same pole (mono-orientation). Secondly, they safeguard the timely separation of sister chromatids in meiosis II (equational division) by counteracting the premature removal of pericentromeric cohesin, and thus prevent the formation of aneuploid gametes. Although MOKIRs bear no obvious sequence similarity, they appear to play functionally conserved roles in regulating meiotic kinases. Here, the known functions of MOKIRs are reviewed and their possible mechanisms of action are discussed. Also see the video abstract here https://youtu.be/tLE9KL89bwk .  相似文献   

3.
4.
The spindle assembly checkpoint (SAC) ensures correct separation of sister chromatids in somatic cells and provokes a cell cycle arrest in metaphase if one chromatid is not correctly attached to the bipolar spindle. Prolonged metaphase arrest due to overexpression of Mad2 has been shown to be deleterious to the ensuing anaphase, leading to the generation of aneuploidies and tumorigenesis. Additionally, some SAC components are essential for correct timing of prometaphase. In meiosis, we and others have shown previously that the Mad2-dependent SAC is functional during the first meiotic division in mouse oocytes. Expression of a dominant-negative form of Mad2 interferes with the SAC in metaphase I, and a knock-down approach using RNA interference accelerates anaphase onset in meiosis I. To prove unambigiously the importance of SAC control for mammalian female meiosis I we analyzed oocyte maturation in Mad2 heterozygote mice, and in oocytes overexpressing a GFP-tagged version of Mad2. In this study we show for the first time that loss of one Mad2 allele, as well as overexpression of Mad2 lead to chromosome missegregation events in meiosis I, and therefore the generation of aneuploid metaphase II oocytes. Furthermore, SAC control is impaired in mad2+/- oocytes, also leading to the generation of aneuploidies in meiosis I.  相似文献   

5.
In eukaryotic cells, fidelity in transmission of genetic information during cell division is ensured by the action of cell cycle checkpoints. Checkpoints are surveillance mechanisms that arrest or delay cell cycle progression when critical cellular processes are defective or when the genome is damaged. During meiosis, the so-called meiotic recombination checkpoint blocks entry into meiosis I until recombination has been completed, thus avoiding aberrant chromosome segregation and the formation of aneuploid gametes. One of the key components of the meiotic recombination checkpoint is the meiosis-specific Mek1 kinase, which belongs to the family of Rad53/Cds1/Chk2 checkpoint kinases containing forkhead-associated domains. In fission yeast, several lines of evidence suggest that Mek1 targets the critical cell cycle regulator Cdc25 to delay meiotic cell cycle progression. Here, we investigate in more detail the molecular mechanism of action of the fission yeast Mek1 protein. We demonstrate that Mek1 acts independently of Cds1 to phosphorylate Cdc25, and this phosphorylation is required to trigger cell cycle arrest. Using ectopic overexpression of mek1+ as a tool to induce in vivo activation of Mek1, we find that Mek1 promotes cytoplasmic accumulation of Cdc25 and results in prolonged phosphorylation of Cdc2 at tyrosine 15. We propose that at least one of the mechanisms contributing to the cell cycle delay when the meiotic recombination checkpoint is activated in fission yeast is the nuclear exclusion of the Cdc25 phosphatase by Mek1-dependent phosphorylation.  相似文献   

6.
Unlike somatic cells mitosis, germ cell meiosis consists of 2 consecutive rounds of division that segregate homologous chromosomes and sister chromatids, respectively. The meiotic oocyte is characterized by an absence of centrioles and asymmetric division. Centriolin is a relatively novel centriolar protein that functions in mitotic cell cycle progression and cytokinesis. Here, we explored the function of centriolin in meiosis and showed that it is localized to meiotic spindles and concentrated at the spindle poles and midbody during oocyte meiotic maturation. Unexpectedly, knockdown of centriolin in oocytes with either siRNA or Morpholino micro-injection, did not affect meiotic spindle organization, cell cycle progression, or cytokinesis (as indicated by polar body emission), but led to a failure of peripheral meiotic spindle migration, large polar body emission, and 2-cell like oocytes. These data suggest that, unlike in mitotic cells, the centriolar protein centriolin does not regulate cytokinesis, but plays an important role in regulating asymmetric division of meiotic oocytes.  相似文献   

7.
Ex ovo omnia—all animals come from eggs—this statement made in 1651 by the English physician William Harvey marks a seminal break with the doctrine that all essential characteristics of offspring are contributed by their fathers, while mothers contribute only a material substrate. More than 360 years later, we now have a comprehensive understanding of how haploid gametes are generated during meiosis to allow the formation of diploid offspring when sperm and egg cells fuse. In most species, immature oocytes are arrested in prophase I and this arrest is maintained for few days (fruit flies) or for decades (humans). After completion of the first meiotic division, most vertebrate eggs arrest again at metaphase of meiosis II. Upon fertilization, this second meiotic arrest point is released and embryos enter highly specialized early embryonic divisions. In this review, we discuss how the standard somatic cell cycle is modulated to meet the specific requirements of different developmental stages. Specifically, we focus on cell cycle regulation in mature vertebrate eggs arrested at metaphase II (MII‐arrest), the first mitotic cell cycle, and early embryonic divisions.  相似文献   

8.
9.
We have studied the patterns of expression of four B-type cyclins (Clbs), Clb1, Clb2, Clb3, and Clb4, and their ability to activate p34cdc28 during the mitotic and meiotic cell cycles of Saccharomyces cerevisiae. During the mitotic cell cycle, Clb3 and Clb4 were expressed and induced a kinase activity in association with p34cdc28 from early S phase up to mitosis. On the other hand, Clb1 and Clb2 were expressed and activated p34cdc28 later in the mitotic cell cycle, starting in late S phase and continuing up to mitosis. The pattern of expression of Clb3 and Clb4 suggests a possible role in the regulation of DNA replication as well as mitosis. Clb1 and Clb2, whose pattern of expression is similar to that of other known Clbs, are likely to have a role predominantly in the regulation of M phase. During the meiotic cell cycle, Clb1, Clb3, and Clb4 were expressed and induced a p34cdc28-associated kinase activity just before the first meiotic division. The fact that Clb3 and Clb4 were not synthesized earlier, in S phase, suggests that these cyclins, which probably have a role in S phase during the mitotic cell cycle, are not implicated in premeiotic S phase. Clb2, the primary mitotic cyclin in S. cerevisiae, was not detectable during meiosis. Sporulation experiments on strains deleted for one, two, or three Clbs indicate, in agreement with the biochemical data, that Clb1 is the primary cyclin for the regulation of meiosis, while Clb2 is not involved at all.  相似文献   

10.
Progression through the meiotic cell cycle is an essential part of the developmental program of sporogenesis in plants. The duet mutant of Arabidopsis was identified as a male sterile mutant that lacked pollen and underwent an aberrant male meiosis. Male meiocyte division resulted in the formation of two cells instead of a normal tetrad. In wild type, male meiosis extends across two successive bud positions in an inflorescence whereas in duet, meiotic stages covered three to five bud positions indicating defective progression. Normal microspores were absent in the mutant and the products of the aberrant meiosis were uni- to tri-nucleate cells that later degenerated, resulting in anthers containing largely empty locules. Defects in male meiotic chromosome organization were observed starting from diplotene and extending to subsequent stages of meiosis. There was an accumulation of meiotic structures at metaphase 1, suggesting an arrest in cell cycle progression. Double mutant analysis revealed interaction with dyad, a mutation causing chromosome cohesion during female meiosis. Cloning and molecular analysis of DUET indicated that it potentially encodes a PHD-finger protein and shows specific expression in male meiocytes. Taken together these data suggest that DUET is required for male meiotic chromosome organization and progression.  相似文献   

11.
In many eukaryotes, disruption of the spindle checkpoint protein Mad2 results in an increase in meiosis I nondisjunction, suggesting that Mad2 has a conserved role in ensuring faithful chromosome segregation in meiosis. To characterize the meiotic function of Mad2, we analyzed individual budding yeast cells undergoing meiosis. We find that Mad2 sets the duration of meiosis I by regulating the activity of APC(Cdc20). In the absence of Mad2, most cells undergo both meiotic divisions, but securin, a substrate of the APC/C, is degraded prematurely, and prometaphase I/metaphase I is accelerated. Some mad2Δ cells have a misregulation of meiotic cell cycle events and undergo a single aberrant division in which sister chromatids separate. In these cells, both APC(Cdc20) and APC(Ama1) are prematurely active, and meiosis I and meiosis II events occur in a single meiotic division. We show that Mad2 indirectly regulates APC(Ama1) activity by decreasing APC(Cdc20) activity. We propose that Mad2 is an important meiotic cell cycle regulator that ensures the timely degradation of APC/C substrates and the proper orchestration of the meiotic divisions.  相似文献   

12.
Lee BH  Kiburz BM  Amon A 《Current biology : CB》2004,14(24):2168-2182
BACKGROUND: The meiotic cell cycle, the cell division cycle that leads to the generation of gametes, is unique in that a single DNA replication phase is followed by two chromosome segregation phases. During meiosis I, homologous chromosomes are segregated, and during meiosis II, as in mitosis, sister chromatids are partitioned. For homolog segregation to occur during meiosis I, physical linkages called chiasmata need to form between homologs, sister chromatid cohesion has to be lost in a stepwise manner, and sister kinetochores must attach to microtubules emanating from the same spindle pole (coorientation). RESULTS: Here we show that the meiosis-specific factor Spo13 functions in two key aspects of meiotic chromosome segregation. In cells lacking SPO13, cohesin, which is the protein complex that holds sister chromatids together, is not protected from removal around kinetochores during meiosis I but is instead lost along the entire length of the chromosomes. We furthermore find that Spo13 promotes sister kinetochore coorientation by maintaining the monopolin complex at kinetochores. In the absence of SPO13, Mam1 and Lrs4 disassociate from kinetochores prematurely during pro-metaphase I and metaphase I, resulting in a partial defect in sister kinetochore coorientation in spo13 Delta cells. CONCLUSIONS: Our results indicate that Spo13 has the ability to regulate both the stepwise loss of sister chromatid cohesion and kinetochore coorientation, two essential features of meiotic chromosome segregation.  相似文献   

13.
CENP-A (CID in flies) is the histone H3 variant essential for centromere specification, kinetochore formation, and chromosome segregation during cell division. Recent studies have elucidated major cell cycle mechanisms and factors critical for CENP-A incorporation in mitosis, predominantly in cultured cells. However, we do not understand the roles, regulation, and cell cycle timing of CENP-A assembly in somatic tissues in multicellular organisms and in meiosis, the specialized cell division cycle that gives rise to haploid gametes. Here we investigate the timing and requirements for CID assembly in mitotic tissues and male and female meiosis in Drosophila melanogaster, using fixed and live imaging combined with genetic approaches. We find that CID assembly initiates at late telophase and continues during G1 phase in somatic tissues in the organism, later than the metaphase assembly observed in cultured cells. Furthermore, CID assembly occurs at two distinct cell cycle phases during male meiosis: prophase of meiosis I and after exit from meiosis II, in spermatids. CID assembly in prophase I is also conserved in female meiosis. Interestingly, we observe a novel decrease in CID levels after the end of meiosis I and before meiosis II, which correlates temporally with changes in kinetochore organization and orientation. We also demonstrate that CID is retained on mature sperm despite the gross chromatin remodeling that occurs during protamine exchange. Finally, we show that the centromere proteins CAL1 and CENP-C are both required for CID assembly in meiosis and normal progression through spermatogenesis. We conclude that the cell cycle timing of CID assembly in meiosis is different from mitosis and that the efficient propagation of CID through meiotic divisions and on sperm is likely to be important for centromere specification in the developing zygote.  相似文献   

14.
Mlh1 is a member of DNA mismatch repair (MMR) machinery and is also essential for the stabilization of crossovers during the first meiotic division. Recently, we have shown that zebrafish mlh1 mutant males are completely infertile because of a block in metaphase I, whereas females are fertile but have aneuploid progeny. When studying fertility in males in a two-fold more inbred background, we have however observed low numbers of fertilized eggs (approximately 0.4%). Histological examination of the testis has revealed that all spermatogenic stages prior to spermatids (spermatogonia, primary spermatocytes, and secondary spermatocytes) are significantly increased in the mutant, whereas the total weight of spermatids and spermatozoa is highly decreased (1.8 mg in wild-type vs. 0.1 mg in mutants), a result clearly different from our previous study in which outbred males lack secondary spermatocytes or postmeiotic cells. Thus, a delay of both meiotic divisions occurs rather than complete arrest during meiosis I in these males. Eggs fertilized with mutant sperm develop as malformed embryos and are aneuploid making this male phenotype much more similar to that previously described in the mutant females. Therefore, crossovers are still essential for proper meiosis, but meiotic cell divisions can progress without it, suggesting that this mutant is a suitable model for studying the cellular mechanisms of completing meiosis without crossover stabilization. Marcelo C. Leal and Harma Feitsma contributed equally to this work. This work was supported by the Brazilian Foundation CAPES, the Cancer Genomics Center (Nationaal Regie Orgaan Genomics), the European Union-funded FP6 Integrated Project ZF-MODELS, and Utrecht University.  相似文献   

15.
In budding yeast, commitment to meiosis is attained when meiotic cells cannot return to the mitotic cell cycle even if the triggering cue (nutrients deprivation) is withdrawn. Commitment is arrived at gradually, and different aspects of meiosis may be committed at different times. Cells become fully committed to meiosis at the end of Prophase I, long after DNA replication and just before the first meiotic division (MI). Whole‐genome gene expression analysis has shown that committed cells have a distinct and rapid response to nutrients, and are not simply insulated from environmental signals. Thus becoming committed to meiosis is an active process. The cellular event most likely to be associated with commitment to meiosis is the separation of the duplicated spindle‐pole bodies (SPBs) and the formation of the spindle. Commitment to the mitotic cell cycle is also associated with the separation of SPBs, although it occurs in G1, before DNA replication.  相似文献   

16.
A Mutant Affecting Meiosis in Neurospora   总被引:3,自引:0,他引:3       下载免费PDF全文
David A. Smith 《Genetics》1975,80(1):125-133
Many mutants affecting meiosis increase the occurrence of aneuploid meiotic products. In Neurospora, mutants of this type cause ascospore abortion which is reflected by an increase in the proportion of ascospores failing to develop black pigment. The usefulness of the criterion white-ascospore-production as a signal for the presence of a mutant affecting meiosis is demonstrated by the recovery of several such mutants. One of these is mei-1 (meiotic-1), a recessive mutant on linkage group IV. Crosses homozygous for mei-1 produce 90% white ascospores (vs. 5% in wild-type crosses). Viable ascospores, invariably black, are always disomic for one or more linkage groups; the chromatids assorted into viable ascospores do not engage in crossing over in meiosis. The distribution of viable ascospores in individual asci suggests that all meioses are defective in the first meiotic division, and that most meioses are defective in both divisions.  相似文献   

17.
Guo X  Zhang P  Qi Y  Chen W  Chen X  Zhou Z  Sha J 《Proteomics》2011,11(2):298-308
Male meiosis is a specialized type of cell division that gives rise to sperm. Errors in this process can result in the generation of aneuploid gametes, which are associated with birth defects and infertility in humans. Until now, there has been a lack of a large-scale identification of proteins involved in male meiosis in mammals. In this study, we report the high-confidence identification of 3625 proteins in mouse male germ cells with 4C DNA content undergoing meiosis I. Of these, 397 were found to be testis specific. Bioinformatics analysis of the proteome led to the identification of 28 proteins known to be essential for male meiosis in mice. We also found 172 proteins that had yeast orthologs known to be essential for meiosis. Chromosome distribution analysis of the proteome showed underrepresentation of the identified proteins on the X chromosome, which may be due to meiotic sex chromosome inactivation. Characterization of the proteome of 4C germ cells from mouse testis provides an inventory of proteins, which is useful for understanding meiosis and the mechanisms of male infertility.  相似文献   

18.
In meiosis I, two chromatids move to each spindle pole. Then, in meiosis II, the two are distributed, one to each future gamete. This requires that meiosis I chromosomes attach to the spindle differently than meiosis II chromosomes and that they regulate chromosome cohesion differently. We investigated whether the information that dictates the division type of the chromosome comes from the whole cell, the spindle, or the chromosome itself. Also, we determined when chromosomes can switch from meiosis I behavior to meiosis II behavior. We used a micromanipulation needle to fuse grasshopper spermatocytes in meiosis I to spermatocytes in meiosis II, and to move chromosomes from one spindle to the other. Chromosomes placed on spindles of a different meiotic division always behaved as they would have on their native spindle; e.g., a meiosis I chromosome attached to a meiosis II spindle in its normal fashion and sister chromatids moved together to the same spindle pole. We also showed that meiosis I chromosomes become competent meiosis II chromosomes in anaphase of meiosis I, but not before. The patterns for attachment to the spindle and regulation of cohesion are built into the chromosome itself. These results suggest that regulation of chromosome cohesion may be linked to differences in the arrangement of kinetochores in the two meiotic divisions.  相似文献   

19.
During meiosis, DNA replication is followed by two successive rounds of chromosome segregation (meiosis I and II), which give rise to genetically diverse haploid gametes. The prophase of the first meiotic division is highly regulated and alignment and synapsis of the homologous chromosomes during this stage are mediated by the synaptonemal complex. Incorrect assembly of the synaptonemal complex results in cell death, impaired meiotic recombination and aneuploidy. Oocytes with meiotic defects often survive the first meiotic prophase and give rise to aneuploid gametes. Similarly affected spermatocytes, on the other hand, almost always undergo apoptosis at a male-specific meiotic checkpoint, located specifically at epithelial stage IV during spermatogenesis. Many examples of this stage IV-specific arrest have been described for several genetic mouse models in which DNA repair or meiotic recombination are abrogated. Interestingly, in C. elegans, meiotic recombination and synapsis are monitored by two separate checkpoint pathways. Therefore we studied spermatogenesis in several knockout mice (Sycp1(-/-), Sycp3(-/-), Smc1beta(-/-) and Sycp3/Sycp1 and Sycp3/Smc1beta double-knockouts) that are specifically defective in meiotic pairing and synapsis. Like for recombination defects, we found that all these genotypes also specifically arrest at epithelial stage IV. It seems that the epithelial stage IV checkpoint eliminates spermatocytes that fail a certain quality check, being either synapsis or DNA damage related.  相似文献   

20.
A modified enzyme digestion technique of ovary isolation followed by staining and squash preparation has allowed us to observe female meiosis in normal maize meiotically dividing megaspore mother cells (MMCs). The first meiotic division in megasporogenesis of maize is not distinguishable from that in mi-crosporogenesis. The second female meiotic division is characterized as follows: (1) the two products of the first meiotic division do not simultaneously enter into the second meiotic division; as a rule, the chalazal-most cell enters division earlier than the micropylar one, (2) often the second of the two products does not proceed with meiosis, but degenerates, and (3) only a single haploid meiotic product of the tetrad remains alive, and this cell proceeds with three rounds of mitoses without any intervening cell wall formation to produce the eight-nucleate embryo sac. This technique has allowed us to study the effects of five meiotic mutations (aml, aml-pral, afdl, dsy *-9101, and dvl) on female meiosis in maize. The effects of the two alleles of the aml gene (aml and aml-pral) and of the afdl and dsy *-9101mutations are the same in both male and female meiosis. The aml allele prevents the entrance of MMCs into meiosis and meiosis is replaced by mitosis; the aml-pral permits MMCs to enter into meiosis, but their progress is stopped at early prophase I stages. The afdl gene is responsible for substitution of the first meiotic (reductional) division by an equational division including the segregation of sister chromatid centromeres at anaphase I. The dsy * -9101 gene exhibits abnormal chromosome pairing; paired homologous chromosomes are visible at pachytene, but only univalents are observed at diakinesis and metaphase I stages. These mutation specific patterns of abnormal meiosis are responsible for the bisexual sterility of these meiotic mutants. The abnormal divergent shape of the spindle apparatus and the resulting abnormal segregation of homologous chromosomes observed in micro-sporogenesis in plants homozygous for the dv1 mutation have not been found in meiosis of megasporogenesis. Only male sterility is induced by the dv1 gene in the homozygous condition. © 1993 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号